April 27, 2015

blue
kitcheng

BTstack Manual
Including Quickstart Guide

Dr. sc. Milanka Ringwald
Dr. sc. Matthias Ringwald
contact@bluekitchen-gmbh.com

contact@bluekitchen-gmbh.com

CONTENTS

(1. Quick Start|

(.1, General Toolg

[1.2. Getting B'T'stack from GitHub|

[1.3. Compiling the examples and loading firmware
(1.4. Run the Example]

[1.5. Platform specifics|

1.5.1. Tibushl

(1.5.2. Texas Instruments MSP430-based boards|
[1.5.3. Texas Instruments CC256x-based chipsets|
(1.5.4. MSP-EXP430F5438 + CC256x Platform)|
[1.5.5. STM32F103RB Nucleo + CC256x Platform|
[1.5.6. PIC32 Bluetooth Audio Development Kit|
2. BTstack Architecturel

[2.1. Single threaded design|

2.2. No blocking anywhere]

2.3. No artificially limited buffers/pools|

[2.4. Statically bounded memory]

3. _How to use BTstackl

[3.1. Memory configuration|

[3.2. Run loop|

(3.4, Services|

[3.5. Where to get data - packet handlers|

4. Protocold

4.1, HCI - Host Controller Interfacel

[4.1.1. Defining custom HCI command templates|
[4.1.2. Sending HCI command based on a template]

[4.2. L2CAP - Logical Link Control and Adaptation Protocol]

421, Access an [.L2CAP service on a remote devicel
027 DProvid [5CAD =
[4.2.3. L2CAP LE - L2CAP Low Energy Protocol|

[4.3. RFCOMM - Radio Frequency Communication Protocoll

4.3.1. REFCOMM flow controll

I RECOMM . Tevicd

033 Provid RECOMM -
[4.3.4. Living with a single output bufter|

[4.3.5. Slowing down RFCOMM data reception|
[4.4. SDP - Service Discovery Protocoll

4.4.1. Create and announce SDP records|
[4.4.2. Query remote SDP service

[4.5. BNEP - Bluetooth Network Encapsulation Protocoll

4.5.1. Receive BNEP events|

TS, ; BNED . levicd
4.5.3. Provide BNEP servicel

4.6, AT - Attribute Protocoll

0O 00 1~ Ot UtOtOUUx i WWwWwWwhNoNnDN

[4.7. SMP - Security Manager Protocol | 28
.71, Initializationl 28
[4.7.2. Configuration| 28
[4.7.3. Identity Resolving| 28
[4.7.4. Bonding process| 29
29

5 AP - . Profle Classid 99
0.1.1. Become discoverablel 29
0.1.2. Discover remote devices| 30
[5.1.3. Pairing of Devices| 30
[5.1.4. Dedicated Bonding] 32
5.2, SPP - Serial Port Profilel 32
[5.2.1. Accessing an SPP Server on a remote device| 32
[5.2.2. Providing an SPP Server| 32
[5.3. PAN - Personal Area Networking Profile] 32
[0.3.1. Accessing a remote PANU service| 33
[5.3.2. Providing a PANU service| 33
[5.4. GAP LE - Generic Access Profile for Low Energy| 33
.4.1. Private addresses.| 33
[5.4.2. Advertising and Discovery] 34
1 - G 1 I 34
0.0.1. GATT Client 34
0.0.2. GATT Server 35
[6. Examples| 36
[6.1. led_counter: Hello World: blinking LED without Bluetoothl 37
[6.1.1. Periodic Timer Setup | 37
[6.1.2. Main Application Setup| 38
[6.2. gap_inquiry: GAP Inquiry Example| 38
[6.2.1. Bluetooth Logic | 38
[6.2.2. Main Application Setup| 39
[6.3. sdp_general_query: Dump remote SDP Records| 39
[6.3.1. SDP Client Setup| 39
[6.3.2. SDP Client Query | 40
[6.3.3. Handling SDP Client Query Results | 40
[6.4. sdp_bnep_query: Dump remote BNEP PAN protocol UUID and |
L2CAP PSM| 41

[6.4.1. SDP Client Setup| 41
[6.4.2. SDP Client Query | 42
[6.4.3. Handling SDP Client Query Result | 42
[6.5. spp_counter: SPP Server - Heartbeat Counter over REFCOMM| 44
[6.0.1. SPP Service Setup | 44
[6.5.2. Periodic Timer Setup| 45
[6.5.3. Bluetooth Logic | 45
[6.6. spp_flowcontrol: SPP Server - Flow Controll 47
[6.6.1. SPP Service Setup | 47
[6.6.2. Periodic Timer Setup | 47
[6.7. panu_demo: PANU Demo| 48

6.7.1. Main application configuration| 48
6.7.2. TUN / TAP interface routines | 49
6.7.3. SDP parser callback | 50
6.7.4. Packet Handler 50
[6.8. gatt_browser: GA'T'l' Client - Discovering primary services and their |

characteristicg 52
[6.8.1. GAT'T client setup| 52
[6.8.2. HCI packet handler| 53
6.8.3. GATT Client event handler 54
[6.9. le_counter: LE Peripheral - Heartbeat Counter over GAT'T| 55
[6.9.1. Main Application Setup| 55
[6.9.2. Managing LE Advertisements| 56
6.9.3. Packet Handler Y
6.9.4. Heartbeat Handler| 58
[6.9.5. ATT Readl 58
[6.9.6. ATT Write 59
[6.10. spp_and_le_counter: Dual mode example] 29
6.10.1. Advertisements | 59
6.10.2. Packet Handler] 60
6.10.3. Heartbeat Handler 60
[6.10.4. Main Application Setup| 60
[7. Porting to Other Platforms| 62
[7.1. "Time Abstraction Layer| 62
(r.1.1. Tick Hardware Abstraction 62
[7.1.2. Time M5 Hardware Abstractionl 62
(2.2, Bluetooth Hardware Control AP]l 62
[7.3. HCI Transport Implementation| 63
7.3.1. HCI UART Transport Layer (H4)| 63
[7.3.2. H4 with eHCILL support] 63
[7.4. Persistent Storage API| 64
[8. Integrating with Existing Systems| 64
[8.1. Adapting BTstack for Single-Threaded Environments| 65
[8.2. Adapting BTstack for Multi-Threaded Environments| 65
[Appendix A. Run Loop API| 67
[Appendix B. HCI AP]| 69
[Appendix C. L2CAP API| 72
[Appendix D. RFCOMM API| 74
[Appendix E. SDP API] 7
[Appendix F. SDP Client API| 78
[Appendix G. SDP REFCOMM Query API]| 79
[Appendix H. GAT'T' Client API| 80
[Appendix I. PAN API| 87
[Appendix J. BNEP API| 89
[Appendix K. GAP API| 91
[Appendix L. SM API 92

[Appendix M. Events and Errors| 96

[Appendix N. Revision History] 100

5

Thanks for checking out BTstack! In this manual, we first provide a 'quick
starter guide’ for common platforms before highlighting BTstack’s main design
choices and go over all implemented protocols and profiles. A series of examples
show how BTstack can be used to implement common use cases. Finally, we
outline the basic steps when integrating BTstack into existing single-threaded
or even multi-threaded environments. The Revision History is shown in the
Appendix [N] on page [I00

1. QUICK START

1.1. General Tools. On Unix-based systems, git, make, and Python are usually
installed. If not, use the system’s packet manager to install them.

On Windows, you need to manually install and configure GNU Make, Python,
and optionally git :

o [GNU Makdl] for Windows: Add its bin folder to the Windows Path in
Environment Variables. The bin folder is where make.exe resides, and
it’s usually located in C:\ProgramFiles\GnuWin32\bin.

e Pythonf| for Windows: Add Python installation folder to the Windows
Path in Environment Variables.

Adding paths to the Windows Path variable:

e Go to: Control Panel—System— Advanced tab—Environment Variables.

e The top part contains a list of User variables.

e Click on the Path variable and then click edit.

e Go to the end of the line, then append the path to the list., for example,
C:\ProgramFiles\GnuWin32\bin for GNU Make.

e Ensure that there is a semicolon before and after C:\ProgramFiles\
GnuWin32\bin.

1.2. Getting BTstack from GitHub. Use git to clone the latest version:

git clone https://github.com/bluekitchen/btstack. git

Alternatively, you can download it as a ZIP archive from BTstack’s pageﬁon
GitHub.

1.3. Compiling the examples and loading firmware. This step is platform
specific. To compile and run the examples, you need to download and install the
platform specific toolchain and a flash tool. For TI’s CC256x chipsets, you also
need the correct init script, or ”Service Pack” in TI nomenclature. Assuming
that these are provided, go to btstack/platforms/$PLATFORMS$ folder in com-
mand prompt and run make. If all the paths are correct, it will generate several
firmware files. These firmware files can be loaded onto the device using platform
specific flash programmer. For the PIC32-Harmony platform, a project file for
the MPLAB X IDE is provided, too.

http://gnuwin32.sourceforge.net /packages /make.htm
http://www.python.org/getit/
3https://github.com /bluekitchen /btstack /archive /master.zip

http://gnuwin32.sourceforge.net/packages/make.htm
http://www.python.org/getit/
https://github.com/bluekitchen/btstack/archive/master.zip

TABLE 1. Overview of platform specific toolchains, programmers,
and used chipsets.

Platform Chipset Toolchain Programmer
ez430-rf2560, CC256x mspgc MSP430Flashe1E|
msp-exp430£5438, MSPDebugf]
msp430f52291p

stm32-f103rb-nucleo CC256x arm-gcd] OpenOC
pic32-harmony CSRss1l MPLABX(] [PICkit

libusb on Linux/OS X any any N/A

“http:/ /sourceforge.net/projects/mspgcec/files/Windows /mingw32/

bhttp: //processors.wiki.ti.com/index.php/MSP430_Flasher - Command Line_Programmer
“http://mspdebug.sourceforge.net/

Whttps: //launchpad.net/gcc-arm-embedded

“http://openocd.org

Fnttp:/ /www.microchip.com/pagehandler /en_us/devtools/mplabxc/
9http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164130

1.4. Run the Example. As a first test, we recommend the SPP Counter ex-
ample (see Section . During the startup, for TI chipsets, the init script is
transferred, and the Bluetooth stack brought up. After that, the development
board is discoverable as "BTstack SPP Counter” and provides a single virtual
serial port. When you connect to it, you’ll receive a counter value as text every
second.

1.5. Platform specifics. In the following, we provide more information on spe-
cific platform setups, toolchains, programmers, and init scripts.

1.5.1. libusb.

The quickest way to try BTstack is on a Linux or OS X system with an
additional USB Bluetooth module. The Makefile in platforms/1ibusb requires
pkg—conﬁgﬂ and libusbﬂ-l.O or higher to be installed.

On Linux, it’s usually necessary to run the examples as root as the kernel
needs to detach from the USB module.

On OS X, it’s necessary to tell the OS to only use the internal Bluetooth. For
this, execute:

sudo nvram bluetoothHostControllerSwitchBehavior=never

It’s also possible to run the examples on Win32 systems. For this:
e Install MSY | and MINGW32] using the MINGW installer

http:/ /www.freedesktop.org/wiki/Software /pkg-config/
Swww.libusb.org
Swww.mingw.org/wiki/msys

Twww.min gw.org

http://sourceforge.net/projects/mspgcc/files/Windows/mingw32/
http://processors.wiki.ti.com/index.php/MSP430_Flasher_-_Command_Line_Programmer
http://mspdebug.sourceforge.net/
https://launchpad.net/gcc-arm-embedded
http://openocd.org
http://www.microchip.com/pagehandler/en_us/devtools/mplabxc/
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=pg164130
http://www.freedesktop.org/wiki/Software/pkg-config/
www.libusb.org
www.mingw.org

7

e Compile and install libusb-1.0.19 to /usr/local/ in msys command shell
e Setup a USB Bluetooth dongle for use with libusb-1.0:

— Start Zadigﬁ

— Select Options — "List all devices”

— Select USB Bluetooth dongle in the big pull down list

— Select WinUSB (libusb) in the right pull pull down list

— Select ”Replace Driver”

Now, you can run the examples from the msys shell the same way as on Linux/OS

X.

1.5.2. Texas Instruments MSP430-based boards.

Compiler Setup. The MSP430 port of BTstack is developed using the Long
Term Support (LTS) version of mspgce. General information about it and instal-
lation instructions are provided on the MSPGCC Wikiﬂ On Windows, you need
to download and extract mspgcﬂ to C:\mspgcc. Add C:\mspgcc\bin folder to
the Windows Path in Environment variable as explained in Section [1.1}

Loading Firmware. To load firmware files onto the MSP430 MCU for
the MSP-EXP430F5438 Experimeneter board, you need a programmer like the
MSP430 MSP-FET430UIF debugger or something similar. The eZ430-RF2560
and MSP430F5529LP contain a basic debugger. Now, you can use one of follow-
ing software tools:

o MSP430Flasher"T] (windows-only):
— Use the following command, where you need to replace the BINARY _
FILE_NAME.hex with the name of your application:

MSP430Flasher. exe —n MSP430F5438A —w ”BINARY FILE NAME. hex” —v —
g —z [VCC]

e MSPDebugd? An example session with the MSP-FET430UIF connected
on OS X is given in following listing:

mspdebug —j —d /dev/tty .FET430UIF{d130 uif

prog blink.hex
run

1.5.3. Texas Instruments CC256z-based chipsets.

CC256x Init Scripts. In order to use the CC256x chipset on the PAN13xx
modules and others, an initialization script must be obtained. Due to licensing
restrictions, this initialization script must be obtained separately as follows:

8http://zadig.akeo.ie

Mttp: / /sourceforge.net/apps/mediawiki/mspgcc/index.php?title=MSPGCC_Wiki

Onttp:/ /sourceforge.net /projects/mspgec/files/ Windows /mingw32/
11http://plfocessors.Wiki.ti.com/index.php/MSP43O,FIasher,-,Commamd,Line,Proglraurnmelr
Phttp: / /mspdebug.sourceforge.net /

http://zadig.akeo.ie
http://sourceforge.net/apps/mediawiki/mspgcc/index.php?title=MSPGCC_Wiki
http://sourceforge.net/projects/mspgcc/files/Windows/mingw32/
http://processors.wiki.ti.com/index.php/MSP430_Flasher_-_Command_Line_Programmer
http://mspdebug.sourceforge.net/

e Download the BTS fild™ for your CC256x-based module.
e Copy the included .bts file into btstack/chipset-cc256x
e In chipset-cc256x, run the Python script: ./convert_bts_init_scripts.py

The common code for all CC256x chipsets is provided by bt_control_cc256x.c.
During the setup, bt_control_cc256x instance function is used to get a bt_control t
instance and passed to hci_init function.

Note: Depending on the CC256x-based module you're using, you’ll need to
update the reference bluetooth_init_cc256... in the Makefile to match the
downloaded file.

Update: For the latest revision of the CC256x chipsets, the CC2560B and
CC2564B, TT decided to split the init script into a main part and the BLE part.
The conversion script has been updated to detect bluetooth_init_cc256x_1.2.bts
and adds BLFE anit_cc256x_1.2.bts if present and merges them into a single .c
file.

1.5.4. MSP-EXP/30F5438 + CC256x Platform.

Hardware Setup. We assume that a PAN1315, PAN1317, or PAN1323 mod-
ule is plugged into RF1 and RF2 of the MSP-EXP430F5438 board and the "RF3
Adapter board” is used or at least simulated. See User Guidd™}

1.5.5. STM32F103RB Nucleo + CC256x Platform.

To try BTstack on this platform, you’ll need a simple adaptor board. For
details, please read the documentation in platforms/stm32-f103rb-nucleo/
README . md.

1.5.6. PIC32 Bluetooth Audio Development Kit.

The PIC32 Bluetooth Audio Development Kit comes with the CSR8811-based
BTMS805 Bluetooth module. In the port, the UART on the DAC daughter board
was used for the debug output. Please remove the DAC board and connect a
3.3V USB-2-UART converter to GND and TX to get the debug output.

In platforms/pic32-harmony, a project file for the MPLAB X IDE is pro-
vided as well as a regular Makefile. Both assume that the MPLAB XC32 compiler
is installed. The project is set to use -Os optimization which will cause warnings
if you only have the Free version. It will still compile a working example. For
this platform, we only provide the SPP and LE Counter example directly. Other
examples can be run by replacing the spp_and_le_counter.c file with one of the
other example files.

2. BTSTACK ARCHITECTURE

As well as any other communication stack, BTstack is a collection of state
machines that interact with each other. There is one or more state machines for
each protocol and service that it implements. The rest of the architecture follows
these fundamental design guidelines:

o Single threaded design - BTstack does not use or require multi-threading
to handle data sources and timers. Instead, it uses a single run loop.

B3http: / /processors.wiki.ti.com/index.php/CC256x_Downloads
Mhttp: / /processors.wiki.ti.com/index.php/PAN1315EMK _User_Guide#RF3_Connector

http://processors.wiki.ti.com/index.php/CC256x_Downloads
http://processors.wiki.ti.com/index.php/PAN1315EMK_User_Guide#RF3_Connector

9

e No blocking anywhere - If Bluetooth processing is required, its result will
be delivered as an event via registered packet handlers.

e No artificially limited buffers/pools - Incoming and outgoing data packets
are not queued.

e Statically bounded memory (optionally) - The number of maximum con-
nections/channels/services can be configured.

Main Application
Communication Logic PH
oA b

N
timer ready Bluetooth Stack
Data) add

SDP RFCOMM
ST T——
Source data source
L2CAP LE
Data Data

data source |

reaay
£
Timeouts
H4 UART eHCILL UART 1.

add timer

v
Run Loop

BTstack

Bluetooth Single/Dual Mode Chipset

FiGUurE 1. BTstack-based single-threaded application. The Main
Application contains the application logic, e.g., reading a sensor
value and providing it via the Communication Logic as a SPP
Server. The Communication Logic is often modeled as a finite
state machine with events and data coming from either the Main
Application or from BTstack via registered packet handlers (PH).
BTstack’s Run Loop is responsible for providing timers and pro-
cessing incoming data.

Figure [1] shows the general architecture of a BTstack-based application that
includes the BTstack run loop.

2.1. Single threaded design. BTstack does not use or require multi-threading.
It uses a single run loop to handle data sources and timers. Data sources represent

10

communication interfaces like an UART or an USB driver. Timers are used
by BTstack to implement various Bluetooth-related timeouts. For example, to
disconnect a Bluetooth baseband channel without an active L2ZCAP channel after
20 seconds. They can also be used to handle periodic events. During a run loop
cycle, the callback functions of all registered data sources are called. Then, the
callback functions of timers that are ready are executed.

For adapting BTstack to multi-threaded environments, see Section [8.2]

2.2. No blocking anywhere. Bluetooth logic is event-driven. Therefore, all
BTstack functions are non-blocking, i.e., all functions that cannot return im-
mediately implement an asynchronous pattern. If the arguments of a function
are valid, the necessary commands are sent to the Bluetooth chipset and the
function returns with a success value. The actual result is delivered later as an
asynchronous event via registered packet handlers.

If a Bluetooth event triggers longer processing by the application, the process-
ing should be split into smaller chunks. The packet handler could then schedule
a timer that manages the sequential execution of the chunks.

2.3. No artificially limited buffers/pools. Incoming and outgoing data pack-
ets are not queued. BTstack delivers an incoming data packet to the application
before it receives the next one from the Bluetooth chipset. Therefore, it relies
on the link layer of the Bluetooth chipset to slow down the remote sender when
needed.

Similarly, the application has to adapt its packet generation to the remote
receiver for outgoing data. L2CAP relies on ACL flow control between sender and
receiver. If there are no free ACL buffers in the Bluetooth module, the application
cannot send. For RFCOMM, the mandatory credit-based flow-control limits the
data sending rate additionally. The application can only send an RFCOMM
packet if it has RFCOMM credits.

2.4. Statically bounded memory. BTstack has to keep track of services and
active connections on the various protocol layers. The number of maximum con-
nections/channels/services can be configured. In addition, the non-persistent
database for remote device names and link keys needs memory and can be be
configured, too. These numbers determine the amount of static memory alloca-
tion.

3. How 1O USE BTSTACK

BTstack implements a set of basic Bluetooth protocols. To make use of these
to connect to other devices or to provide own services, BTstack has to be properly
configured during application startup.

In the following, we provide an overview of the memory management, the run
loop, and services that are necessary to setup BTstack. From the point when
the run loop is executed, the application runs as a finite state machine, which
processes events received from BTstack. BTstack groups events logically and pro-
vides them over packet handlers, of which an overview is provided here. Finally,
we describe the RFCOMM credit-based flow-control, which may be necessary for

11

resource-constraint devices. Complete examples for the MSP430 platforms will
be presented in Chapter [6]

3.1. Memory configuration. The structs for services, active connections and
remote devices can be allocated in two different manners:

e statically from an individual memory pool, whose maximal number of
elements is defined in the config file. To initialize the static pools, you
need to call btstack-memory_init function. An example of memory con-
figuration for a single SPP service with a minimal L2ZCAP MTU is shown
in Listing

e dynamically using the malloc/free functions, if HAVE_MALLOC is de-
fined in config file.

If both HAVE_MALLOC and maximal size of a pool are defined in the config
file, the statical allocation will take precedence. In case that both are omitted,
an error will be raised.

The memory is set up by calling btstack_memory_init function:

btstack_memory_init () ;

3.2. Run loop. BTstack uses a run loop to handle incoming data and to sched-
ule work. The run loop handles events from two different types of sources: data
sources and timers. Data sources represent communication interfaces like an
UART or an USB driver. Timers are used by BTstack to implement various
Bluetooth-related timeouts. They can also be used to handle periodic events.

Data sources and timers are represented by the data_source_t and timer_source_t
structs respectively. Each of these structs contain a linked list node and a pointer
to a callback function. All active timers and data sources are kept in link lists.
While the list of data sources is unsorted, the timers are sorted by expiration
timeout for efficient processing.

The complete run loop cycle looks like this: first, the callback function of
all registered data sources are called in a round robin way. Then, the callback
functions of timers that are ready are executed. Finally, it will be checked if
another run loop iteration has been requested by an interrupt handler. If not,
the run loop will put the MCU into sleep mode.

Incoming data over the UART, USB, or timer ticks will generate an inter-
rupt and wake up the microcontroller. In order to avoid the situation where
a data source becomes ready just before the run loop enters sleep mode, an
interrupt-driven data source has to call the embedded_trigger function. The call
to embedded_trigger sets an internal flag that is checked in the critical section
just before entering sleep mode.

Timers are single shot: a timer will be removed from the timer list before
its event handler callback is executed. If you need a periodic timer, you can
re-register the same timer source in the callback function, as shown in Listing [I}
Note that BTstack expects to get called periodically to keep its time, see Section
[Z.1] for more on the tick hardware abstraction.

12

#define TIMER PERIODMS 1000

timer_source_t periodic_timer;

void register_timer (timer_source_t *timer, uintl6_t period){
run_loop_set_timer (timer, period);
run_loop_add_timer (timer);

}

void timer_handler (timer_source_t *ts){
// do something,
e.g., increase counter,

// then re—register timer
register_timer (ts, TIMER_PERIOD MS) ;

}

void timer_setup () {
// set one—shot timer
run_loop_set_timer_handler(&periodic_timer , &timer_handler);
register_timer(&periodic_timer , TIMER PERIOD_MS) ;

LI1STING 1. Periodic counter

The Run loop APT is provided in Appendix [A] To enable the use of timers,
make sure that you defined HAVE_TICK in the config file.

In your code, you’ll have to configure the run loop before you start it as shown
in Listing 21} The application can register data sources as well as timers, e.g.,
periodical sampling of sensors, or communication over the UART.

The run loop is set up by calling run_loop_init function for embedded systems:

run-loop_-init (RUNLOOPEMBEDDED) ;

3.3. BTstack initialization. To initialize BTstack you need to initialize the
memory and the run loop as explained in Sections and respectively, then
setup HCI and all needed higher level protocols.

The HCI initialization has to adapt BTstack to the used platform and requires
four arguments. These are:

e Bluetooth hardware control: The Bluetooth hardware control API can
provide the HCI layer with a custom initialization script, a vendor-specific
baud rate change command, and system power notifications. It is also
used to control the power mode of the Bluetooth module, i.e., turning
it on/off and putting to sleep. In addition, it provides an error handler

13

hw_error that is called when a Hardware Error is reported by the Blue-
tooth module. The callback allows for persistent logging or signaling of
this failure.

Overall, the struct bt_control_t encapsulates common functionality that
is not covered by the Bluetooth specification. As an example, the bt_con-
trol_cc256x_in-stance function returns a pointer to a control struct suit-
able for the CC256x chipset.

bt_control_t % control = bt_control_cc256x_instance () ;

o HCI Transport implementation: On embedded systems, a Bluetooth mod-
ule can be connected via USB or an UART port. BTstack implements two
UART based protocols: HCI UART Transport Layer (H4) and H4 with
eHCILL support, a lightweight low-power variant by Texas Instruments.
These are accessed by linking the appropriate file (src/hci_transport_
h4_dma.c resp. src/hci_transport_h4_ehcill_dma.c) and then get-
ting a pointer to HCI Transport implementation. For more information
on adapting HCI Transport to different environments, see Section [7.3

hci_transport_t x transport = hci_transport_h4_dma_instance();

e HCI Transport configuration: As the configuration of the UART used in
the H4 transport interface are not standardized, it has to be provided by
the main application to BTstack. In addition to the initial UART baud
rate, the main baud rate can be specified. The HCI layer of BTstack will
change the init baud rate to the main one after the basic setup of the
Bluetooth module. A baud rate change has to be done in a coordinated
way at both HCI and hardware level. First, the HCI command to change
the baud rate is sent, then it is necessary to wait for the confirmation
event from the Bluetooth module. Only now, can the UART baud rate
changed. As an example, the CC256x has to be initialized at 115200 and
can then be used at higher speeds.

hci_uart_config _t+ config = hci_uart_config_cc256x_instance () ;

e Persistent storage - specifies where to persist data like link keys or remote
device names. This commonly requires platform specific code to access
the MCU’s EEPROM of Flash storage. For the first steps, BTstack
provides a (non) persistent store in memory. For more see Section

remote_device_db_t * remote_.db = &remote_device_db_memory;

After these are ready, HCI is initialized like this:

14

#define HCI.ACL.PAYLOAD_SIZE 52

#define MAX SPP_CONNECTIONS 1

#define MAX NO_HCI.CONNECTIONS MAX SPP_.CONNECTIONS
#define MAX NO_L2CAP_SERVICES 2

#define MAX NO_L2CAP_.CHANNELS (1+MAX SPP_.CONNECTIONS)
#define MAXNORFCOMMMULTIPLEXERS MAX SPP_.CONNECTIONS
#define MAX NORFCOMM SERVICES 1

#define MAXNORFCOMM CHANNELS MAX SPP_.CONNECTIONS
#define MAX NO_DB.MEM DEVICE NAMES 0

#define MAX NODB MEM LINK KEYS 3

#define MAX NODBMEM_SERVICES 1

LisTING 2. Memory configuration for an SPP service with a
minimal L2CAP MTU.

heci_init (transport , config, control, remote_db);

The higher layers only rely on BTstack and are initialized by calling the respec-
tive *_init function. These init functions register themselves with the underlying
layer. In addition, the application can register packet handlers to get events and
data as explained in the following section.

3.4. Services. One important construct of BTstack is service. A service rep-
resents a server side component that handles incoming connections. So far,
BTstack provides L2ZCAP and RFCOMM services. An L2CAP service handles
incoming connections for an L2ZCAP channel and is registered with its protocol
service multiplexer ID (PSM). Similarly, an RFCOMM service handles incom-
ing RFCOMM connections and is registered with the RFCOMM channel ID.
Outgoing connections require no special registration, they are created by the
application when needed.

3.5. Where to get data - packet handlers. After the hardware and BTstack
are set up, the run loop is entered. From now on everything is event driven. The
application calls BTstack functions, which in turn may send commands to the
Bluetooth module. The resulting events are delivered back to the application.
Instead of writing a single callback handler for each possible event (as it is done
in some other Bluetooth stacks), BTstack groups events logically and provides
them over a single generic interface. Appendix [M| summarizes the parameters
and event codes of L2ZCAP and RFCOMM events, as well as possible errors and
the corresponding error codes.
Here is summarized list of packet handlers that an application might use:

e HCI packet handler - handles HCI and general BTstack events if L2CAP
is not used (rare case).

15

TABLE 2. Functions for registering packet handlers

Packet Handler Registering Function

HCI packet handler hci_register_packet_handler
L2CAP packet handler [2cap_register_packet_handler
L2CAP service packet handler [2cap_register_service_internal
L2CAP channel packet handler [2cap_create_channel_internal
RFCOMM packet handler rfcomm_register_packet_handler

e L2CAP packet handler - handles HCI and general BTstack events.

e L2CAP service packet handler - handles incoming L2CAP connections,
i.e., channels initiated by the remote.

e L2CAP channel packet handler - handles outgoing L2CAP connections,
i.e., channels initiated internally.

e RFCOMM packet handler - handles REFECOMM incoming/outgoing events
and data.

These handlers are registered with the functions listed in Table [2]

HCI and general BTstack events are delivered to the packet handler speci-
fied by [2cap_register_packet_handler function, or hci_register_packet_handler, if
L2CAP is not used. In L2CAP, BTstack discriminates incoming and outgoing
connections, i.e., event and data packets are delivered to different packet han-
dlers. Outgoing connections are used access remote services, incoming connec-
tions are used to provide services. For incoming connections, the packet handler
specified by [2cap_register_service is used. For outgoing connections, the handler
provided by [2cap_create_channel_internal is used. Currently, RFCOMM pro-
vides only a single packet handler specified by rfcomm_register_packet_handler
for all RFCOMM connections, but this will be fixed in the next API overhaul.

The application can register a single shared packet handler for all protocols
and services, or use separate packet handlers for each protocol layer and service.
A shared packet handler is often used for stack initialization and connection
management.

Separate packet handlers can be used for each L2CAP service and outgoing
connection. For example, to connect with a Bluetooth HID keyboard, your ap-
plication could use three packet handlers: one to handle HCI events during dis-
covery of a keyboard registered by [2cap_register_packet_handler; one that will be
registered to an outgoing L2CAP channel to connect to keyboard and to receive
keyboard data registered by [2cap_create_channel_internal; after that keyboard
can reconnect by itself. For this, you need to register L2CAP services for the
HID Control and HID Interrupt PSMs using [2cap_register_service_internal. In
this call, you’ll also specify a packet handler to accept and receive keyboard data.

16

4. PROTOCOLS

BTstack is a modular dual-mode Bluetooth stack, supporting both Bluetooth
Basic Rate/Enhanced Date Rate (BR/EDR) as well as Bluetooth Low Energy
(LE). The BR/EDR technology, also known as Classic Bluetooth, provides a
robust wireless connection between devices designed for high data rates. In
contrast, the LE technology has a lower throughput but also lower energy con-
sumption, faster connection setup, and the ability to connect to more devices in
parallel.

Whether Classic or LE, a Bluetooth device implements one or more Bluetooth
profiles. A Bluetooth profile specifies how one or more Bluetooth protocols are
used to achieve its goals. For example, every Bluetooth device must implement
the Generic Access Profile (GAP), which defines how devices find each other
and how they establish a connection. This profile mainly make use of the Host
Controller Interface (HCI) protocol, the lowest protocol in the stack hierarchy
which implements a command interface to the Bluetooth chipset.

In addition to GAP, a popular Classic Bluetooth example would be a peripheral
devices that can be connected via the Serial Port Profile (SPP). SPP basically
specifies that a compatible device should provide a Service Discovery Protocol
(SDP) record containing an RFCOMM channel number, which will be used for
the actual communication.

Similarly, for every LE device, the Generic Attribute Profile (GATT) profile
must be implemented in addition to GAP. GATT is built on top of the Attribute
Protocol (ATT), and defines how one device can interact with GATT Services
on a remote device.

So far, the most popular use of BTstack is in peripheral devices that can be
connected via SPP (Android 2.0 or higher) and GATT (Android 4.3 or higher,
and 108 5 or higher). If higher data rates are required between a peripheral and
iOS device, the iAP1 and iAP2 protocols of the Made for iPhone program can
be used instead of GATT. Please contact us directly for information on BTstack
and MFi.

In the following, we first explain how the various Bluetooth protocols are used
in BTstack. In the next chapter, we go over the profiles.

4.1. HCI - Host Controller Interface. The HCI protocol provides a com-
mand interface to the Bluetooth chipset. In BTstack, the HCI implementation
also keeps track of all active connections and handles the fragmentation and
re-assembly of higher layer (L2CAP) packets.

Please note, that an application rarely has to send HCI commands on its own.
Instead, BTstack provides convenience functions in GAP and higher level proto-
cols use HCI automatically. E.g. to set the name, you can call gap_set_local_name()
before powering up. The main use of HCI commands in application is during the
startup phase to configure special features that are not available via the GAP
APT yet.

However, as many features of the GAP Classic can be achieved by sending a
single HCI command, not all GAP convenience functions are listed in src/gap.h.
If there’s no special GAP function, please consider sending the HCI command
directly, as explained in the following.

17

FicurE 2. BTstack Protocol Architecture

4.1.1. Defining custom HCI command templates. Each HCI command is assigned
a 2-byte OpCode used to uniquely identify different types of commands. The
OpCode parameter is divided into two fields, called the OpCode Group Field
(OGF) and OpCode Command Field (OCF), see Bluetooth Specification[]- Core
Version 4.0, Volume 2, Part E, Chapter 5.4. Listing 3| shows the OGFs provided
by BTstack in src/hci.h file. For all existing Bluetooth commands and their
OCF's see Bluetooth Specification/- Core Version 4.0, Volume 2, Part E, Chapter
7.

In a HCI command packet, the OpCode is followed by parameter total length,
and the actual parameters. BTstack provides the hci_cmd_t struct as a compact
format to define HCI command packets, see Listing |4, and include/btstack/
hci_cmds.h file in the source code. The OpCode of a command can be calculated
using the OPCODE macro.

#define OGFLINK. CONTROL 0x01

#define OGF_LINK POLICY 0x02

#define OGF.CONTROLLER BASEBAND 0x03
#define OGFINFORMATIONAL PARAMETERS 0x04
#define OGFLECONTROLLER 0x08

#define OGFBTSTACK 0x3d

#define OGF.VENDOR O0x3f

LisTING 3. Supported OpCode Group Fields.

‘// Calculate combined ogf/ocf wvalue.

Bhttps: //www.bluetooth.org/Technical /Specifications/adopted.htm

https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.bluetooth.org/Technical/Specifications/adopted.htm

18

TABLE 3. Supported Format Specifiers of HCI Command Parameter

Format Specifier Description

1,2,3,4 one to four byte value

31 bytes advertising data

Bluetooth Baseband Address

8 byte data block

Extended Inquiry Information 240 octets

HCI connection handle

Name up to 248 chars, UTFS8 string, null terminated
16 byte Pairing code, e.g. PIN code or link key
Service Record (Data Element Sequence)

nWzZzDnHOW >

#define OPCODE(ogf, ocf) (ocf | ogf << 10)

// Compact HCI Command packet description.
typedef struct {

uintl16_t opcode;
const char xformat;
} hci_cmd_t;

extern const hci_cmd_t hci_write_local_name;

LiSTING 4. hci_cmds.h defines HCI command template.

Listing [9| illustrates the hci_write_local-name HCI command template from
BTstack library. It uses OGF_.CONTROLLER_BASEBAND as OGF, 0x13 as
OCF, and has one parameter with format ”N” indicating a null terminated UTF-
8 string. Table |3 lists the format specifiers supported by BTstack. Check src/
hci_cmds. c for other predefined HCI commands and info on their parameters.

// Sets local Bluetooth name

const hci_cmd_ t hci_write_local name = {
OPCODE(OGF_.CONTROLLER.BASEBAND, 0x13), ”N”
// Local name (UTF-8, Null Terminated, mazx 248 octets)

}s

LisTING 5. Example of HCI command template.

4.1.2. Sending HCI command based on a template.:
if (hci_can_send_packet_now (HCLCOMMAND DATA PACKET)){

hci_send_cmd(&hci-write_local_-name , ”BTstack Demo”) ;
}

LisTING 6. Send hci_write_local name command that takes a
string as a parameter.

19

You can use the hci_send_cmd function to send HCI command based on a
template and a list of parameters. However, it is necessary to check that the
outgoing packet buffer is empty and that the Bluetooth module is ready to receive
the next command - most modern Bluetooth modules only allow to send a single
HCI command. This can be done by calling hci_can_send_command_packet_now()
function, which returns true, if it is ok to send.

Listing [6] illustrates how to manually set the device name with the HCI Write
Local Name command.

Please note, that an application rarely has to send HCI commands on its
own. Instead, BTstack provides convenience functions in GAP and higher level
protocols use HCI automatically.

4.2. L2CAP - Logical Link Control and Adaptation Protocol. The L2CAP
protocol supports higher level protocol multiplexing and packet fragmentation.
It provides the base for the RFCOMM and BNEP protocols. For all profiles that
are officially supported by BTstack, L2ZCAP does not need to be used directly.
For testing or the development of custom protocols, it’s helpful to be able to
access and provide L2CAP services however.

4.2.1. Access an L2CAP service on a remote device. L2CAP is based around
the concept of channels. A channel is a logical connection on top of a baseband
connection. Each channel is bound to a single protocol in a many-to-one fashion.
Multiple channels can be bound to the same protocol, but a channel cannot be
bound to multiple protocols. Multiple channels can share the same baseband
connection.

btstack_packet_handler_t 12cap_packet_handler;
void btstack_setup (){

12cap_init () ;

}

void create_outgoing_l12cap_channel (bd_addr_t address, uintl6_t psm,
uintl6_t mtu){
12cap_create_channel_internal (NULL, 12cap_packet_handler ,
remote_bd_addr, psm, mtu);

}

void 12cap_packet_handler (uint8_t packet_type, uintl6_t channel,
uint8_t xpacket, uintl6_t size){
if (packet_type =— HCILEVENT PACKET &&
packet [0] = L2CAP_EVENT_CHANNEL_.OPENED) {
if (packet[2]) {
printf(” Connection failed\n\r”);
return;

}

printf(” Connected\n\r");

if (packet_type =— L2CAPDATA PACKET) {
// handle L2CAP data packet

20

return;

ListinGg 7. L2CAP handler for outgoing L2ZCAP channel.

To communicate with an L2ZCAP service on a remote device, the application on
a local Bluetooth device initiates the L2CAP layer using the [2cap_init function,
and then creates an outgoing L2CAP channel to the PSM of a remote device using
the [2cap_create_channel_internal function. The [2cap_-create_channel_internal
function will initiate a new baseband connection if it does not already exist. The
packet handler that is given as an input parameter of the L2ZCAP create channel
function will be assigned to the new outgoing L2ZCAP channel. This handler re-
ceives the L2ZCAP_EVENT_CHANNEL_OPENED and L2CAP_EVENT_CHAN-
NEL_CLOSED events and L2CAP data packets, as shown in Listing [7}

4.2.2. Provide an L2CAP service. To provide an L2CAP service, the applica-
tion on a local Bluetooth device must init the L2ZCAP layer and register the ser-
vice with [2cap_register_service_internal. From there on, it can wait for incoming
L2CAP connections. The application can accept or deny an incoming connection
by calling the [2cap_accept_connection_internal and [2cap_deny_connection_internal
functions respectively. If a connection is accepted and the incoming L2CAP chan-
nel gets successfully opened, the L2CAP service can send L2CAP data packets
to the connected device with [2cap_send_internal.

void btstack_setup (){

12cap_init () ;
12cap_register_service_internal (NULL, packet_handler, 0x11,100);

}

void packet_handler (uint8_t packet_-type, uintl6_t channel, uint8_t
xpacket , uintl6_t size){

if (packet_type =— L2CAPDATA PACKET) {
// handle L2CAP data packet
return;

}

switch (event) {

case L2CAP_EVENT_INCOMING_CONNECTION:
bt_flip_addr (event_addr , &packet [2]) ;
handle = READ_BT_16(packet , 8);
psm READ_BT_16(packet , 10);
local_cid = READBT_16(packet, 12);
printf (?L2CAP incoming connection requested.”);
12cap_-accept_connection_internal (local_cid);
break;

case L2CAP EVENT_CHANNEL OPENED:
bt_flip_addr (event_addr , &packet [3]) ;
psm = READ BT_16(packet , 11);
local_cid = READ BT_16(packet, 13);

21

handle = READ_BT_16(packet, 9);

if (packet[2] = 0) {
printf(”Channel successfully opened.”);
} else {
printf (”"L2CAP connection failed. status code.”);
}
break;

case L2CAP_EVENT_CREDITS:

case DAEMON_EVENT HCI PACKET_SENT:
tryToSend () ;
break;

case L2CAP_EVENT_CHANNEL_CLOSED:
break ;

LisTING 8. Providing an L2CAP service.

Sending of L2CAP data packets may fail due to a full internal BTstack out-
going packet buffer, or if the ACL buffers in the Bluetooth module become full,
i.e., if the application is sending faster than the packets can be transferred over
the air. In such case, the application can try sending again upon reception of
DAEMON_EVENT _HCI_PACKET_SENT or L2CAP_EVENT_CREDITS event.
The first event signals that the internal BTstack outgoing buffer became free
again, the second one signals the same for ACL buffers in the Bluetooth chipset.
Listing [§] provides L2CAP service example code.

4.2.3. L2CAP LE - L2CAP Low Energy Protocol. In addition to the full L2CAP
implementation in the src folder, BTstack provides an optimized vi2cap_le imple-
mentation in the ble folder. This LZCAP LE variant can be used for single-mode
devices and provides the base for the ATT and SMP protocols.

4.3. RFCOMM - Radio Frequency Communication Protocol. The Ra-
dio frequency communication (RFCOMM) protocol provides emulation of serial
ports over the L2CAP protocol. and reassembly. It is the base for the Serial
Port Profile and other profiles used for telecommunication like Head-Set Profile,

Hands-Free Profile, Object Exchange (OBEX) etc.

4.3.1. RFCOMM flow control. RFCOMM has a mandatory credit-based flow-
control. This means that two devices that established RFCOMM connection,
use credits to keep track of how many more RFCOMM data packets can be
sent to each. If a device has no (outgoing) credits left, it cannot send another
RFCOMM packet, the transmission must be paused. During the connection
establishment, initial credits are provided. BTstack tracks the number of credits
in both directions. If no outgoing credits are available, the RFCOMM send
function will return an error, and you can try later. For incoming data, BTstack
provides channels and services with and without automatic credit management
via different functions to create/register them respectively. If the management of
credits is automatic, the new credits are provided when needed relying on ACL
flow control - this is only useful if there is not much data transmitted and/or
only one physical connection is used. If the management of credits is manual,

22

credits are provided by the application such that it can manage its receive buffers
explicitly.

4.3.2. Access an RECOMM service on a remote device. To communicate with an
RFCOMM service on a remote device, the application on a local Bluetooth device
initiates the RFCOMM layer using the rfcomm_init function, and then creates
an outgoing RFCOMM channel to a given server channel on a remote device using
the rfcomm_create_channel_internal function. The rfcomm_create_channel_intern-
al function will initiate a new L2CAP connection for the REFCOMM multiplexer,
if it does not already exist. The channel will automatically provide enough cred-
its to the remote side. To provide credits manually, you have to create the RF-
COMM connection by calling rfcomm_create_channel_with_initial_credits_internal
- see Section 4.3.5]

The packet handler that is given as an input parameter of the RFCOMM create
channel function will be assigned to the new outgoing RFCOMM channel. This
handler receives the RFCOMM_EVENT_OPEN_CHAN-NEL_COMPLETE and
RFCOMM_EVENT_CHANNEL_CLOSED events, and RFCOMM data packets,
as shown in Listing

4.3.3. Provide an RFCOMM service. To provide an RFCOMM service, the ap-
plication on a local Bluetooth device must first init the L2ZCAP and RFCOMM
layers and then register the service with rfcomm_register_service_internal. From
there on, it can wait for incoming RFCOMM connections. The application can
accept or deny an incoming connection by calling the rfcomm_accept_connection-
_internal and rfcomm_deny_connection_internal functions respectively. If a con-
nection is accepted and the incoming RFCOMM channel gets successfully opened,
the REFECOMM service can send RFCOMM data packets to the connected device
with rfcomm_send_internal and receive data packets by the packet handler pro-
vided by the rfcomm_register_service_internal call.

Sending of RFCOMM data packets may fail due to a full internal BTstack
outgoing packet buffer, or if the ACL buffers in the Bluetooth module become
full, i.e., if the application is sending faster than the packets can be transferred
over the air. In such case, the application can try sending again upon reception
of DAEMON_EVENT _HCI_PACKET_SENT or RFCOMM_EVENT _CREDITS
event. The first event signals that the internal BTstack outgoing buffer became
free again, the second one signals that the remote side allowed to send another
packet. Listing (13| provides the RFCOMM service example code.

void btstack_setup (void){

// init RFCOMM

rfcomm _init () ;

rfcomm register_packet_handler (packet_handler);

rfcomm _register_service_internal (NULL, rfcomm_channel nr, 100);

LisTING 9. RFCOMM service with automatic credit management.

23

4.3.4. Living with a single output buffer. Outgoing packets, both commands and
data, are not queued in BTstack. This section explains the consequences of this
design decision for sending data and why it is not as bad as it sounds.

24

void prepareData(void){

}

void tryToSend (void) {
if (!datalen) return;
if (!rfcomm_channel_id) return;

int err = rfcomm _send_internal (rfcomm _channel_id, dataBuffer
dataLen) ;

switch (err){
case O0:
// packet is sent prepare next one
prepareData () ;
break;
case RFCOMM NO_OUTGOING_-CREDITS:
case BTSTACK ACLBUFFERS FULL:
break;
default:
printf(”rfcomm _send_internal () — err %d\n\r”, err);
break;

LisTING 10. Preparing and sending data.

void packet_handler (uint8_t packet_type, uintl6_t channel, uint8_t
xpacket , uintl6_t size){

switch (event){
case RFCOMM EVENT OPEN.CHANNEL.COMPLETE:
if (status) {
printf ("RFCOMM channel open failed.”);
} else {
rfcomm_channel_id = READ_BT_16(packet , 12);
rfcomm_mtu = READ_BT_16(packet , 14);
printf ("RFCOMM channel opened, mtu = %u.”
rfcomm_mtu) ;
}
break;
case RFCOMM_EVENT_CREDITS:
case DAEMON_EVENT HCI. PACKET SENT':

tryToSend () ;
break ;
case RFCOMM EVENT CHANNEL CLOSED:
rfcomm_channel_id = 0;
break;

LisTING 11. Managing the speed of RFCOMM packet generation.

25

Independent from the number of output buffers, packet generation has to be
adapted to the remote receiver and/or maximal link speed. Therefore, a packet
can only be generated when it can get sent. With this assumption, the single
output buffer design does not impose additional restrictions. In the following,
we show how this is used for adapting the RFCOMM send rate.

BTstack returns BTSTACK_ACL_BUFFERS_FULL, if the outgoing buffer is
full and RFCOMM_NO_OUTGOING_CREDITS, if no outgoing credits are avail-
able. In Listing[I0] we show how to resend data packets when credits or outgoing
buffers become available.

RFCOMM'’s mandatory credit-based flow-control imposes an additional con-
straint on sending a data packet - at least one new RFCOMM credit must be
available. BTstack signals the availability of a credit by sending an RFCOMM
credit (RFCOMM_EVENT_CREDITS) event.

These two events represent two orthogonal mechanisms that deal with flow
control. Taking these mechanisms in account, the application should try to
send data packets when one of these two events is received, see Listing [11] for a
RFCOMM example.

If the management of credits is manual, credits are provided by the application
such that it can manage its receive buffers explicitly, see Listing [14]

Manual credit management is recommended when received RFCOMM data
cannot be processed immediately. In the SPP flow control example in Section
[6.0, delayed processing of received data is simulated with the help of a peri-
odic timer. To provide new credits, you call the rfcomm_grant_credits function
with the RFCOMM channel ID and the number of credits as shown in Listing
[15] Please note that providing single credits effectively reduces the credit-based
(sliding window) flow control to a stop-and-wait flow-control that limits the data
throughput substantially. On the plus side, it allows for a minimal memory foot-
print. If possible, multiple RFCOMM buffers should be used to avoid pauses
while the sender has to wait for a new credit.

4.3.5. Slowing down RFCOMM data reception. RFCOMM'’s credit-based flow-
control can be used to adapt, i.e., slow down the RFCOMM data to your pro-
cessing speed. For incoming data, BTstack provides channels and services with
and without automatic credit management. If the management of credits is au-
tomatic, see Listing [9] new credits are provided when needed relying on ACL
flow control. This is only useful if there is not much data transmitted and/or
only one physical connection is used

void btstack_setup (void){

// init RFCOMM

rfcomm _init () ;

rfcomm register_packet_handler (packet_handler);

// reserved channel, mtu=100, 1 credit

rfcomm_register_service_with_initial_credits_internal (NULL,
rfcomm_channel_nr, 100, 1);

LisTiNG 14. RFCOMM service with manual credit management.

26

void init_rfcomm (){

rfcomm _init () ;
rfcomm register_packet_handler (packet_handler);

}

void create_rfcomm_channel (uint8_t packet_type, uint8_t xpacket,
uintl6_t size){
rfcomm _create_channel_internal (connection, addr, rfcomm_channel)
)

}

void rfcomm_packet_handler (uint8_t packet_type, uintl6_t channel,
uint8_t xpacket, uintl6_t size){
if (packet_type =— HCILEVENT PACKET && packet [0] =
RFCOMM EVENT_OPEN.CHANNEL COMPLETE) {
if (packet[2]) {
printf(” Connection failed\n\r”);
return;

}

printf (” Connected\n\r”);

}

if (packet_type =— RFCOMMDATA PACKET) {
// handle RFCOMM data packets
return;

LisTing 12. RFCOMM handler for outgoing RFCOMM channel.

void processing (){
// process incoming data packet

// provide new credit
rfcomm _grant_credits (rfcomm _channel_id, 1);

LisTING 15. Providing new credits

4.4. SDP - Service Discovery Protocol. The SDP protocol allows to an-
nounce services and discover services provided by a remote Bluetooth device.

4.4.1. Create and announce SDP records. BTstack contains a complete SDP
server and allows to register SDP records. An SDP record is a list of SDP
Attribute {ID, Value} pairs that are stored in a Data Element Sequence (DES).

27

void btstack_setup (){

rfcomm _init () ;
rfcomm _register_service_internal (NULL, rfcomm_channel_nr, mtu);

}

void packet_handler (uint8_t packet_type, uint8_t xpacket, uintl6_t
size){
if (packet_type = RFCOMMDATA PACKET){
// handle RFCOMM data packets

return;

}
s.\.zv.itch (event) {

case RFCOMM_EVENT INCOMING.CONNECTION :
//data: event(8), len(8), address(48), channel(8),
rfcomm_cid (16)
bt_flip_addr (event_addr , &packet [2]) ;
rfcomm_channel_nr = packet [8];
rfcomm_channel id = READ BT_16(packet, 9);

rfcomm_accept_connection_internal (rfcomm_channel_id);
break;

case RFCOMM EVENT OPEN.CHANNEL.COMPLETE:
// data: event(8), len(8), status (8), address (48),
handle (16), server channel(8), rfcomm_cid(16), maz
frame size (16)
if (packet[2]) {
printf ("RFCOMM channel open failed.”);
break;
}
// data: event(8), len(8), status (8), address (48),
handle (16), server channel(8), rfcomm_cid(16), max
frame size (16)
rfcomm_channel_id = READ_BT_16(packet, 12);
mtu = READ BT_16(packet , 14);
printf ("RFCOMM channel open succeeded.”);
break;
case RFCOMM_EVENT_CREDITS:
case DAEMON_EVENT HCIPACKET_SENT':
tryToSend () ;
break;

case RFCOMM EVENT_CHANNEL.CLOSED:
printf(” Channel closed.”);
rfcomm_channel_id = 0;

break;

LisTiNG 13. Providing RFCOMM service.

28

The Attribute ID is a 16-bit number, the value can be of other simple types like
integers or strings or can itselff contain other DES.

To create an SDP record for an SPP service, you can call sdp_create_spp_service
from src/sdp_util.c with a pointer to a buffer to store the record, the RFCOMM
server channel number, and a record name.

For other types of records, you can use the other functions in src/sdp_util.c,
using the data element de_* functions. Listing shows how an SDP record
containing two SDP attributes can be created. First, a DES is created and then
the Service Record Handle and Service Class ID List attributes are added to
it. The Service Record Handle attribute is added by calling the de_add_number
function twice: the first time to add 0x0000 as attribute ID, and the second time
to add the actual record handle (here 0x1000) as attribute value. The Service
Class ID List attribute has ID 0x0001, and it requires a list of UUIDs as attribute
value. To create the list, de_push_sequence is called, which "opens” a sub-DES.
The returned pointer is used to add elements to this sub-DES. After adding all
UUIDs, the sub-DES is "closed” with de_pop_sequence.

4.4.2. Query remote SDP service. BTstack provides an SDP client to query SDP
services of a remote device. The SDP Client API is shown in Appendix [F]
The sdp_client_query function initiates an L2CAP connection to the remote SDP
server. Upon connect, a Service Search Attribute request with a Service Search
Pattern and a Attribute ID List is sent. The result of the Service Search Attribute
query contains a list of Service Records, and each of them contains the requested
attributes. These records are handled by the SDP parser. The parser delivers
SDP_PARSER_ATTRIBUTE_VALUE and SDP_PARSER_COMPLETE events
via a registered callback. The SDP_PARSER_ATTRIBUTE_VALUE event de-
livers the attribute value byte by byte.

On top of this, you can implement specific SDP queries. For example, BT-
stack provides a query for RFCOMM service name and channel number. This
information is needed, e.g., if you want to connect to a remote SPP service.
The query delivers all matching RFCOMM services, including its name and the
channel number, as well as a query complete event via a registered callback, as
shown in Listing [I6]

bd_addr_t remote = {0x04,0x0C,0xCE,0xE4,0x85,0xD3};

void packet_handler (void * connection, uint8_t packet_type,
uintl6_t channel, uint8_t xpacket, uintl6_t size){
if (packet_type != HCIEVENT PACKET) return;

uint8_t event = packet [0];
switch (event) {
case BTSTACK EVENT STATE:
// bt stack activated, get started

if (packet[2] = HCLSTATE.WORKING){
sdp_query_rfcomm_channel_and_name_for_uuid (remote, 0
x0003) ;
}

break;

default :
break ;

}

static void btstack_setup (){

// init L2CAP
12cap_init () ;
12cap_register _packet_handler (packet_handler);

}

void handle_query_rfcomm_event (sdp_query_event_t % event, void x
context){
sdp_query_rfcomm _service_event_t x ve;

switch (event—>type){
case SDP_QUERY_RFCOMM_SERVICE:
ve = (sdp_query_rfcomm _service_event_tx) event;
printf(”Service name: ’%s’, RFCOMM port %u\n”, ve—>
service_name , ve—>channel_nr);
break;
case SDP_QUERY_COMPLETE:
report_found_services () ;
printf(” Client query response done with status %d. \n”
ce—>status);
break;

}

int main(void) {
hw_setup () ;
btstack_setup () ;

// register callback to receive matching RFCOMM Services and

// query complete event

sdp-query_rfcomm_register_callback (handle_query_rfcomm_event ,
NULL) ;

// turn on!
hci_power_control (HCLPOWER.ON) ;

// go!
run_loop_execute () ;
return 0;

29

LisTING 16. Searching RFCOMM services on a remote device.

uint8_t des_buffer [200];
uint8_tx attribute;
de_create_sequence (service);

// 0x0000 ”Service Record Handle”

30

de_add_number (des_buffer , DE_UINT, DE_SIZE_16,
SDP _ServiceRecordHandle) ;
de_add_number (des_buffer , DEUINT, DE_SIZE_32, 0x10001);

// 0x0001 ”Service Class ID List”

de_add_number (des_buffer , DE.UINT, DE_SIZE_16,
SDP _ServiceClassIDList) ;

attribute = de_push_sequence(des_buffer);

de_add _number (attribute , DEUUID, DE_SIZE_ 16, 0x1101);
}

de_pop_sequence (des_buffer , attribute);

L1sTING 17. Creating record with the data element (de_*) functions.

4.5. BNEP - Bluetooth Network Encapsulation Protocol. The BNEP
protocol is used to transport control and data packets over standard network
protocols such as TCP, IPv4 or IPv6. It is built on top of L2ZCAP, and it specifies
a minimum L2CAP MTU of 1691 bytes.

4.5.1. Receive BNEP events. To receive BNEP events, please register a packet
handler with bnep_register_packet_handler.

4.5.2. Access a BNEP service on a remote device. To connect to a remote BNEP
service, you need to know its UUID. The set of available UUIDs can be queried
by a SDP query for the PAN profile. Please see Section for details. With
the remote UUID, you can create a connection using the bnep_connect function.
You'll receive a BNEP_EVENT_-OPEN_CHANNEL_COMPLETE on success or
failure.

After the connection was opened successfully, you can send and receive Ether-
net packets. Before sending an Ethernet frame with bnep_send, bnep_can_send-
_packet_now needs to return true. Ethernet frames are received via the registered
packet handler with packet type BNEP_DATA_PACKET.

BTstack BNEP implementation supports both network protocol filter and
multicast filters with bnep_set_net_type_filter and bnep_set_multicast_filter respec-
tively.

Finally, to close a BNEP connection, you can call bnep_disconnect.

4.5.3. Provide BNEP service. To provide a BNEP service, call bnep_register_service
with the provided service UUID and a max frame size.

A BNEP_EVENT_INCOMING_CONNECTION event will mark that an in-
coming connection is established. At this point you can start sending and re-
ceiving Ethernet packets as described in the previous section.

4.6. ATT - Attribute Protocol. The ATT protocol is used by an ATT client
to read and write attribute values stored on an ATT server. In addition, the
ATT server can notify the client about attribute value changes. An attribute
has a handle, a type, and a set of properties, see Section [5.5.2

The Generic Attribute (GATT) profile is built upon ATT and provides higher
level organization of the ATT attributes into GATT Services and GATT Char-
acteristics. In BTstack, the complete ATT client functionality is included within

31

the GATT Client. On the server side, one ore more GATT profiles are converted
ahead of time into the corresponding ATT attribute database and provided by
the att_server implementation. The constant data are automatically served by
the ATT server upon client request. To receive the dynamic data, such is char-
acteristic value, the application needs to register read and/or write callback. In
addition, notifications and indications can be sent. Please see Section for
more.

4.7. SMP - Security Manager Protocol. The SMP protocol allows to setup
authenticated and encrypted LE connection. After initialization and configura-
tion, SMP handles security related functions on it’s own but emits events when
feedback from the main app or the user is required. The two main tasks of the
SMP protocol are: bonding and identity resolving.

4.7.1. Initialization. To activate the security manager, call sm_init().

If you're creating a product, you should also call sm_set_ir() and sm_set_er()
with a fixed random 16 byte number to create the IR and ER key seeds. If
possible use a unique random number per device instead of deriving it from the
product serial number or something similar. The encryption key generated by the
BLE peripheral will be ultimately derived from the ER key seed. See Bluetooth
Specification - Bluetooth Core V4.0, Vol 3, Part G, 5.2.2 for more details on
deriving the different keys. The IR key is used to identify a device if private,
resolvable Bluetooth addresses are used.

4.7.2. Configuration. To receive events from the Security Manager, a callback
is necessary. How to register this packet handler depends on your application
configuration.

When att_server is used to provide a GATT/ATT service, att_server registers
itself as the Security Manager packet handler. Security Manager events are then
received by the application via the att_server packet handler.

If att_server is not used, you can directly register your packet handler with
the security manager by calling sm_register_packet_handler.

The default SMP configuration in BTstack is to be as open as possible:

accept all Short Term Key (STK) Generation methods,
accept encryption key size from 7..16 bytes,
expect no authentication requirements, and

10 Capabilities set to IO_CAPABILITY_NO_INPUT_NO_OUTPUT.

can configure these items by calling following functions respectively:

Yo

a

sm_set_accepted_stk_generation_methods
sm_set_encryption_key_size_range
sm_set_authentication_requirements
sm_set_io_capabilities

4.7.3. Identity Resolving. Identity resolving is the process of matching a private,
resolvable Bluetooth address to a previously paired device using its Identity Re-
solving (IR) key. After an LE connection gets established, BTstack automatically
tries to resolve the address of this device. During this lookup, BTstack will emit
the following events:

https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.bluetooth.org/Technical/Specifications/adopted.htm

32

o SM_ IDENTITY_ RESOLVING_STARTED to mark the start of a lookup,
and later:

e SM_IDENTITY_RESOLVING_SUCCEEDED on lookup success, or
o SM_IDENTITY_RESOLVING_FAILED on lookup failure.

4.7.4. Bonding process. In Bluetooth LE, there are three main methods of es-
tablishing an encrypted connection. From the most to the least secure, these
are: Out-of-Band (OOB) Data , Passkey, and Just Works.

With OOB data, there needs to be a pre-shared secret 16 byte key. In most
cases, this is not an option, especially since popular OS like iOS don’t provide a
way to specify it. It some applications, where both sides of a Bluetooth link are
developed together, this could provide a viable option.

To provide OOB data, you can register an OOB data callback with sm_register_oob_data_callback.

Depending on the authentication requirements, available OOB data, and the
enabled STK generation methods, BTstack will request feedback from the app
in the form of an event:

e SM_PASSKEY_INPUT_NUMBER: request user to input a passkey
o SM_PASSKEY DISPLAY_NUMBER: show a passkey to the user
o SM_JUST-WORKS_REQUEST': request a user to accept a Just Works
pairing
To stop the bonding process, sm_bonding_decline should be called. Otherwise,
sm_just_works_confirm or sm_passkey_input can be called.
After the bonding process, SM_PASSKEY_DISPLAY_CANCEL is emitted to
update the user interface.

5. PROFILES

In the following, we explain how the various Bluetooth profiles are used in
BTstack.

5.1. GAP - Generic Access Profile: Classic. The GAP profile defines how
devices find each other and establish a secure connection for other profiles. As
mentioned before, the GAP functionality is split between src/gap.h and src/
hci.h. Please check both.

5.1.1. Become discoverable. A remote unconnected Bluetooth device must be set
as "discoverable” in order to be seen by a device performing the inquiry scan.
To become discoverable, an application can call hci_discoverable_control with
input parameter 1. If you want to provide a helpful name for your device, the
application can set its local name by calling gap_set_local_name. To save energy,
you may set the device as undiscoverable again, once a connection is established.
See Listing [I§] for an example.

int main(void){

// make discoverable
hci_discoverable_control (1);
run_loop_execute () ;

return 0;

33

}

void packet_handler (uint8_t packet_type, uint8_t xpacket, uintl6_t
size){

switch(state){
case W4 CHANNEL.COMPLETE:
// if connection is successful, make device
undiscoverable
hci_discoverable_control (0);

LisTING 18. Setting device as discoverable. OFF by default.

5.1.2. Discover remote devices. To scan for remote devices, the hci_inquiry com-
mand is used. Found remote devices are reported as a part of HCI. EVENT_INQUIRY _RESULT,
HCI_LEVENT-_INQUIRY _RESULT_WITH_RSSI, or HCI. EVENT_EXTENDED_INQUIRY _RE-
SPONSE events. Each response contains at least the Bluetooth address, the class
of device, the page scan repetition mode, and the clock offset of found device.
The latter events add information about the received signal strength or provide
the Extended Inquiry Result (EIR). A code snippet is shown in Listing [19]
By default, neither RSSI values nor EIR are reported. If the Bluetooth de-
vice implements Bluetooth Specification 2.1 or higher, the hci_write_inquiry_mode
command enables reporting of this advanced features (0 for standard results, 1
for RSSI, 2 for RSSI and EIR).
A complete GAP inquiry example is provided in Section [6.2]

5.1.3. Pairing of Devices. By default, Bluetooth communication is not authen-
ticated, and any device can talk to any other device. A Bluetooth device (for
example, cellular phone) may choose to require authentication to provide a par-
ticular service (for example, a Dial-Up service). The process of establishing
authentication is called pairing. Bluetooth provides two mechanism for this.

On Bluetooth devices that conform to the Bluetooth v2.0 or older specification,
a PIN code (up to 16 bytes ASCII) has to be entered on both sides. This isn’t
optimal for embedded systems that do not have full I/O capabilities. To support
pairing with older devices using a PIN, see Listing [20]

void packet_handler (uint8_t packet_type, uint8_t xpacket, uintl6_t
size){

switch (event) {
case HCI.EVENT_PIN.CODE_REQUEST:
// inform about pin code request
printf(”Pin code request — using ’0000’\n\r”);
bt_flip_addr (bd-addr, &packet[2]);

// baseband address, pin length, PIN: c—string
hci_send_cmd(&hci_pin_code_request_reply , &bd_addr, 4,
0000”7) ;

R

34

void print_inquiry_results (uint8_t spacket){

int event = packet [0];

int numResponses = packet [2];

uintl6_t classOfDevice, clockOffset ;

uint8_t rssi, pageScanRepetitionMode;

for (i=0; i<numResponses; i++){
bt_flip_addr (addr, &packet[3+1x*6]);
pageScanRepetitionMode = packet [3 + numResponses*6 + 1i];
if (event =— HCIEVENT_INQUIRY RESULT) {

classOfDevice = READ BT 24(packet, 3 + numResponses
*(64+14+14+1) + i%3);

clockOffset = READ_BT.16(packet, 3 + numResponses
*(64+14+1+143) + 1%2) & O0xTIff;

rssi = 0;

} else {

classOfDevice = READ_BT_24(packet, 3 + numResponses
*(64+1+1) + i%3);

clockOffset = READBT_16(packet, 3 + numResponses
*(6+1+143) + ix2) & 0xT7fff;

rssi = packet [3 + numResponses*x(6+1+1+3+2) + ix1];

printf(”Device found: %s with COD: 0x%06x, pageScan %u,
clock offset 0x%04x, rssi 0x%02x\n”, bd_addr_to_str (addr
), classOfDevice, pageScanRepetitionMode, clockOffset ,
rssi);

}

void packet_handler (uint8_t packet_type, uint8_t xpacket, uintl6_t
size){

switch (event) {
case HCLSTATE WORKING:
hei_send_cmd(&hei_write_inquiry_mode , 0x01); // with
RSST
break;
case HCILEVENT_COMMAND_COMPLETE:
if (COMMAND.COMPLETEEVENT(packet ,
hei_write_inquiry_mode)) {
start_scan () ;
}
case HCLEVENT COMMAND STATUS:
if (COMMANDSTATUSEVENT (packet, hci_-write_inquiry_-mode)
) A{
printf(”Ignoring error (0x%x) from
hci_write_inquiry_mode.\n” , packet[2]);
heci_send_cmd(&hcei_inquiry , HCIINQUIRY_LAP,
INQUIRY_INTERVAL, 0);
}
break;
case HCI.LEVENT_INQUIRY_RESULT:
case HCI.EVENT_INQUIRY_RESULT_WITH_RSSI:
print_inquiry_results (packet);
break;

Li1sTING 19. Discovering remote Bluetooth devices.

35

break;

LisTiNG 20. Answering authentication request with PIN 0000.

The Bluetooth v2.1 specification introduces Secure Simple Pairing (SSP),
which is a better approach as it both improves security and is better adapted to
embedded systems. With SSP, the devices first exchange their IO Capabilities
and then settle on one of several ways to verify that the pairing is legitimate.
If the Bluetooth device supports SSP, BTstack enables it by default and even
automatically accepts SSP pairing requests. Depending on the product in which
BTstack is used, this may not be desired and should be replaced with code to
interact with the user.

Regardless of the authentication mechanism (PIN/SSP), on success, both de-
vices will generate a link key. The link key can be stored either in the Bluetooth
module itself or in a persistent storage, see Section[7.4 The next time the device
connects and requests an authenticated connection, both devices can use the
previously generated link key. Please note that the pairing must be repeated if
the link key is lost by one device.

5.1.4. Dedicated Bonding. Aside from the regular bonding, Bluetooth also pro-
vides the concept of ”dedicated bonding”, where a connection is established for
the sole purpose of bonding the device. After the bonding process is over, the
connection will be automatically terminated. BTstack supports dedicated bond-
ing via the gap_dedicated_bonding function.

5.2. SPP - Serial Port Profile. The SPP profile defines how to set up virtual
serial ports and connect two Bluetooth enabled devices.

5.2.1. Accessing an SPP Server on a remote device. To access a remote SPP
server, you first need to query the remote device for its SPP services. Section
shows how to query for all RFCOMM channels. For SPP, you can do the
same but use the SPP UUID 0x1101 for the query. After you have identified the
correct RFCOMM channel, you can create an RFCOMM connection as shown
in Section £.3.2]

5.2.2. Prouviding an SPP Server. To provide an SPP Server, you need to provide
an RFCOMM service with a specific RFCOMM channel number as explained
in Section [4.3.3] Then, you need to create an SDP record for it and publish it
with the SDP server by calling sdp_register_service_internal. BTstack provides
the sdp_create_spp_service function in src/sdp_utils.c that requires an empty
buffer of approximately 200 bytes, the service channel number, and a service
name. Have a look at the SPP Counter example in Section [6.5

5.3. PAN - Personal Area Networking Profile. The PAN profile uses BNEP
to provide on-demand networking capabilities between Bluetooth devices. The
PAN profile defines the following roles:

e PAN User (PANU)

36

e Network Access Point (NAP)
e Group Ad-hoc Network (GN)

PANU is a Bluetooth device that communicates as a client with GN, or NAP,
or with another PANU Bluetooth device, through a point-to-point connection.
Either the PANU or the other Bluetooth device may terminate the connection
at anytime.

NAP is a Bluetooth device that provides the service of routing network packets
between PANU by using BNEP and the IP routing mechanism. A NAP can also
act as a bridge between Bluetooth networks and other network technologies by
using the Ethernet packets.

The GN role enables two or more PANUs to interact with each other through
a wireless network without using additional networking hardware. The devices
are connected in a piconet where the GN acts as a master and communicates
either point-to-point or a point-to-multipoint with a maximum of seven PANU
slaves by using BNEP.

Currently, BTstack supports only PANU.

5.3.1. Accessing a remote PANU service. To access a remote PANU service, you
first need perform an SDP query to get the L2CAP PSM for the requested
PANU UUID. With these two pieces of information, you can connect BNEP to
the remote PANU service with the bnep_connect function. The PANU Demo
example in Section shows how this is accomplished.

5.3.2. Prouviding a PANU service. To provide a PANU service, you need to pro-
vide a BNEP service with the service UUID, e.g. the PANU UUID, and a a
maximal ethernet frame size, as explained in Section [4.5.3] Then, you need
to create an SDP record for it and publish it with the SDP server by call-
ing sdp_register_service_internal. BTstack provides the pan_create_panu_service
function in src/pan.c that requires an empty buffer of approximately 200 bytes,
a description, and a security description.

5.4. GAP LE - Generic Access Profile for Low Energy. As with GAP
for Classic, the GAP LE profile defines how to discover and how to connect to
a Bluetooth Low Energy device. There are several GAP roles that a Bluetooth
device can take, but the most important ones are the Central and the Peripheral
role. Peripheral devices are those that provide information or can be controlled.
Central devices are those that consume information or control the peripherals.
Before the connection can be established, devices are first going through an
advertising process.

5.4.1. Private addresses. To better protect privacy, an LE device can choose to
use a private i.e. random Bluetooth address. This address changes at a user-
specified rate. To allow for later reconnection, the central and peripheral devices
will exchange their Identity Resolving Keys (IRKs) during bonding. The IRK is
used to verify if a new address belongs to a previously bonded device.
To toggle privacy mode using private addresses, call the gap_random_address_set_mode
function. The update period can be set with gap_random_address_set_update_period.
After a connection is established, the Security Manager will try to resolve the
peer Bluetooth address as explained in Section [4.7]

37

5.4.2. Adwvertising and Discovery. An LE device is discoverable and connectable,
only if it periodically sends out Advertisements. An advertisement contains up to
31 bytes of data. To configure and enable advertisement broadcast, the following
HCI commands can be used:

e hci_le_set_advertising_data
e hci_le_set_advertising_parameters
o hci_le_set_advertise_enable

As these are direct HCI commands, please refer to Section for details and
have a look at the SPP and LE Counter example in Section [6.10]

In addition to the Advertisement data, a device in the peripheral role can also
provide Scan Response data, which has to be explicitly queried by the central
device. It can be provided with the hci_le_set_scan_response_data.

The scan parameters can be set with le_central_set_scan_parameters. The scan
can be started/stopped with le_central_start_scan/le_central_stop_scan.

Finally, if a suitable device is found, a connection can be initiated by calling
le_central_connect. In contrast to Bluetooth classic, there is no timeout for an LE
connection establishment. To cancel such an attempt, le_central_connect_cancel
has be be called.

By default, a Bluetooth device stops sending Advertisements when it gets into
the Connected state. However, it does not start broadcasting advertisements
on disconnect again. To re-enable it, please send the hci_le_set_advertise_enable
again .

5.5. GATT - Generic Attribute Profile. The GATT profile uses ATT At-
tributes to represent a hierarchical structure of GATT Services and GATT Char-
acteristics. Each Service has one or more Characteristics. Each Characteristic
has meta data attached like its type or its properties. This hierarchy of Charac-
teristics and Services are queried and modified via ATT operations.

GATT defines both a server and a client role. A device can implement one or

both GATT roles.

5.5.1. GATT Client. The GATT Client is used to discover services, and their
characteristics and descriptors on a peer device. It can also subscribe for noti-
fications or indications that the characteristic on the GATT server has changed
its value.

To perform GATT queries, ble/gatt_client.h provides a rich interface. Be-
fore calling queries, the GATT client must be initialized with gatt_client_init
once.

To allow for modular profile implementations, GATT client can be used inde-
pendently by multiple entities.

To use it by a GAT'T client, you register a packet handler with gatt_client_register_packet_
handler. The return value of that is a GATT client ID which has to be provided
in all queries.

After an LE connection was created using the GAP LE API, you can query
for the connection MTU with gatt_client_get_mtu.

GATT queries cannot be interleaved. Therefore, you can check if you can
perform a GATT query on a particular connection using gatt_client_is_ready.

38

As a result to a GATT query, zero to many le_events are returned before a
GATT_-QUERY_COMPLETE event completes the query.
For more details on the available GATT queries, please consult Appendix [H]

5.5.2. GATT Server. The GATT server stores data and accepts GATT client
requests, commands and confirmations. The GATT server sends responses to
requests and when configured, sends indication and notifications asynchronously
to the GAT'T client.

To save on both code space and memory, BTstack does not provide a GATT
Server implementation. Instead, a textual description of the GATT profile is
directly converted into a compact internal ATT Attribute database by a GATT
profile compiler. The ATT protocol server - implemented by ble/att_server.c
and ble/att.c - answers incoming ATT requests based on information provided
in the compiled database and provides read- and write-callbacks for dynamic
attributes.

GATT profiles are defined by a simple textual comma separated value (.csv)
representation. While the description is easy to read and edit, it is compact and
can be placed in ROM.

The current format is:

PRIMARY_SERVICE, {SERVICE_UUID}
CHARACTERISTIC, {ATTRIBUTE.TYPE.UUID}, {PROPERTIES}, {VALUE}
CHARACTERISTIC, {ATTRIBUTE.TYPE.UUID}, {PROPERTIES}, {VALUE}

PRIMARY SERVICE, {SERVICE_.UUID}
CHARACTERISTIC, {ATTRIBUTE.TYPEUUID}, {PROPERTIES}, {VALUE}

Properties can be a list of READ | WRITE | WRITE_WITHOUT _RESPONSE
| NOTIFY | INDICATE | DYNAMIC.

Value can either be a string ("this is a string”), or, a sequence of hex bytes
(e.g. 01 02 03).

UUIDs are either 16 bit (1800) or 128 bit (00001234-0000-1000-8000-00805F9B34FB).

Reads/writes to a Characteristic that is defined with the DYNAMIC flag, are
forwarded to the application via callback. Otherwise, the Characteristics cannot
be written and it will return the specified constant value.

Adding NOTIFY and/or INDICATE automatically creates an addition Client
Configuration Characteristic.

To require encryption or authentication before a Characteristic can be ac-
cessed, you can add ENCRYPTION_KEY SIZE X - with X € [7..16] - or AU-
THENTICATION _REQUIRED.

BTstack only provides an ATT Server, while the GATT Server logic is mainly
provided by the GATT compiler. While GATT identifies Characteristics by
UUIDs, ATT uses Handles (16 bit values). To allow to identify a Characteristic
without hard-coding the attribute ID, the GATT compiler creates a list of defines
in the generated *.h file.

39

int main () {
// ... hardware init: watchdoch, IOs, timers, etc...

// setup BTstack memory pools
btstack_memory_init () ;

// select embedded run loop
run_loop_init (RUNLOOP_EMBEDDED) ;

// use logger: format HCILDUMP PACKETLOGGER, HCI.DUMP BLUEZ or
HCIL.DUMP.STDOUT
heci-dump_open (NULL, HCIDUMP_STDOUT) ;

// init HCI
hci_transport_t * transport = hci_transport_h4_dma_instance();
remote_device_.db_t x remote_.db = (remote_device_db_t x) &

remote_device_.db_memory ;
hci_init (transport , NULL, NULL, remote_db);

// setup example
btstack_main (arge, argv);

// go

run_loop_execute () ;

LisTiNG 21. Exemplary platform init in main.c

6. EXAMPLES

In this section, we will describe a number of examples from the example/em-
bedded folder. To allow code-reuse with different platforms as well as with new
ports, the low-level initialization of BTstack and the hardware configuration has
been extracted to the various platforms/PLATFORM/main.c files. The exam-
ples only contain the platform-independent Bluetooth logic. But let’s have a
look at the common init code.

Listing shows a minimal platform setup for an embedded system with a
Bluetooth chipset connected via UART.

First, BTstack’s memory pools are setup up. Then, the standard run loop
implementation for embedded systems is selected.

The call to hci_dump_open configures BTstack to output all Bluetooth packets
and it’s own debug and error message via printf. The Python script tools/cre-
ate_packet_log.py can be used to convert the console output into a Bluetooth
PacketLogger format that can be opened by the OS X PacketLogger tool as well

40

as by Wireshark for further inspection. When asking for help, please always
include a log created with HCI dump.

The hci_init function sets up HCI to use the HCI H4 Transport implementa-
tion. It doesn’t provide a special transport configuration nor a special implemen-
tation for a particular Bluetooth chipset. It makes use of the remote_device_db_memory
implementation that allows for re-connects without a new pairing but doesn’t
persist the bonding information.

Finally, it calls btstack-main() of the actual example before executing the run
loop.

The examples are grouped like this:

e Hello World example:
— led_counter: Hello World: blinking LED without Bluetooth, in Sec-
tion [6.1]
e GAP example:
— gap_inquiry: GAP Inquiry Example, in Section [6.2]
e SDP Queries examples:
— sdp_general_query: Dump remote SDP Records, in Section [6.3]
— sdp_bnep_query: Dump remote BNEP PAN protocol UUID and L2CAP
PSM, in Section [6.4]
e SPP Server examples:
— spp_counter: SPP Server - Heartbeat Counter over RFCOMM, in
Section [6.5]
— spp-flowcontrol: SPP Server - Flow Control, in Section [6.6]
e BNEP/PAN example:
— panu_demo: PANU Demo, in Section [6.7]
e Low Energy examples:
— gatt_browser: GATT Client - Discovering primary services and their
characteristics, in Section
— le_counter: LE Peripheral - Heartbeat Counter over GATT, in Sec-
tion [6.9
e Dual Mode example:
— spp-and_le_counter: Dual mode example, in Section [6.10]

6.1. led_counter: Hello World: blinking LED without Bluetooth. The
example demonstrates how to provide a periodic timer to toggle an LED and
send debug messages to the console as a minimal BTstack test.

6.1.1. Periodic Timer Setup. As timers in BTstack are single shot, the peri-
odic counter is implemented by re-registering the timer source in the heartbeat
handler callback function. Listing [22| shows heartbeat handler adapted to peri-
odically toggle an LED and print number of toggles.

static void heartbeat_handler (timer_source_t *ts){
// increment counter
char lineBuffer [30];
sprintf(lineBuffer , "BTstack counter %04u\n\r”, ++counter);
puts(lineBuffer);

41

// toggle LED
hal_led_toggle () ;

// re—register timer
run_loop-set_timer(&heartbeat , HEARTBEAT PERIOD.MS) ;
run_loop_add_timer(&heartbeat);

LisTiING 22. Periodic counter.

6.1.2. Main Application Setup. Listing 23] shows main application code. It con-
figures the heartbeat tier and adds it to the run loop.

int btstack_main (int argc, const char x argv|[]);
int btstack_main (int argc, const char *x argv|[]){

// set one—shot timer

heartbeat . process = &heartbeat_handler;
run_loop_set_timer(&heartbeat , HEARTBEAT PERIOD MS) ;
run_loop_add_timer(&heartbeat);

printf (” Running ...\ n\r”);
return 0;

LI1STING 23. Setup heartbeat timer.

6.2. gap_inquiry: GAP Inquiry Example. The Generic Access Profile (GAP)
defines how Bluetooth devices discover and establish a connection with each
other. In this example, the application discovers surrounding Bluetooth devices
and collects their Class of Device (CoD), page scan mode, clock offset, and RSSI.
After that, the remote name of each device is requested. In the following section
we outline the Bluetooth logic part, i.e., how the packet handler handles the
asynchronous events and data packets.

6.2.1. Bluetooth Logic. The Bluetooth logic is implemented as a state machine
within the packet handler. In this example, the following states are passed
sequentially: INIT, and ACTIVE.

In INIT, an inquiry scan is started, and the application transits to ACTIVE
state.

In ACTIVE, the following events are processed:

e Inquiry result event: the list of discovered devices is processed and the
Class of Device (CoD), page scan mode, clock offset, and RSSI are stored
in a table.

e Inquiry complete event: the remote name is requested for devices with-
out a fetched name. The state of a remote name can be one of the fol-
lowing: REMOTE_NAME_REQUEST, REMOTE_NAME_INQUIRED,
or REMOTE_NAME_FETCHED.

42

e Remote name cached event: prints cached remote names provided by
BTstack, if persistent storage is provided.

e Remote name request complete event: the remote name is stored in the
table and the state is updated to REMOTE_NAME_FETCHED. The
query of remote names is continued.

For more details on discovering remote devices, please see Section [5.1.2]

6.2.2. Main Application Setup. Listing [24] shows main application code. It reg-
isters the HCI packet handler and starts the Bluetooth stack.

int btstack_main (int argc, const char x argv[]);
int btstack_main (int argc, const char x argv|[]) {
hci_register_packet_handler (packet_handler);

// turn on!
hci_power_control (HCLPOWER.ON) ;

return 0;

}

LisTING 24. Setup packet handler for GAP inquiry.

6.3. sdp_general _query: Dump remote SDP Records. The example shows
how the SDP Client is used to get a list of service records on a remote device.

6.3.1. SDP Client Setup. SDP is based on L2CAP. To receive SDP query events
you must register a callback, i.e. query handler, with the SPD parser, as shown
in Listing 25] Via this handler, the SDP client will receive the following events:

e SDP_QUERY_ATTRIBUTE_VALUE containing the results of the query
in chunks,

e SDP_QUERY_COMPLETE indicating the end of the query and the sta-
tus

static void packet_handler (void * connection, uint8_t packet_type,
uintl6_t channel, uint8_t xpacket, uintl6_t size);
static void handle_sdp_client_query_result (sdp_query_event_t * event

JE

static void sdp_client_init (){
// init L2CAP
12cap_init () ;
12cap_register_packet_handler (packet_handler);

sdp_parser_init () ;
sdp_parser_register_callback (handle_sdp_client_query_result);

LisTING 25. SDP client setup.

43

6.3.2. SDP Client Query. To trigger an SDP query to get the a list of service
records on a remote device, you need to call sdp_general_query_for_uuid() with
the remote address and the UUID of the public browse group, as shown in Listing
27 In this example we used fixed address of the remote device shown in Listing
26l Please update it with the address of a device in your vicinity, e.g., one
reported by the GAP Inquiry example in the previous section.

static bd_addr_t remote = {0x04,0x0C,0xCE,0xE4,0x85,0xD3};

LisTING 26. Address of remote device in big-endian order.

static void packet_handler (void * connection, uint8_t packet_type,
uintl6_t channel, uint8_t xpacket, uintl6_t size){
// printf("packet_handler type %u, packet[0] %zx\n”, packet_type,
packet [0]) ;

if (packet_type != HCIEVENTPACKET) return;
uint8_t event = packet [0];

switch (event) {
case BTSTACK EVENT.STATE:

if (packet[2] = HCLSTATE WORKING) {
sdp_general _query_for_uuid (remote, SDP_PublicBrowseGroup) ;
}
break;
default:
break;

LisTING 27. Querying a list of service records on a remote device..

6.3.3. Handling SDP Client Query Results. The SDP Client returns the results
of the query in chunks. Each result packet contains the record ID, the Attribute
ID, and a chunk of the Attribute value. In this example, we append new chunks
for the same Attribute ID in a large buffer, see Listing 28]

To save memory, it’s also possible to process these chunks directly by a custom
stream parser, similar to the way XML files are parsed by a SAX parser. Have a
look at src/sdp_query_rfcomm.c which retrieves the RFCOMM channel number
and the service name.

static void handle_sdp-_client_query_result (sdp_query_event_t % event

)

sdp_query_attribute_value_event_t * ve;
sdp_query_complete_event_t * ce;

44

switch (event—>type){
case SDP_QUERY_ATTRIBUTE_VALUE:
ve = (sdp_query_attribute_value_event_t=*) event;

// handle new record

if (ve—>record.id != record.id){
record_id = ve—>record_id;
printf (”\n——\nRecord nr. %u\n”, record_id);

}

assertBuffer (ve—>attribute_length);

attribute_value [ve—>data_offset] = ve—>data;

if ((uintl6_t)(ve—>data_offset+1) = ve—>attribute_length){
printf(” Attribute 0x%04x: 7, ve—>attribute_id);
de_dump_data_element (attribute_value);

}

break ;

case SDP QUERY COMPLETE:

ce = (sdp_query_complete_event_t*) event;

printf(” General query done with status %d.\n\n”, ce—>status);

exit (0) ;

break;

LisTING 28. Handling query result chunks..

6.4. sdp_bnep_query: Dump remote BNEP PAN protocol UUID and
L2CAP PSM. The example shows how the SDP Client is used to get all BNEP
service records from a remote device. It extracts the remote BNEP PAN protocol
UUID and the L2ZCAP PSM, which are needed to connect to a remote BNEP
service.

6.4.1. SDP Client Setup. As with the previous example, you must register a
callback, i.e. query handler, with the SPD parser, as shown in Listing 29 Via
this handler, the SDP client will receive events:
e SDP_QUERY_ATTRIBUTE_VALUE containing the results of the query
in chunks,
e SDP_QUERY_COMPLETE reporting the status and the end of the query.

static void packet_handler (void * connection, uint8_t packet_type,
uint16_t channel, uint8_t xpacket, uintl6_t size);
static void handle_sdp_client_query_result (sdp_query_event_t * event

JE

static void sdp_client_init (){
// init L2CAP
12cap_init () ;
12cap_register_packet_handler (packet_handler);

45

sdp_parser_init () ;
sdp_parser_register_callback (handle_sdp_client_query_result);

}

LisTING 29. SDP client setup.

6.4.2. SDP Client Query.

static void packet_handler (void * connection, uint8_t packet_type,
uintl6_t channel, uint8_t xpacket, uintl6_t size){
if (packet_type != HCIEVENTPACKET) return;

uint8_t event = packet [0];

switch (event) {
case BTSTACK EVENT STATE:
// BTstack activated , get started
if (packet[2] = HCISTATE.WORKING) {
printf(”Start SDP BNEP query.\n”);
sdp_general_query_for_uuid (remote, SDP_BNEPProtocol);

}
break;

default :
break;

LisTING 30. Querying the a list of service records on a remote device..

6.4.3. Handling SDP Client Query Result. The SDP Client returns the result of
the query in chunks. Each result packet contains the record ID, the Attribute
ID, and a chunk of the Attribute value, see Listing [3I} Here, we show how to
parse the Service Class ID List and Protocol Descriptor List, as they contain the
BNEP Protocol UUID and L2CAP PSM respectively.

static void handle_sdp-_client_query_result (sdp_query_event_t % event

)

switch(ve—>attribute_id){
// 0x0001 ”Service Class ID List”
case SDP_ServiceClassIDList:
if (de_get_element_type(attribute_value) != DEDES)
break ;
for (des_iterator_init(&des_list_it , attribute_value);
des_iterator_has_more(&des_list_it);
des_iterator_next(&des_list_it)){

uint8_t * element = des_iterator_get_element (&
des_list_it);
if (de_get_element_type (element) != DEUUID) continue;

uint32_t uuid = de_get_uuid32 (element);

46

switch (uuid){
case PANU_UUID:
case NAP_UUID:

case GN_UUID:
printf(” xx Attribute 0x%04x: BNEP PAN protocol

UUID: %04x\n” , ve—>attribute_id , uuid);
break;
default:
break;
}

}
break;

case SDP _ProtocolDescriptorList:{
printf(” xx Attribute 0x%04x: 7, ve—>attribute_id);

uintl6_t 12cap_psm = 0;
uintl6_t bnep_version = 0;
for (des_iterator_init(&des_list_it , attribute_value);
des_iterator_has_more(&des_list_it);
des_iterator_next(&des_list_it)){
if (des_iterator_get_type(&des_list_it) != DE.DES)
continue;
uint8_t * des_element = des_iterator_get_element (&
des_list_it);
des_iterator_init(&prot_it , des_element);
uint8_t * element = des_iterator_get_element (&

prot_it);

if (de_get_element_type (element) != DE_UUID)
continue;
uint32_t uuid = de_get_uuid32 (element);
switch (uuid){
case SDP_L2CAPProtocol:
if (!des_iterator_has_more(&prot_it)) continue;
des_iterator_next(&prot_it);
de_element_get_uintl6 (des_iterator_get_element (&
prot_it), &l2cap_psm);
break;
case SDP_BNEPProtocol:
if (!des_iterator_has_more(&prot_it)) continue;
des_iterator_next(&prot_it);
de_element_get_uintl6 (des_iterator_get_element (&
prot_it), &bnep_version);
break;
default:
break;

}
}

printf(”12cap_psm 0x%04x, bnep_version 0x%04x\n”
12cap_psm , bnep_version);

}
break;

47

LisTinG 31. Extracting BNEP Protcol UUID and L2CAP PSM.

The Service Class ID List is a Data Element Sequence (DES) of UUIDs. The
BNEP PAN protocol UUID is within this list.

The Protocol Descriptor List is DES which contains one DES for each protocol.
For PAN serivces, it contains a DES with the L2ZCAP Protocol UUID and a PSM,
and another DES with the BNEP UUID and the the BNEP version.

6.5. spp_counter: SPP Server - Heartbeat Counter over RFCOMM.
The Serial port profile (SPP) is widely used as it provides a serial port over
Bluetooth. The SPP counter example demonstrates how to setup an SPP service,
and provide a periodic timer over RFCOMM.

6.5.1. SPP Service Setup. To provide an SPP service, the L2CAP, RFCOMM,
and SDP protocol layers are required. After setting up an RFCOMM service with
channel nubmer REFCOMM _SERVER_CHANNEL, an SDP record is created and
registered with the SDP server. Example code for SPP service setup is provided
in Listing[32] The SDP record created by function sdp_create_spp_service consists
of a basic SPP definition that uses the provided RFCOMM channel ID and service
name. For more details, please have a look at it in src/sdp_util.c. The SDP
record is created on the fly in RAM and is deterministic. To preserve valuable
RAM, the result could be stored as constant data inside the ROM.

void spp_service_setup (){
12cap_init () ;
12cap_register_packet_handler (packet_handler);

rfcomm _init () ;

rfcomm _register_packet_handler (packet_handler);

rfcomm_register_service_internal (NULL, RFCOMM SERVER.CHANNEL, 0
xftfff); // reserved channel, mtu limited by [2cap

// init SDP, create record for SPP and register with SDP
sdp_init () ;
memset (spp-service_buffer , 0, sizeof(spp_service_buffer));

service_record_item_t x service_record_item = (
service_record_item_t *) spp_service_buffer;
sdp_create_spp_service((uint8_tx*) &service_record_item —>
service_record , RFCOMMSERVER CHANNEL, ”SPP Counter”);
printf (”SDP service buffer size: %u\n”, (uintl6_t) (sizeof(
service_record_item_t) + de_get_len ((uint8_tx) &
service_record_item —>service_record)));
sdp_register_service_internal (NULL, service_record_item);

LisTING 32. SPP service setup.

48

6.5.2. Periodic Timer Setup. The heartbeat handler increases the real counter
every second, and sends a text string with the counter value, as shown in Listing

33l

static timer_source_t heartbeat ;

static void heartbeat_handler(struct timer *ts){
static int counter = 0;

if (rfcomm_channel_ id){
char lineBuffer [30];
sprintf(lineBuffer , "BTstack counter %04u\n”, ++counter);
printf("%s”, lineBuffer);
if (rfcomm_can_send_packet_now (rfcomm_channel_id)) {
int err = rfcomm_send_internal (rfcomm_channel_id, (uint8_tx)

lineBuffer , strlen(lineBuffer));
if (err) {
log_error ("rfcomm _send_internal —> error 0X%02x”, err);
}
}
}

run_loop-set_timer (ts , HEARTBEAT PERIODMS) ;
run_loop_add_timer (ts);

}

static void one_shot_timer_setup (){
// set one—shot timer
heartbeat .process = &heartbeat_handler;
run_loop_set_timer(&heartbeat , HEARTBEAT PERIODMS) ;
run_loop_add_timer(&heartbeat);

}

LI1STING 33. Periodic Counter.

6.5.3. Bluetooth Logic. The Bluetooth logic is implemented within the packet
handler, see Listing [34] In this example, the following events are passed sequen-
tially:

e BTSTACK_EVENT_STATE,

e HCI. EVENT _PIN_CODE_REQUEST (Standard pairing) or
HCI_LEVENT_USER_CONFIRMATION_REQUEST
(Secure Simple Pairing),

¢ RFCOMM_EVENT_INCOMING_CONNECTION,

¢ RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE, and

¢ RFCOMM _EVENT_CHANNEL_CLOSED

Upon receiving HCI. EVENT _PIN_CODE_REQUEST event, we need to handle
authentication. Here, we use a fixed PIN code ”0000”.

When HCI. EVENT_USER_CONFIRMATION_REQUEST is received, the user
will be asked to accept the pairing request. If the IO capability is set to

49

SSP_I0_CAPABILITY DISPLAY_YES_NO, the request will be automatically
accepted.

The RFCOMM_EVENT_INCOMING_CONNECTION event indicates an in-
coming connection. Here, the connection is accepted. More logic is need, if
you want to handle connections from multiple clients. The incoming RFCOMM
connection event contains the RFCOMM channel number used during the SPP
setup phase and the newly assigned RFCOMM channel ID that is used by all
BTstack commands and events.

If RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE event returns status
greater then 0, then the channel establishment has failed (rare case, e.g., client
crashes). On successful connection, the RFCOMM channel ID and MTU for
this channel are made available to the heartbeat counter. After opening the
RFCOMM channel, the communication between client and the application takes
place. In this example, the timer handler increases the real counter every second.

static void packet_handler (void * connection, uint8_t packet_type,
uintl6_t channel, uint8_t xpacket, uintl6_t size){

case HCIEVENT_PIN.CODE_REQUEST:
// pre—ssp: inform about pin code request
printf(”Pin code request — using ’0000’\n”);
bt_flip_addr (event_addr, &packet[2]) ;
hci_send_cmd(&hci_pin_code_request_reply , &event_addr, 4,
70000”) ;
break;

case HCIEVENT_USER_CONFIRMATION REQUEST:
// ssp: inform about user confirmation request
printf (”SSP User Confirmation Request with numeric value
"%06u’\n” , READ BT _32(packet, 8));
printf (”SSP User Confirmation Auto accept\n”);
break;

case RFCOMM EVENT INCOMING_-CONNECTION::

// data: event (8), len(8), address(48), channel (8),
rfcomm_cid (16)

bt_flip_addr (event_addr , &packet[2]) ;

rfcomm_channel_nr = packet [8];

rfcomm_channel id = READ BT_16(packet, 9);

printf ("RFCOMM channel %u requested for %s\n”,
rfcomm_channel_nr, bd_addr_to_str(event_addr));

rfcomm_accept_connection_internal (rfcomm_channel_id);

break;

case RFCOMM EVENT_OPEN.CHANNEL COMPLETE:
// data: event(8), len(8), status (8), address (48),
server channel (8), rfcomm_cid(16), mazx frame size (16)
if (packet[2]) {
printf ("RFCOMM channel open failed , status %u\n”, packet

[2]);

50

} else {
rfcomm_channel_id = READ_BT_16(packet, 12);
mtu = READ BT_16(packet , 14);
printf ("RFCOMM channel open succeeded. New RFCOMM
Channel ID %u, max frame size %u\n”,
rfcomm_channel_id , mtu);

}
break;

LisTING 34. SPP Server - Heartbeat Counter over RFECOMM.

6.6. spp_flowcontrol: SPP Server - Flow Control. This example adds ex-
plicit flow control for incoming RFCOMM data to the SPP heartbeat counter
example. We will highlight the changes compared to the SPP counter example.

6.6.1. SPP Service Setup. Listing shows how to provide one initial credit
during RFCOMM service initialization. Please note that providing a single credit
effectively reduces the credit-based (sliding window) flow control to a stop-and-
wait flow control that limits the data throughput substantially.

static void spp_service_setup (){
// init L2CAP
12cap_init () ;
12cap_register_packet_handler (packet_handler);

// init RFCOMM

rfcomm_init () ;

rfcomm _register_packet_handler (packet_handler);

// reserved channel, mtu limited by [2cap, 1 credit

rfcomm _register_service_with_initial_credits_internal (NULL,
rfcomm _channel_nr, Oxf{fff 6 1);

// init SDP, create record for SPP and register with SDP

sdp_init () ;

memset (spp_service_buffer , 0, sizeof(spp_service_buffer));

service_record_item_t x service_record_item = (
service_record_item_t *) spp_service_buffer;

sdp_create_spp-service((uint8_tx) &service_record_item —>
service_record , 1, ”"SPP Counter”);

printf (”SDP service buffer size: %u\n\r”, (uintl6_t) (sizeof(
service_record_item_t) + de_get_len ((uint8_tx) &
service_record_item —>service_record)));

sdp_register_service_internal (NULL, service_record_item);

}

LisTiNG 35. Providing one initial credit during RFCOMM service initialization.

6.6.2. Periodic Timer Setup. Explicit credit management is recommended when
received RFCOMM data cannot be processed immediately. In this example,

51

delayed processing of received data is simulated with the help of a periodic timer
as follows. When the packet handler receives a data packet, it does not provide
a new credit, it sets a flag instead, see Listing [37} If the flag is set, a new credit
will be granted by the heartbeat handler, introducing a delay of up to 1 second.
The heartbeat handler code is shown in Listing [30}

static void heartbeat_handler(struct timer *ts){
if (rfcomm _send_credit){
rfcomm_grant_credits (rfcomm_channel_id, 1);
rfcomm_send_credit = 0;
}
run_loop_set_timer (ts, HEARTBEAT PERIOD_MS) ;
run_loop_add_timer (ts);

}

L1sTING 36. Heartbeat handler with manual credit management.

// Bluetooth logic
static void packet_handler (void * connection, uint8_t packet_type,
uint16_t channel, uint8_t xpacket, uintl6_t size){

case RFCOMM DATA PACKET:
for (i=0;i<size;i++){
putchar (packet [i]) ;

putchar(’\n’);
rfcomm_send_credit = 1;

break;

LisTiNG 37. Packet handler with manual credit management.

6.7. panu.demo: PANU Demo. This example implements both a PANU
client and a server. In server mode, it sets up a BNEP server and registers
a PANU SDP record and waits for incoming connections. In client mode, it
connects to a remote device, does an SDP Query to identify the PANU service
and initiates a BNEP connection.

6.7.1. Main application configuration. In the application configuration, L2CAP
and BNEP are initialized and a BNEP service, for server mode, is registered,
before the Bluetooth stack gets started, as shown in Listing [38

static void packet_handler (void * connection, uint8_t packet_type,
uintl6_t channel, uint8_t xpacket, uintl6_t size);

52

static void handle_sdp_client_query_result (sdp_query_event_t xevent)

b

static void panu_setup(){
// Initialize L2CAP
12cap_init () ;
12cap_register_packet_handler (packet_handler);

// Initialise BNEP

bnep_init () ;

bnep_register_packet_handler (packet_handler);
// Minimum L2CAP MTU for bnep is 1691 bytes

bnep_register_service (NULL, SDPPANU, 1691);

// Initialise SDP
sdp_parser_init () ;
sdp_parser_register_callback (handle_sdp_client_query_result);

LisTING 38. Panu setup.

6.7.2. TUN / TAP interface routines. This example requires a TUN/TAP inter-
face to connect the Bluetooth network interface with the native system. It has
been tested on Linux and OS X, but should work on any system that provides
TUN/TAP with minor modifications.

On Linux, TUN/TAP is available by default. On OS X, tuntaposx from
http://tuntaposx.sourceforge.net needs to be installed.

tap_alloc sets up a virtual network interface with the given Bluetooth Address.
It is rather low-level as it sets up and configures a network interface.

Listing 39| shows how a packet is received from the TAP network interface and
forwarded over the BNEP connection.

After successfully reading a network packet, the call to bnep_can_send_packet_now
checks, if BTstack can forward a network packet now. If that’s not possible, the
received data stays in the network buffer and the data source elements is removed
from the run loop. process_tap_dev_data will not be called until the data source
is registered again. This provides a basic flow control.

int process_tap_dev_data(struct data_source xds)
{
ssize_t len;
len = read(ds—>fd, network_buffer, sizeof(network_buffer));
if (len <= 0){
fprintf(stderr, "TAP: Error while reading: %s\n”, strerror (errno

)5

return 0;

}

network_buffer_len = len;
if (bnep_can_send_packet_now (bnep_cid)) {
bnep_send (bnep_cid, network_buffer, network_buffer_len);

53

network_buffer_len = 0;

} else {
// park the current network packet
run_loop_remove_data_source(&tap_dev_ds);

}

return 0;

}

LisTING 39. Process incoming network packets.

6.7.3. SDP parser callback. The SDP parsers retrieves the BNEP PAN UUID as
explained in Section

6.7.4. Packet Handler. The packet handler responds to various HCI Events.

static void packet_handler (void * connection, uint8_t packet_type,
uint16_t channel, uint8_t xpacket, uintl6_t size)
{

switch (packet_type) {
case HCILEVENT PACKET:
event = packet [0];
switch (event) {
case BTSTACK EVENT. STATE:
if (packet[2] = HCLSTATE WORKING) {
printf(”Start SDP BNEP query.\n”);
sdp_general_query_for_uuid (remote, SDP_BNEPProtocol) ;

}

break;

case BNEP_EVENTINCOMING.CONNECTION:
// data: event(8), len(8), bnep source wuuid (16), bnep
destination wuid (16), remote_address (48)
uuid_source = READ BT_16(packet, 2);

uuid_dest = READ_BT_16(packet, 4);
mtu = READ_BT_16(packet , 6);
bnep_cid = channel;

memcpy(&event_addr , &packet [8], sizeof(bd_addr_t));
printf (”BNEP connection from %s source UUID 0x%04x dest
UUID: 0x%04x, max frame size: %u\n”, bd_-addr_to_str(
event_addr), uuid_source, uuid_-dest, mtu);
heci_local_bd_addr (local_addr);
tap_fd = tap_alloc (tap_.dev_.name, local_addr);
if (tap_fd < 0) {
printf(” Creating BNEP tap device failed: %s\n”, strerror
(errno));
1 else {
printf (?"BNEP device \"%s\” allocated.\n”, tap_dev_name);
tap_dev_ds.fd = tap_fd;
tap_dev_ds.process = process_tap_dev_data;

54

run_loop_add_data_source(&tap_dev_ds);

}
break;

case BNEP EVENT_CHANNEL TIMEOUT:
printf (”"BNEP channel timeout! Channel will be closed\n”);
break;

case BNEP EVENT_ CHANNEL_CLOSED:
printf (”BNEP channel closed\n”);
run_loop_remove_data_source(&tap_dev_ds);
if (tap_-fd > 0) {
close (tap_fd);
tap_fd = —1;
}
break ;

case BNEP EVENT READY_TO_SEND:
// Check for parked network packets and send it out now
if (network_buffer_len > 0) {
bnep_send (bnep_cid, network_buffer , network_buffer_len);
network_buffer_len = 0;
// Re—add the tap device data source
run_loop_add_data_source(&tap_dev_ds);

}

break;

default:
break;
}

break;

case BNEP DATA PACKET:
// Write out the ethernet frame to the tap dewvice
if (tap-fd > 0) {
rc = write(tap_fd, packet, size);
if (rc < 0) {
fprintf(stderr, "TAP: Could not write to TAP device: %s\n”
, strerror(errno));
1 else
if (rc != size) {
fprintf(stderr, "TAP: Package written only partially %d of
% bytes\n”, rc, size);

break ;

default:
break;

55

LisTiNG 40. Packet Handler.

When BTSTACK_EVENT STATE with state HCI.STATE_WORKING is re-
ceived and the example is started in client mode, the remote SDP BNEP query
is started.

In server mode, BNEP_EVENT_INCOMING_CONNECTION is received after
a client has connected. The TAP network interface is then configured. A data
source is set up and registered with the run loop to receive Ethernet packets from
the TAP interface.

The event contains both the source and destination UUIDs, as well as the
MTU for this connection and the BNEP Channel 1D, which is used for sending
Ethernet packets over BNEP.

In client mode, BNEP_EVENT_OPEN_CHANNEL COMPLETE is received
after a client has connected or when the connection fails. The status field returns
the error code. It is otherwise identical to BNEP_EVENT_INCOMING_CONNECTION
before.

If there is a timeout during the connection setup, BNEP_EVENT_CHANNEL_TIMEOUT
will be received and the BNEP connection will be closed

BNEP_EVENT_CHANNEL_CLOSED is received when the connection gets
closed.

BNEP_EVENT_READY _TO_SEND indicates that a new packet can be send.
This triggers the retry of a parked network packet. If this succeeds, the data
source element is added to the run loop again.

Ethernet packets from the remote device are received in the packet handler
with type BNEP_DATA _PACKET. It is forwarded to the TAP interface.

6.8. gatt_browser: GATT Client - Discovering primary services and
their characteristics. This example shows how to use the GATT Client API
to discover primary services and their characteristics of the first found device
that is advertising its services.

The logic is divided between the HCI and GATT client packet handlers. The
HCI packet handler is responsible for finding a remote device, connecting to it,
and for starting the first GATT client query. Then, the GATT client packet
handler receives all primary services and requests the characteristics of the last
one to keep the example short.

6.8.1. GATT client setup. In the setup phase, a GATT client must register the
HCT and GATT client packet handlers, as shown in Listing [41] Additionally, the
security manager can be setup, if signed writes, or encrypted, or authenticated
connection are required, to access the characteristics, as explained in Section [4.7]

static uintl6_t gc_id;

// Handles connect, disconnect, and advertising report events,
// starts the GATT client , and sends the first query.

56

static void handle_hci_event (void * connection, uint8_t packet_type,
uintl16_t channel, uint8_t xpacket, uintl6_t size);

// Handles GATT client query results, sends queries and the
// GAP disconnect command when the querying is done.
void handle_gatt_client_event (le_event_-t * event);

static void gatt_client_setup ()
// Initialize L2CAP and register HCI event handler
12cap_init () ;
12cap_register_packet_handler(&handle_hci_event);

// Initialize GATT client

gatt_client_init ();

// Register handler for GATT client events

gc_.id = gatt_client_register_packet_handler(&
handle_gatt_client_event);

// Optinoally , Setup security manager
sm_init () ;

sm_set_io_capabilities (IO_CAPABILITY NO_INPUT_NO_OUTPUT) ;

LisTING 41. Setting up GATT client.

6.8.2. HCI packet handler. The HCI packet handler has to start the scanning, to
find the first advertising device, to stop scanning, to connect to and later to dis-
connect from it, to start the GATT client upon the connection is completed, and
to send the first query - in this case the gatt_client_discover_primary_services()
is called, see Listing

static void handle_hci_event (void * connection, uint8_t packet_type,
uint16_t channel, uint8_t xpacket, uintl6_t size){
if (packet_type != HCIEVENTPACKET) return;
advertising report_t report;

uint8_t event = packet [0];
switch (event) {
case BTSTACK EVENT STATE:
// BTstack activated , get started
if (packet[2] != HCLSTATE WORKING) break;
if (cmdline_addr_found){
printf (" Trying to connect to %s\n”, bd_addr_to_str(
cmdline_addr));
le_central_connect (cmdline_addr, 0);
break;
}
printf(”BTstack activated , start scanning!\n”);
le_central_set_scan_parameters (0,0x0030, 0x0030);
le_central_start_scan () ;
break;
case GAP LE ADVERTISING_ REPORT':

57

fill_advertising_report_from_packet (&report, packet);
// stop scanning, and connect to the device
le_central_stop_scan () ;
le_central _connect (report.address ,report.address_type);
break;

case HCI.EVENT LE META:
// wait for connection complete
if (packet[2] != HCLSUBEVENT LE CONNECTION.COMPLETE) break;
gc_handle = READ BT_16(packet , 4);
// query primary services
gatt_client_discover_primary_services(gc-id, gc_handle);
break ;

case HCILEVENT_DISCONNECTION_.COMPLETE:
printf (7 \nGATT browser — DISCONNECTED\n”) ;
exit (0) ;
break;

default:
break ;

LisTING 42. Connecting and disconnecting from the GATT client.

6.8.3. GATT Client event handler. Query results and further queries are handled
by the GATT client packet handler, as shown in Listing Here, upon receiving
the primary services, the gatt_client_discover_characteristics_for_service() query
for the last received service is sent. After receiving the characteristics for the
service, gap_disconnect is called to terminate the connection. Upon disconnect,
the HCI packet handler receives the disconnect complete event.

static int search_services = 1;

void handle_gatt_client_event (le_event_t * event){
le _service_t service;
le_characteristic_t characteristic;
switch (event—>type){
case GATT SERVICE.QUERY RESULT:
service = ((le_service_event_t x) event)—>service;
dump _service(&service) ;
services [service_count++| = service;
break;
case GATT_CHARACTERISTIC_.QUERY RESULT:
characteristic = ((le_characteristic_event_t x) event)—>
characteristic;
dump_characteristic(&characteristic);
break;
case GATT.QUERY_COMPLETE:
if (search_services){
// GATT-QUERY-COMPLETE of search services
service_index = 0;
printf (”\nGATT browser — CHARACTERISTIC for SERVICE ”);

58

printUUID128 (service .uuid128); printf(”\n”);
search_services = 0;
gatt_client_discover_characteristics_for_service (gec_id ,
gc_handle, &services [service_index]);
} else {
// GATT-QUERY.-COMPLETE of search characteristics
if (service_index < service_count) {
service = services[service_index++];
printf (”\nGATT browser — CHARACTERISTIC for SERVICE ”);
printUUID128 (service .uuid128);
printf (7, [0x%04x—0x%04x]\n”, service.start_-group_handle,
service .end_group_handle);

gatt_client_discover_characteristics_for_service (gec_id ,
gc_handle , &service);
break;
}
service_index = 0;
gap_disconnect (gc_handle) ;
¥
break;
default:
break;

LisTiNG 43. Handling of the GATT client queries.

6.9. le_counter: LE Peripheral - Heartbeat Counter over GATT. All
newer operating systems provide GATT Client functionality. The LE Counter
examples demonstrates how to specify a minimal GATT Database with a custom
GATT Service and a custom Characteristic that sends periodic notifications.

6.9.1. Main Application Setup. Listing [44] shows main application code. It ini-
tializes L2CAP, the Security Manager and configures the ATT Server with the
pre-compiled ATT Database generated from le_counter.gatt. Finally, it config-
ures the heartbeat handler and boots the Bluetooth stack.

static int le_notification_enabled;
static timer_source_t heartbeat ;

static void packet_handler (void * connection, uint8_t packet_type,
uint16_t channel, uint8_t xpacket, uintl6_t size);

static uintl6_t att_read_callback (uintl6_t con_handle, uintl6_t
att_handle, uintl6_t offset , uint8_t % buffer, uintl6_t
buffer_size);

static int att_write_callback (uintl6_t con_handle, uintl6_t
att_handle, uintl6_t transaction_mode, uintl6_t offset , uint8_t
xbuffer , uintl6_t buffer_size);

static void heartbeat_handler (struct timer *ts);

59

static void le_counter_setup (){
12cap_init () ;
12cap_register_packet_handler (packet_handler) ;

// setup le device db
le_device_db_init () ;

// setup SM: Display only
sm_init () ;

// setup ATT server

att_server_init (profile_data , att_-read_callback ,
att_write_callback);

att _dump_attributes () ;

// set one—shot timer

heartbeat .process = &heartbeat_handler;

run_loop_set_timer(&heartbeat , HEARTBEAT PERIODMS) ;

run_loop_add_timer(&heartbeat);

LISTING 44. Init L2CAP SM ATT Server and start heartbeat timer.

6.9.2. Managing LE Advertisements. To be discoverable, LE Advertisements are
enabled using direct HCI Commands. As there’s no guarantee that a HCI com-
mand can always be sent, the gap_run function is used to send each command
as requested by the todos variable. First, the advertisement data is set with
hci_le_set_advertising_data. Then the advertisement parameters including the
advertisement interval is set with hci_le_set_advertising_parameters. Finally, ad-
vertisements are enabled with hci_le_set_advertise_enable. See Listing [45]

In this example, the Advertisement contains the Flags attribute and the device
name. The flag 0x06 indicates: LE General Discoverable Mode and BR/EDR
not supported.

const uint8_t adv_data[] = {
// Flags general discoverable
0x02, 0x01, 0x06,

// Name
OXOb, 0X09’ ’L77 7E77 7 77 7C7, ’077 7u7, 7n” 7t7, 7e” 71‘7,
};
uint8_t adv_data_len = sizeof(adv_data);
enum {
SET_ADVERTISEMENT PARAMS = 1 << 0,
SET_ADVERTISEMENT DATA =1 << 1,
ENABLE ADVERTISEMENTS = 1 << 2,
};

static uintl6_t todos = 0;
static void gap._run(){

if (!'hci_can_send_command_packet_ now()) return;

60

if (todos & SET_ADVERTISEMENT DATA) {
printf ("GAPRUN: set advertisement data\n”);
todos &= "SET_ADVERTISEMENT DATA;
hei_send_cmd(&hci-le_set_advertising_data , adv_data_len
adv_data) ;
return;

}

if (todos & SET_ADVERTISEMENT PARAMS) {
todos &= “SET_ADVERTISEMENT PARAMS;
uint8_t adv_type = 0; // default
bd_addr_t null_addr;
memset (null_addr , 0, 6);
uintl6_t adv_int_min = 0x0030;
uintl6_t adv_int_max = 0x0030;
hci_send_cmd(&hci_-le_set_advertising_parameters , adv_int_min
adv_int_max , adv_type, 0, 0, &null_addr, 0x07, 0x00);
return;

}

if (todos & ENABLEADVERTISEMENTS) {
printf ("GAPRUN: enable advertisements\n”);
todos &= "ENABLE_ADVERTISEMENTS;
hci_send_cmd(&hci_le_set_advertise_enable , 1);
return;

}
}

LisTING 45. Handle GAP Tasks.

6.9.3. Packet Handler. The packet handler is only used to trigger advertisements
after BTstack is ready and after disconnects, see Listing [46] Advertisements are
not automatically re-enabled after a connection was closed, even though they
have been active before.

static void packet_handler (void * connection, uint8_t packet_type,
uint16_t channel, uint8_t xpacket, uintl6_t size){
switch (packet_type) {
case HCILEVENT PACKET:
switch (packet [0])

case BTSTACK EVENT STATE:
// BTstack activated, get started
if (packet[2] = HCLSTATE WORKING) ({
todos = SET_ADVERTISEMENT PARAMS |
SET_ADVERTISEMENT DATA | ENABLE_ADVERTISEMENTS;

gap-run () ;

}
break;

case HCIEVENT DISCONNECTION_.COMPLETE:

61

todos = ENABLE ADVERTISEMENTS;

le_notification_enabled = 0;
gap-run () ;
break;
default:
break;
}
break;
default:
break ;
}
gap-run () ;

}

LisTING 46. Packet Handler.

6.9.4. Heartbeat Handler. The heartbeat handler updates the value of the sin-
gle Characteristic provided in this example, and sends a notification for this
characteristic if enabled, see Listing

static int counter = 0;
static char counter_string [30];
static int counter_string_len;

static void heartbeat_handler(struct timer *ts){
counter4-+;
counter_string_len = sprintf(counter_string , ”BTstack counter %04u
\n”, counter);
puts(counter_string) ;

if (le_notification_enabled) {
att_server_notify (

ATT_CHARACTERISTIC_0000FF11_0000-1000_8000_00805F9B34FB_01_VALU

, (uint8_tx) counter_string , counter_string_len);

}
run_loop_set_timer (ts, HEARTBEAT PERIODMS) ;

run_loop_add_timer (ts);

LisTING 47. Hearbeat Handler.

6.9.5. ATT Read. The ATT Server handles all reads to constant data. For dy-
namic data like the custom characteristic, the registered att_read_callback is
called. To handle long characteristics and long reads, the att_read_callback is
first called with buffer == NULL, to request the total value length. Then it will
be called again requesting a chunk of the value. See Listing [48]

E_HANDLE

62

// ATT Client Read Callback for Dynamic Data
// — if buffer == NULL, don’t copy data, just return size of wvalue
// — if buffer != NULL, copy data and return number bytes copied
// @param offset defines start of attribute wvalue
static uintl6_t att_read_callback (uintl6_t con_handle, uintl6_t
att_handle , uintl6_t offset, uint8_t x buffer , uintl6_t
buffer_size){
if (att_handle =
ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_VALUE_HANDLE

)
if (buffer){
memcpy (buffer , &counter_string[offset], counter_string_len —
offset);
}
return counter_string_len — offset;
}
return 0;

}

LisTING 48. ATT Read.

6.9.6. ATT Write. The only valid ATT write in this example is to the Client
Characteristic Configuration, which configures notification and indication. If the
ATT handle matches the client configuration handle, the new configuration value
is stored and used in the heartbeat handler to decide if a new value should be
sent. See Listing [49]

static int att_write_callback (uintl6_t con_handle, uintl6_t

att_handle, uintl6_t transaction_mode, uintl6_t offset , uint8_t

xbuffer , uintl6_t buffer_size){

if (att_handle !=
ATT_CHARACTERISTIC_0000FF11_0000-1000-8000_00805F9B34FB_01_CLIENT_CONFIGURATION._
) return O0;

le_notification_enabled = READ BT_16(buffer, 0) =
GATT_CLIENT_CHARACTERISTICS_.CONFIGURATION NOTIFICATION ;

return 0;

}

LisTiING 49. ATT Write.

6.10. spp_and_le_counter: Dual mode example. The SPP and LE Counter
example combines the Bluetooth Classic SPP Counter and the Bluetooth LE
Counter into a single application.

In this Section, we only point out the differences to the individual examples
and how how the stack is configured.

6.10.1. Advertisements. The Flags attribute in the Advertisement Data indicates
if a device is in dual-mode or not. Flag 0x02 indicates LE General Discoverable,
Dual-Mode device. See Listing |50}

63

const uint8_t adv_data[] = {

// Flags: General Discoverable

0x02, 0x01, 0x02,

// Name

0x0b, 0x09, 'L*, "E’, * *, 'C’, 'o’, 'u’, ‘n’, "t’, e’, 'r’,
};

LisTING 50. Advertisement data: Flag 0x02 indicates a dual mode device.

6.10.2. Packet Handler. The packet handler of the combined example is just the
combination of the individual packet handlers.

6.10.3. Heartbeat Handler. Similar to the packet handler, the heartbeat handler
is the combination of the individual ones. After updating the counter, it sends an
RFCOMM packet if an RFCOMM connection is active, and an LE notification
if the remote side has requested notifications.

static void heartbeat_handler(struct timer *ts){

counter4+;

counter_string _len = sprintf(counter_string , "BTstack counter %04u
\n”, counter);

// printf(”%s”, counter_string);

if (rfcomm_channel_id){
if (rfcomm_can_send_packet_now (rfcomm_channel_id)){

int err = rfcomm_send_internal (rfcomm _channel_id, (uint8_tx)
counter_string , counter_string_len);

if (err) {
log_error ("rfcomm _send_internal —> error 0X%02x”, err);

}

}
}

if (le_notification_enabled) {
att_server_notify (

ATT_CHARACTERISTIC_0000FF11_0000-1000_8000_-00805F9B34FB_01_VALU

, (uint8_tx) counter_string , counter_string_len);

}
run_loop_set_timer (ts, HEARTBEAT PERIODMS) ;

run_loop_add_timer (ts);

LisTING 51. Combined Heartbeat handler.

6.10.4. Main Application Setup. As with the packet and the heartbeat handlers,
the combined app setup contains the code from the individual example setups.

E_HANDLE

64

int btstack_main (void);
int btstack_main (void)

{

hci_discoverable_control(1);

12cap_init () ;
12cap_register_packet_handler (packet_handler);

rfcomm _init () ;

rfcomm _register_packet_handler (packet_handler);

rfcomm _register_service_internal (NULL, RFCOMMSERVER.CHANNEL, 0
xffff);

// init SDP, create record for SPP and register with SDP
sdp_init () ;
memset (spp-service_buffer , 0, sizeof(spp_service_buffer));

service_record_item_t x service_record_item = (
service_record_item_t *) spp_service_buffer;
sdp_create_spp_service((uint8_tx*) &service_record_item —>
service_record , RFCOMMSERVER CHANNEL, ”SPP Counter”);
printf (”SDP service buffer size: %u\n”, (uintl6_t) (sizeof(
service_record_item_t) + de_get_len ((uint8_tx) &
service_record_item —>service_record)));
sdp_register_service_internal (NULL, service_record_item);

hci_ssp_set_io_capability (SSP.IO_CAPABILITY _DISPLAY_YES NO) ;

// setup le device db
le_device_db_init () ;

// setup SM: Display only
sm_init () ;

// setup ATT server

att_server_init (profile_data , att_-read_callback ,
att_write_callback);

att_dump_attributes () ;

// set one—shot timer

heartbeat . process = &heartbeat_handler;

run_loop-set_timer(&heartbeat , HEARTBEAT PERIOD.MS) ;

run_loop_add_timer(&heartbeat) ;

// turn on!
hei_power_control (HCLPOWER.ON) ;

return 0;

LisTiNG 52. Init L2CAP RFCOMM SDO SM ATT Server and
start heartbeat timer.

65

7. PORTING TO OTHER PLATFORMS

In this chapter, we highlight the BTstack components that need to be adjusted
for different hardware platforms.

7.1. Time Abstraction Layer. BTstack requires a way to learn about passing
time. run_loop_embedded.c supports two different modes: system ticks or a sys-
tem clock with millisecond resolution. BTstack’s timing requirements are quite
low as only Bluetooth timeouts in the second range need to be handled.

7.1.1. Tick Hardware Abstraction. If your platform doesn’t require a system
clock or if you already have a system tick (as it is the default with CMSIS on
ARM Cortex devices), you can use that to implement BTstack’s time abstraction
in include/btstack/hal_tick.hs.

For this, you need to define HAVE_TICK in btstack-config.h:

#define HAVE_TICK

Then, you need to implement the functions hal_tick_init and hal_tick_set_handler,
which will be called during the initialization of the run loop.

void hal_tick_init (void);
void hal_tick_set_handler (void (xtick_handler)(void));
int hal_tick_get_tick_period_in_ms(void);

After BTstack calls hal_tick_init() and hal_tick_set_handler(tick_handler), it ex-
pects that the tick_handler gets called every hal_tick_get_tick_period_in_ms() ms.

7.1.2. Time MS Hardware Abstraction. If your platform already has a system
clock or it is more convenient to provide such a clock, you can use the Time MS
Hardware Abstraction in include/btstack/hal_time_ms.h.

For this, you need to define HAVE_TIME_MS in btstack-config.h:

#define HAVE TIME_MS

Then, you need to implement the function hal_time_ms(), which will be called
from BTstack’s run loop and when setting a timer for the future. It has to return
the time in milliseconds.

uint32_t hal_time_ms (void);

7.2. Bluetooth Hardware Control API. The Bluetooth hardware control
API can provide the HCI layer with a custom initialization script, a vendor-
specific baud rate change command, and system power notifications. It is also
used to control the power mode of the Bluetooth module, i.e., turning it on/off
and putting to sleep. In addition, it provides an error handler hw_error that is

66

called when a Hardware Error is reported by the Bluetooth module. The callback
allows for persistent logging or signaling of this failure. add recipe

Overall, the struct bt_control_t encapsulates common functionality that is not
covered by the Bluetooth specification. As an example, the bt_control_cc256x_in-
stance function returns a pointer to a control struct suitable for the CC256x
chipset.

7.3. HCI Transport Implementation. On embedded systems, a Bluetooth
module can be connected via USB or an UART port. BTstack implements two
UART based protocols for carrying HCI commands, events and data between a
host and a Bluetooth module: HCI UART Transport Layer (H4) and H4 with
eHCILL support, a lightweight low-power variant by Texas Instruments.

7.3.1. HCI UART Transport Layer (H4). Most embedded UART interfaces oper-
ate on the byte level and generate a processor interrupt when a byte was received.
In the interrupt handler, common UART drivers then place the received data in
a ring buffer and set a flag for further processing or notify the higher-level code,
i.e., in our case the Bluetooth stack.

Bluetooth communication is packet-based and a single packet may contain up
to 1021 bytes. Calling a data received handler of the Bluetooth stack for every
byte creates an unnecessary overhead. To avoid that, a Bluetooth packet can be
read as multiple blocks where the amount of bytes to read is known in advance.
Even better would be the use of on-chip DMA modules for these block reads, if
available.

The BTstack UART Hardware Abstraction Layer API reflects this design ap-
proach and the underlying UART driver has to implement the following API:

void hal_uart_dma_init(void);

void hal_uart_dma_set_block_received (void (xblock_handler)(void));
void hal_uart_dma_set_block_sent (void (xblock_handler)(void));

int hal_uart_.dma_set_baud (uint32_t baud);

void hal_uart_dma_send_block (const uint8_t xbuffer, uintl6_t len);
void hal_uart_dma_receive_block (uint8_t xbuffer, uintl6_t len);

The main HCI H4 implementations for embedded system is hci_h4_transport-
_dma function. This function calls the following sequence: hal_uart_dma_init,
hal_uart_dma_set_block_received and hal_uart_dma_set_block_sent functions. After
this sequence, the HCI layer will start packet processing by calling hal_uart-
_dma_receive_block function. The HAL implementation is responsible for reading
the requested amount of bytes, stopping incoming data via the RTS line when
the requested amount of data was received and has to call the handler. By this,
the HAL implementation can stay generic, while requiring only three callbacks
per HCI packet.

7.3.2. H4 with eHCILL support. With the standard H4 protocol interface, it is
not possible for either the host nor the baseband controller to enter a sleep mode.
Besides the official H5 protocol, various chip vendors came up with proprietary
solutions to this. The eHCILL support by Texas Instruments allows both the

67

typedef struct {
// management
void (xopen) ();
void (xclose) () ;

// link key

int (xget_link_key)(bd_addr_t bd_addr, link_key_t link_key);
void (xput_link_key)(bd_addr_t bd_addr, link_key_t key);
void (xdelete_link_key)(bd_addr_t bd_addr);

// remote name
int (xget_name) (bd_addr_t bd_addr, device_name_t xdevice_name);
void (*put_name) (bd_addr_t bd_addr, device_name_t xdevice_name);
void (xdelete_name) (bd_addr_t bd_addr);

} remote_device_db_t;

L1sTING 53. Persistent Storage Interface.

host and the baseband controller to independently enter sleep mode without
loosing their synchronization with the HCI H4 Transport Layer. In addition
to the IRQ-driven block-wise RX and TX, eHCILL requires a callback for CTS

interrupts.

void hal_uart_dma_set_cts_-irq_handler (void(*cts_irq_-handler)(void));
void hal_uart_-dma_set_sleep (uint8_t sleep);

7.4. Persistent Storage API. On embedded systems there is no generic way
to persist data like link keys or remote device names, as every type of a device
has its own capabilities, particularities and limitations. The persistent storage
API provides an interface to implement concrete drivers for a particular system.
As an example and for testing purposes, BTstack provides the memory-only im-
plementation remote_device_db_memory. An implementation has to conform to
the interface in Listing

8. INTEGRATING WITH EXISTING SYSTEMS

While the run loop provided by BTstack is sufficient for new designs, BTstack
is often used with or added to existing projects. In this case, the run loop, data
sources, and timers may need to be adapted. The following two sections provides
a guideline for single and multi-threaded environments.

To simplify the discussion, we’ll consider an application split into ”"Main
Application”, ”Communication Logic”, and "BTstack”. The Communication
Logic contains the packet handler (PH) that handles all asynchronous events

68

and data packets from BTstack. The Main Application makes use of the Com-
munication Logic for its Bluetooth communication.

8.1. Adapting BTstack for Single-Threaded Environments. In a single-
threaded environment, all application components run on the same (single)
thread and use direct function calls as shown in Figure [3|

Communicatio
Logic h

BTstack

Ficure 3. BTstack in single-threaded environment.

BTstack provides a basic run loop that supports the concept of data sources
and timers, which can be registered centrally. This works well when working with
a small MCU and without an operating system. To adapt to a basic operating
system or a different scheduler, BTstack’s run loop can be implemented based
on the functions and mechanism of the existing system.

Currently, we have two examples for this:

e run_loop_cocoa.c is an implementation for the CoreFoundation Framework
used in OS X and iOS. All run loop functions are implemented in terms of
CoreFoundation calls, data sources and timers are modeled as CFSockets
and CFRunLoopTimer respectively.

e run_loop_posiz.c is an implementation for POSIX compliant systems. The
data sources are modeled as file descriptors and managed in a linked list.
Then, theselect function is used to wait for the next file descriptor to
become ready or timer to expire.

8.2. Adapting BTstack for Multi-Threaded Environments. The basic ex-
ecution model of BTstack is a general while loop. Aside from interrupt-driven
UART and timers, everything happens in sequence. When using BTstack in a
multi-threaded environment, this assumption has to stay valid - at least with
respect to BTstack. For this, there are two common options:

e The Communication Logic is implemented on a dedicated BTstack thread,
and the Main Application communicates with the BTstack thread via
application-specific messages over an Interprocess Communication (IPC)
as depicted in Figure [d This option results in less code and quick adap-
tion.

e BTstack must be extended to run standalone, i.e, as a Daemon, on a dedi-
cated thread and the Main Application controls this daemon via BTstack

69

Communication
Logic

Main

“application custom = IPC

commands Application

BTstack

FIGURE 4. BTstack in multi-threaded environment - monolithic solution.

Main
IPC Application
PH < Bluetooth ” IPC
commands and Communication

events Logic

BTstack

FIGURE 5. BTstack in multi-threaded environment - solution with daemon.

extended HCI command over IPC - this is used for the non-embedded ver-
sion of BTstack e.g., on the iPhone and it is depicted in Figure [5| This
option requires more code but provides more flexibility.

70

APPENDIX A. RuN Loopr API

/%%

x @brief Set timer based on current time in milliseconds.
*/

void run_loop_set_timer (timer_source_t *a, uint32_t timeout_in_ms);

/%%

x @brief Set callback that will be executed when timer expires.

*/

void run_loop_set_timer_handler (timer_source_t xts, void (xprocess)(
timer_source_t *_ts));

/%%

x @brief Add/Remove timer source.

*/
void run_loop_add_timer (timer_source_t xtimer);
int run_loop_.remove_timer (timer_source_t xtimer);

/%%

x @brief Init must be called before any other run_loop call. Use
RUN_LOOP_EMBEDDED for embedded devices.

*/
void run_loop_init (RUNLOOPTYPE type) ;

/%%

x @brief Set data source callback.

*/

void run_loop_set_data_source_handler (data_source_t *ds, int (x
process) (data_source_t *x_ds));

/%

x @brief Add/Remove data source.

x/

void run_loop.-add_data_source (data_source_t xdataSource);
int run_loop_-remove_data_source(data_source_t xdataSource);

/%%

x @brief Fxecute configured run loop. This function does mnot return

*/

void run_loop_execute(void);

// hack to fixz HCI timer handling
#ifdef HAVE_TICK
/%%
x @brief Sets how many milliseconds has one tick.
*
/
uint32_t embedded_ticks_for_ms (uint32_t time_in_ms);
/%%
x @brief Queries the current time in ticks.

*/

71

uint32_t embedded_get_ticks (void);

VT

x @brief Queries the current time in ms
*/

uint32_t embedded_get_-time_ms(void) ;

/%%

x @brief Allows to update BTstack system ticks based on another
already existing clock.

*k

/

void embedded_set_ticks (uint32_t ticks);

#endif

#ifdef EMBEDDED

/xx

x @brief Sets an internal flag that is checked in the critical
section just before entering sleep mode. Has to be called by
the interrupt handler of a data source to signal the run loop

that a new data is awvailable.

*

/

void embedded_trigger (void) ;

/%%

x @brief Fxecute run_loop once. It can be wused to
’s timer and data source processing into a foreign run loop (it

integrate BTstack

is not recommended).

*/

void embedded_execute_once(void) ;

#endif

72

APPENDIX B. HCI API

le_connection_parameter_range_t
gap_le_get_connection_parameter_range () ;

void gap_le_set_connection_parameter_range (
le_connection_parameter_range_t range):;

/x LE Client Start x/

le_command status_t le_central_start_scan (void);

le_command status_t le_central_stop_scan (void);

le_command status_t le_central_connect (bd_addr_t addr,
bd_addr_type_t addr_type);

le_command_status_t le_central_connect_cancel (void);

le_command _status_t gap_disconnect (hci_con_handle_t handle);

void le_central_set_scan_parameters(uint8_t scan_type, uintl6_t
scan_interval , uintl6_t scan_window);

/x LE Client End %/

void hci_connectable_control (uint8_t enable);
void hci_close (void);

/%%

x @note New functions replacing: hci-can_send_-packet_-now [
—using-packet_buffer]

*/

int hci_can_send_command_packet_now (void) ;

/%%

x @brief Gets local address.

*/

void hci_local_bd_addr (bd_addr_t address_buffer);

/%%

x @brief Set up HCI. Needs to be called before any other function.

*/
void hci_init (hci_transport_t *transport, void xconfig, bt_control_t
xcontrol , remote_device_db_t constx remote_device_db);

/%%

x @brief Set class of device that will be set during Bluetooth init

*/

void hci_set_class_of_device (uint32_t class_of_device);

/%%

x @brief Set Public BD ADDR — passed on to Bluetooth chipset if
supported in bt_control_h

*/

void hci_set_bd_addr (bd_addr_t addr);

73

/%%

x @brief Registers a packet handler. Used if L2CAP is not used (
rarely).

*/

void hci_register_packet_handler (void (xhandler)(uint8_t packet_type
, uint8_t xpacket, uintl6_t size));

/%%

x @brief Requests the change of BTstack power mode.
*/

int hci_power_control (HCLPOWERMODE mode) ;

/xx

x @brief Allows to control if device is discoverable. OFF by
default .

*/

void hci_discoverable_control (uint8_t enable);

/%%

x @brief Creates and sends HCI command packets based on a template
and a list of parameters. Will return error if outgoing data
buffer is occupied.

*/

int hci_send_cmd (const hci_emd_t xcmd, ...);

/%%

x @brief Deletes link key for remote device with baseband address.
*/

void hci_drop_link_key_for_bd_addr (bd_addr_t addr);

/x Configure Secure Simple Pairing x/

/%%
x @brief Enable will enable SSP during init.
*/

void hci_ssp_set_enable (int enable);

/%%

x @brief If set, BTstack will respond to io capability request
using authentication requirement.

*/

void hci_ssp_set_io_capability (int ssp_io_capability);

void hci_ssp_set_authentication_requirement (int
authentication_requirement) ;

/%%

x @brief If set, BTstack will confirm a numeric comparison and
enter 000000’ if requested.
*/

void hci_ssp_set_auto_accept (int auto_accept);

/%%

x @brief Get addr type and address used in advertisement packets.

*/

void hci_le_advertisement_address (uint8_t % addr_type, bd_addr_t
addr) ;

74

75

ApPPENDIX C. L2CAP API

/%%
x @brief Set up L2CAP and register L2CAP with HCI layer.
*/

void 12cap_init (void);

/%%

x @brief Registers a packet handler that handles HCI and general
BTstack events.

v/

void 12cap_register_packet_handler (void (xhandler)(void * connection
, uint8_t packet_type, uintl6_t channel, uint8_t =xpacket,
uintl6_t size));

/%
x @brief Creates L2CAP channel to the PSM of a remote device with

baseband address. A new baseband connection will be initiated
i1f mecessary.
*/

void 12cap_create_channel_internal (void * connection ,
btstack_packet_handler_t packet_handler , bd_addr_t address,
uintl6_t psm, uintl6_t mtu);

/%%
x @brief Disconnects L2CAP channel with given identifier.
*/

void 12cap_disconnect_internal (uintl6_t local_cid , uint8_t reason);

/%%

x @brief Queries the mazimal transfer wunit (MIU) for L2CAP channel
with given identifier.

*/

uintl6_t 12cap_get_remote_mtu_for_local_cid (uintl6_t local_cid);

/%%

x @brief Sends L2CAP data packet to the channel with given
identifier.
*/

int 12cap_send_internal (uintl6_t local_cid , uint8_t xdata, uintl6_t
len) ;

/xx

x @brief Registers L2CAP service with given PSM and MTU, and
assigns a packet handler. On embedded systems, wuse NULL for
connection parameter.

*/

void 12cap_register_service_internal (void #connection ,
btstack_packet_handler_t packet_handler, uintl6_t psm, uintl6_t
mtu, gap_security_level_t security_level);

/%%

76

x @brief Unregisters L2CAP service with given PSM. On embedded
systems , use NULL for conmnection parameter.

*/

void 12cap_unregister_service_internal (void *connection, uintl6_t
psm) ;

/%

x @brief Accepts/Deny incoming L2CAP connection .

x/

void 12cap_accept_connection_internal (uintl6_t local_cid);

void 12cap_decline_connection_internal (uintl6_t local_cid , uint8_t
reason) ;

/%%

x @brief Request LE connection parameter update

*/

int 12cap_le_request_connection_parameter_update (uintl6_t handle,
uintl6_t interval_min , uintl6_t interval_ max , uintl6_t
slave_latency , uintl6_t timeout_multiplier);

/%%

x @brief Non—blocking UART write

v/

int 12cap_can_send_packet_now (uintl6_t local_cid);
int 12cap_reserve_packet_buffer (void);

void 12cap_release_packet_buffer (void);

/%%

x @brief Get outgoing buffer and prepare data.
*/

uint8_t *x12cap_get_outgoing_buffer (void);
int 12cap_send_prepared (uintl6_t local_cid , uintl6_t len);

int 12cap_send_prepared_connectionless (uintl6_t handle, uintl6_t cid
, uintl6_t len);

/%%

x @brief Bluetooth 4.0 — allows to register handler for Attribute
Protocol and Security Manager Protocol.

x/

void 12cap_register_fixed _channel (btstack_packet_handler_t
packet_handler , uintl6_t channel_id);

uint16_t 12cap_max_mtu(void);
uintl6_t 12cap_max_le_mtu(void);

int 12cap-send_connectionless(uintl6_t handle, uintl6_t cid,
uint8_t xdata, uintl6_t len);

7

AprPENDIX D. RFCOMM API

/%%
x @brief Set up RFCOMM.
*/

void rfcomm_init(void);

/%%

x @brief Set security level required for incoming connections, need
to be called before registering services.

*/

void rfcomm _set_required_security_level (gap_security_level_t
security_level);

/%%

x @brief Register packet handler.

v/

void rfcomm _register_packet_handler (void (xhandler)(void x
connection, uint8_t packet_type, uintl6_t channel, uint8_t x
packet , uintl6_t size));

/%%

x @brief Creates RFCOMM connection (channel) to a given server
channel on a remote device with baseband address. A new
baseband connection will be initiated if necessary. This
channel will automatically provide enough credits to the remote
side

v/

void rfcomm _create_channel_internal(void % connection, bd_addr_t

addr, uint8_t channel);

/%

x @brief Creates RFCOMM connection (channel) to a given server
channel on a remote device with baseband address. new baseband
connection will be initiated if necessary. This channel will
use explicit credit management. During channel establishment
an initial amount of credits is provided.

*/

void rfcomm _create_channel_with_initial_credits_internal (void x
connection , bd_addr_t addr, uint8_t server_channel, uint8_t
initial_credits);

VT
x @brief Disconnects RFCOMM channel with given identifier.
*/

void rfcomm_disconnect_internal (uintl6_t rfcomm_cid);

VT

x @brief Registers RFCOMM service for a server channel and a
maximum frame size , and assigns a packet handler. On embedded
systems, use NULL for connection parameter. This channel
provides automatically enough credits to the remote side.

*/
void rfcomm _register_service_internal (void % connection, uint8_t
channel, uintl6_t max_frame _size);

/%%

x @brief Registers RFCOMM service for a server channel and a
maximum frame Ssize , and assigns a packet handler. On embedded
systems , use NULL for connection parameter. This channel will
use explicit credit management. During channel establishment
an initial amount of credits is provided.

*/

void rfcomm _register_service_with_initial_credits_internal (void x
connection, uint8_t channel, uintl6_t max_frame_size, uint8_t
initial _credits);

/%%
x @brief Unregister RFCOMM service.

*/

void rfcomm _unregister_service_internal (uint8_t service_channel);

/%%

x @brief Accepts/Deny incoming RFCOMM connection .

*/
void rfcomm _accept_connection_internal (uintl6_t rfcomm _cid);
void rfcomm _decline_connection_internal (uintl6_t rfcomm _cid);

/%%

x @brief Grant more incoming credits to the remote side for the
given RFCOMM channel identifier.

*/

void rfcomm _grant_credits (uintl6_t rfcomm cid, uint8_t credits);

/%%

x @brief Checks if RFCOMM can send packet. Returns yes if packet
can be sent.

*/

int rfcomm_can_send_packet_now (uintl6_t rfcomm_cid);

/%

x @brief Sends RFCOMM data packet to the RFCOMM channel with given
identifier.

*/

int rfcomm_send_internal (uintl6_t rfcomm_cid, uint8_t xdata,
uintl6_t len);

/%%

x @brief Sends Local Line Status, see LINESTATUS-..

*/

int rfcomm_send_local_line_status (uintl6_t rfcomm_cid, uint8_t
line_status);

/%%
x @brief Send local modem status. see MODEM.STAUS...

*/

78

79

int rfcomm_send_modem_status(uintl6_t rfcomm_cid, uint8_t
modem _status) ;

/%%

x @brief Configure remote port

*/

int rfcomm_send_port_configuration (uintl6_t rfcomm_cid, rpn_baud_t
baud_rate, rpn_data_bits_t data_bits, rpn_stop_bits_t stop_bits,
rpn_parity_t parity, rpn_flow_control_t flow_control);

/%%
x @brief Query remote port
*/

int rfcomm_query_port_configuration (uintl6_t rfcomm _cid);

/%%

x @brief Allow to create RFCOMM packet in outgoing buffer.

+/

int rfcomm _reserve_packet_buffer (void) ;

void rfcomm _release_packet_buffer (void) ;

uint8_t * rfcomm_get_outgoing_buffer (void);

uintl6_t rfcomm_get_max_frame_size(uintl6_t rfcomm_cid);

int rfcomm _send_prepared (uintl6_t rfcomm_cid, uintl6_t len);

80

ArPENDIX E. SDP API

/%%
x @brief Set up SDP.
*/

void sdp_init(void);

void sdp_register_packet_handler (void (xhandler)(void * connection ,
uint8_t packet_type, uintl6_t channel, uint8_t xpacket, uintl6_t
size));

#ifdef EMBEDDED

/%%

x @brief Register service record internally — this version doesn’t
copy the record therefore it must be forever accessible.
Preconditions :

— AttributeIDs are in ascending order;
— ServiceRecordHandle is first attribute and valid.

x @return ServiceRecordHandle or 0 if registration failed.

*/

uint32_t sdp_register_service_internal (void xconnection,
service_record_item_t x record_item);

#endif

#ifndef EMBEDDED

/%%

x @brief Register service record internally — this wversion creates
a copy of the record precondition: AttributelDs are in
ascending order => ServiceRecordHandle is first attribute if
present.

x @return ServiceRecordHandle or 0 if registration failed

*/

uint32_t sdp_register_service_internal (void xconnection, uint8_t x
service_record) ;

#endif
VT

x @brief Unregister service record internally.

*/

void sdp_unregister_service_internal (void #connection, uint32_t
service_record_handle);

APPENDIX F. SDP CLIENT API

81

/%%

x @brief Queries the SDP service of the remote device given a

service search pattern and a list of attribute IDs. The remote

data is handled by the SDP parser. The SDP parser delivers

attribute wvalues and done event wvia a registered callback.
*/

void sdp_client_query (bd_addr_t remote, uint8_t x
des_serviceSearchPattern , uint8_t * des_attributeIDList);

#ifdef HAVE SDP EXTRA QUERIES

void sdp_client_service_attribute_search (bd_addr_t remote, uint32_t
search_serviceRecordHandle , uint8_t x des_attributeIDList);

void sdp_client_service_search (bd_addr_t remote, uint8_t x
des_serviceSearchPattern);

#endif

AprpPENDIX G. SDP RFCOMM QUERY API

82

/%%

x @brief SDP Query RFCOMM event to deliver channel number and
service name byte by byte.

*/

typedef struct sdp_query_rfcomm _service_event {
uint8_t type;
uint8_t channel_nr;
uint8_t x service_name;

} sdp_query_rfcomm service_event_t;

/%%

x* @brief Registers a callback to receive RFCOMM service and query
complete event.

x/

void sdp_query_rfcomm _register_callback (void (xsdp_app-callback) (
sdp_query_event_t x event, void x context), void * context);

void sdp_query._rfcomm_deregister_callback () ;

/%%

x @brief Searches SDP records on a remote device for RFCOMM
services with a given UUID.

*/

void sdp_query_rfcomm_channel_and_name_for_uuid (bd_addr_t remote,
uintl6_t uuid);

/%%

x @brief Searches SDP records on a remote device for RFCOMM
services with a given serwvice search pattern.

o/

void sdp_query_rfcomm_channel_and _name_for_search_pattern(bd_addr_t
remote, uint8_t * des_serviceSearchPattern);

AprPENDIX H. GATT CLIENT API

83

typedef struct gatt_-complete_event{
uint8_t type;
uintl16_t handle;
uintl6_t attribute_handle;
uint8_t status;

} gatt_complete_event _t;

typedef struct le_service{
uintl6_t start_group_handle;
uintl6_t end_group_handle;
uintl6_t uuidl6;
uint8_t uuid128[16];

} le_service_t;

typedef struct le_service_event{
uint8_t type;
uint16_t handle;
le_service_t service;

} le_service_event_t;

typedef struct le_characteristic{
uintl6_t start_handle;
uintl6_t value_handle;
uintl6_t end_handle;
uintl6_t properties;
uintl6_t uuidl6;
uint8_t uuidl128[16];

} le_characteristic_t;

typedef struct le_characteristic_event{
uint8_t type;
uintl16_t handle;
le_characteristic_t characteristic;
} le_characteristic_event_t;

typedef struct le_characteristic_.value_event {
uint8_t type;
uint16_t handle;
uintl6_t value_handle;
uintl6_t value_offset;
uintl6_t blob_length;
uint8_t x blob;
} le_characteristic_value_event_t;

typedef struct le_characteristic_descriptor{
uintl16_t handle;
uintl6_t uuidl6;
uint8_t uuidl128[16];

} le_characteristic_descriptor_t;

84

typedef struct le_characteristic_descriptor_event {
uint8_t type;
uint1l6_t handle;
le_characteristic_descriptor_t characteristic_descriptor;
uintl6_t value_length;
uintl6_t value_offset;
uint8_t x value;
} le_characteristic_descriptor_event_t;

/%%
x @brief Set up GATT client.
*/

void gatt_client_init ();

/%%

x @brief Register callback (packet handler) for GATT client.
Returns GATT client ID.

+/

uintl6_t gatt_client_register_packet_handler (gatt_client_callback_t
callback);

/%%
x @brief Unregister callback (packet handler) for GATT client.
*/

void gatt_client_unregister_packet_handler (uintl6_t gatt_client_id);

/%%

x @brief MIU is available after the first query has completed. If
status is equal to BLE_PERIPHERAL OK, it returns the real value
, otherwise the default value of 28.

*/

le_.command_status_t gatt_client_get_-mtu(uintl6_t handle, uintl6_t =x
mtu) ;

/%%

x @brief Returns if the GATT client is ready to receive a query. It
is used with daemon.

*/

int gatt_client_is_ready (uintl6_t handle);

/%%

x @brief Discovers all primary services. For each found service, an
le_service_event_t with type set to GATT-SERVICE.QUERY_RESULT
will be generated and passed to the registered callback. The
gatt_complete_event_t , with type set to GATT QUERY COMPLETE,
marks the end of discovery.

*/

le_command_status_t gatt_client_discover_primary_services (uintl6_t

gatt_client_id , uintl6_t con_handle);

/%%

85

x @brief Discovers a specific primary service given its UUID. This
service may exist multiple times. For each found service, an
le_service_event_t with type set to GATT.SERVICE.QUERY_RESULT
will be generated and passed to the registered callback. The
gatt_complete_event_t , with type set to GATT-QUERY.COMPLETE,
marks the end of discovery.

*/

le_command status_t gatt_client_discover_primary_services_by_uuid16 (
uintl6_t gatt_client_id , uintl6_t con_handle, uintl6_t uuidl6);

le_command _status_t gatt_client_discover_primary_services_by_uuidl128
(uintl6_t gatt_client_id , uintl6_t con_handle, const uint8_t =x
uuid) ;

/%%

x @brief Finds included services within the specified service. For
each found included service, an le_service_event_t with type
set to GATTINCLUDED_SERVICE QUERY RESULT will be generated and
passed to the registered callback. The gatt_complete_event_t
with type set to GATT-QUERY COMPLETE, marks the end of
discovery. Information about included service type (primary/
secondary) can be retrieved either by sending an ATT find
information request for the returned start group handle (
returning the handle and the UUID for primary or secondary

service) or by comparing the service to the list of all primary
services.
*/

le_command _status_t gatt_client_find_included_services_for_service (
uintl6_t gatt_client_id , uintl6_t con_handle, le_service_t x
service);

/%%
x @brief Discovers all characteristics within the specified service
For each found characteristic, an le_characteristics_event_t

with type set to GATT-CHARACTERISTIC.QUERY_RESULT will be
generated and passed to the registered callback. The
gatt_complete_event_t with type set to GATT-QUERY_.COMPLETE,
marks the end of discovery.

*/

le_command_status_t gatt_client_discover_characteristics_for_service
(uintl6_t gatt_client_id , uintl6_t con_handle, le_service_t =«
service) ;

/%%

x @brief The following four functions are used to discover all
characteristics within the specified service or handle range,
and return those that match the given UUID. For each found
characteristic , an le_characteristic_event_t with type set to
GATT-CHARACTERISTIC_.QUERY_RESULT will be generated and passed
to the registered callback. The gatt_complete_event_t with type
set to GATT-QUERY_-COMPLETE, marks the end of discovery.

*

/

86

le_.command_status_t
gatt_client_discover_characteristics_for_handle_range_by_uuid16 (
uintl6_t gatt_client_id , uintl6_t con_handle, uintl6_t
start _handle , uintl6_t end_handle, uintl6_t uuidl6);

le_.command_status_t
gatt_client_discover_characteristics_for_handle_range_by_uuid128
(uintl6_t gatt_client_id , uintl6_t con_handle, uintl6_t
start_handle, uintl6_t end_handle, uint8_t =« uuid);

le_command _status_t
gatt_client_discover_characteristics_for_service_by_uuidl6 (
uintl6_t gatt_client_id , uintl6_t con_handle, le_service_t x
service , uintl6_t uuidl6);

le_command _status_t
gatt_client_discover_characteristics_for_service_by_uuid128(
uintl6_t gatt_client_id , uintl6_t con_handle, le_service_t =x
service , uint8_t * uuidl28);

/%%

x @brief Discovers attribute handle and UUID of a characteristic
descriptor within the specified characteristic. For each found
descriptor , an le_characteristic_descriptor_event_t with type
set to GATT-CHARACTERISTIC_DESCRIPTOR_-QUERY_RESULT will be
generated and passed to the registered callback. The
gatt_complete_event_t with type set to GATT QUERY_.COMPLETE,
marks the end of discovery.

*/

le_command_status_t gatt_client_discover_characteristic_descriptors(
uintl6_t gatt_client_id , uintl6_t con_handle,
le_characteristic_.t =«characteristic);

/%%

x @brief Reads the characteristic value wusing the characteristic’s
value handle. If the characteristic value is found, an
le_characteristic_.value_event_t with type set to
GATT_-CHARACTERISTIC_.VALUE_.QUERY_RESULT will be generated and
passed to the registered callback. The gatt_complete_event_t
with type set to GATT-QUERY-COMPLETE, marks the end of read.

*

/

le_command_status_t gatt_client_read_value_of_characteristic (
uintl6_t gatt_client_id , uintl6_t con_handle,
le_characteristic_.t =«characteristic);

le_command _status_t
gatt_client_read_value_of_characteristic_using_value_handle(
uintl6_t gatt_client_id , uintl6_t con_handle, uintl6_t
characteristic_value_handle);

/%%

87

x @brief Reads the long characteristic value using the
characteristic’s value handle. The value will be returned in
several blobs. For each blob, an
le_characteristic_value_event_t with type set to
GATT-CHARACTERISTIC_.VALUE-QUERY_RESULT and updated value offset
will be generated and passed to the registered callback. The
gatt_complete_event_t with type set to GATT QUERY.COMPLETE,
mark the end of read.

*/

le_command status_t gatt_client_read_long_value_of_characteristic(
uintl6_t gatt_client_id , uintl6_t con_handle,
le_characteristic_.t =xcharacteristic);

le_command _status_t
gatt_client _read_long_value_of_characteristic_using_value_handle
(uint1l6_t gatt_client_id , uintl6_t con_handle, uintl6_t
characteristic.value_handle);

VT

x @brief Writes the characteristic value using the characteristic’s
value handle without an acknowledgment that the write was
successfully performed.

*/

le_command_status_t

gatt_client_write_value_of_characteristic_without_response (
uintl6_t gatt_client_id , uintl6_t con_handle, uintl6_t
characteristic_value_handle , uintl6_t length, uint8_t =« data);

/%%

x @brief Writes the authenticated characteristic value using the
characteristic’s wvalue handle without an acknowledgment that
the write was successfully performed.

*/

le_command_status_t gatt_client_signed_write_without_response (
uintl6_t gatt_client_id , uintl6_t con_handle, uintl6_t handle,
uintl6_t message_len, uint8_t x message);

/%%

x @brief Writes the characteristic value using the characteristic’s
value handle. The gatt_complete_event_t with type set to
GATT -QUERY_.COMPLETE, marks the end of write. The write is
successfully performed, if the event’s status field is set to
0.

*/

le_command_status_t gatt_client_write_value_of_characteristic (

uintl6_t gatt_client_id , uintl6_t con_handle, uintl6_t
characteristic_value_handle , uintl6_t length, uint8_t =« data);
le_command status_t gatt_client_write_long_value_of_characteristic(
uintl6_t gatt_client_id , uintl6_t con_handle, uintl6_t
characteristic_.value_handle , uintl6_t length, uint8_t x data);

/%%

88

x @brief Writes of the long characteristic value using the
characteristic s value handle. It uses server response to
validate that the write was correctly received. The
gatt_complete_event_t with type set to GATT QUERY COMPLETE
marks the end of write. The write is successfully performed, if
the event’s status field is set to 0.

*

/

le_command _status_t
gatt_client_reliable_write_long_value_of_characteristic (uintl6_t
gatt_client_id , uintl6_t con_handle, uintl6_t
characteristic.value_handle , uintl6_t length, uint8_t =« data);

/xx

x @brief Reads the characteristic descriptor wusing its handle. If
the characteristic descriptor is found, an
le_characteristic_descriptor_event_t with type set to
GATT-CHARACTERISTIC_DESCRIPTOR_-QUERY_RESULT will be generated
and passed to the registered callback. The
gatt_complete_event_t with type set to GATT QUERY_.COMPLETE,
marks the end of read.

*/

le_command_status_t gatt_client_read_characteristic_descriptor (
uintl6_t gatt_client_id , uintl6_t con_handle,
le_characteristic_descriptor_t * descriptor);

/%%

x @brief Reads the long characteristic descriptor wusing its handle.
It will be returned in several blobs. For each blob, an
le_characteristic_descriptor_event_t with type set to
GATT CHARACTERISTIC_DESCRIPTOR_QUERY_RESULT will be generated
and passed to the registered callback. The
gatt_complete_event_t with type set to GATT-QUERY_-COMPLETE,
marks the end of read.

«/

le_command status_t gatt_client_read_long_characteristic_descriptor (

uintl6_t gatt_client_id , uintl6_t con_handle,
le_characteristic_descriptor_t = descriptor);

/%

x @brief Writes the characteristic descriptor wusing its handle. The
gatt_complete_event_t with type set to GATT -QUERY .COMPLETE,
marks the end of write. The write is successfully performed, if
the event’s status field is set to 0.

«/

le_command_status_t gatt_client_write_characteristic_descriptor (

uintl6_t gatt_client_id , uintl6_t con_handle,
le_characteristic_descriptor_t = descriptor, uintl6_t length ,
uint8_t * data);

le_command_status_t gatt_client_write_long_characteristic_descriptor

(uintl6_t gatt_client_id , uintl6_t con_handle
le_characteristic_descriptor_t = descriptor, uintl6_t length ,
uint8_t x data);

/%%

x @brief Writes the

*/

client characteristic configuration of the
It is wused to subscribe for

specified characteristic.
of the characteristic value. For

notifications or indications
notifications or indications specify:

GATT CLIENT-CHARACTERISTICS_-CONFIGURATION_NOTIFICATION resp .
GATT_CLIENT_-CHARACTERISTICS_-CONFIGURATION_INDICATION as

configuration value.

le_command_status_t

gatt_client_write_client_characteristic_configuration (uintl6_t
gatt_client_id , uintl6_t con_handle, le_characteristic_t x
characteristic , uintl6_t configuration);

89

90

APPENDIX I. PAN API

/%%
x @brief Creates SDP record for PANU BNEP service in provided empty

buffer.
@note Make sure the buffer is big enough.

@param service is an empty buffer to store service record
@param security_desc

@param name if NULL, the default service name will be assigned
@param description if NULL, the default service description will
be assigned

* X X X X ¥

*/
void pan_create_panu_service(uint8_t xservice , const char xname,
const char xdescription, security_description_t security_desc);

/%%

x @brief Creates SDP record for GN BNEP service in provided empty
buffer.

@note Make sure the buffer is big enough.

@param service is an empty buffer to store service record

@param security_desc

@param name if NULL, the default service name will be assigned

@param description if NULL, the default service description will

be assigned

x @param IPv4Subnet is optional subnet definition , e.g.
710.0.0.0/87

x @param IPv6Subnet is optional subnet definition given in the

standard IETF format with the absolute attribute IDs

* X X X X *

*/
void pan_create_gn_service(uint8_t xservice, const char xname, const
char xdescription , security_description_t security_desc,

const char xIPv4Subnet, const char *xIPv6Subnet);

/%%
x @brief Creates SDP record for NAP BNEP service in provided empty

buffer.

x @note Make sure the buffer is big enough.

*

x @param service is an empty buffer to store service record

x @param name if NULL, the default service name will be assigned

x @param security_desc

x @param description if NULL, the default service description will
be assigned

x @param mnet_access_type type of available network access

x @param mazx_nel_access_rate based on net_access_type measured in
byte/s

x @param IPv4Subnet is optional subnet definition , e.g.
710.0.0.0/87

x @param IPv6Subnet is optional subnet definition given 1in the
standard IETF format with the absolute attribute IDs

*
/
void pan_create_nap_service(uint8_t xservice, const char xname,
const char xdescription, security_description_t security_desc,
net_access_type_t net_access_type, uint32_t max_net_access_rate
const char *xIPv4Subnet, const char xIPv6Subnet);

)

91

92

APPENDIX J. BNEP API

/%%
x @brief Set up BNEP.

*/

void bnep_init (void);

/%%
x @brief Check if a data packet can be send out.
*/

int bnep_can_send_packet_now (uintl6_t bnep_cid);

/%%
x* @brief Send a data packet.
*/

int bnep_send (uintl6_t bnep_cid, uint8_t xpacket, uintl6_t len);

/%%

x @brief Set the network protocol filter.

*/

int bnep_set_net_type_filter (uintl6_t bnep_cid, bnep_net_filter_t =x
filter , uintl6_t len);

/%%

x @brief Set the multicast address filter.

*/

int bnep_set_multicast_filter (uint16_t bnep_cid, bnep_multi_filter_t
xfilter , uintl6_t len);

/%%

x @brief Set security level required for incoming connections, need
to be called before registering services.

*/

void bnep_set_required_security_level (gap_security_level_t
security_level);

VT

x @brief Register packet handler.

v/

void bnep_register_packet_handler (void (xhandler)(void * connection ,
uint8_t packet_type, uintl6_t channel, uint8_t =xpacket,
uintl6_t size));

/%%

x @brief Creates BNEP connection (channel) to a given server on a
remote device with baseband address. A mew baseband conmnection
will be initiated if mecessary.

*/

int bnep_connect (void * connection, bd_addr_t addr, uintl6_t
12cap_psm, uintl6_t uuid_dest);

/%%

93

x @brief Disconnects BNEP channel with given identifier.
*/
void bnep_disconnect (bd_addr_t addr);

/%%

x @brief Registers BNEP service, set a mazimum frame size and
assigns a packet handler. On embedded systems, use NULL for
connection parameter.

*/

void bnep_register_service (void * connection, uintl6_t service_uuid
uintl6_t max_frame_size);

/xx
x @brief Unregister BNEP service.

*/

void bnep_unregister_service (uintl6_t service_uuid);

94

ArPENDIX K. GAP API

/%%
x @brief Enable/disable bonding. Default is enabled.

x @param enabled
*/

void gap_set_bondable_mode (int enabled);

/%%

x @brief Start dedicated bonding with device. Disconnect after
bonding .

@param device

@param request MITM protection

@return error, if mar num acl connections active

@result GAP-DEDICATED_-BONDING-COMPLETE

EE S

*/
int gap_dedicated_bonding (bd_addr_t device, int
mitm_protection_required) ;

gap_security_level_t gap_security_level_for_link_key_type (
link_key_type_-t link_key_type);
gap_security_level_t gap_security_level(hci_con_handle_t con_handle)

k)

void gap_request_security_level (hci_con_handle_t con_handle ,
gap_security_level_t level);

int gap_mitm_protection_required_for_security_level(
gap_security_level_t level);

/%%

x @brief Sets local name.

x @note has to be done before stack starts up

x @param name 1is not copied, make sure memory is accessible during
stack startup

i/

void gap_set_local_name (const char * local_name);

95

AprPENDIX L. SM API

/%%
x @brief Security Manager event
o/
typedef struct sm_event {
uint8_t type; ///< See <btstack/hci_cmds.h>
SM_. ..
uint8_t addr_type;
bd_addr_t address;
uint32_t passkey; ///< only used for
SM_PASSKEY_DISPLAY_NUMBER
uintl6_t le_device_db_index; ///< only used for
SM_IDENTITY_RESOLVING- . .
uint8_t authorization_result; ///< only use for
SM_AUTHORIZATION_RESULT
} sm_event_t;

/%%

x @brief Initializes the Security Manager, connects to L2CAP
*/

void sm_init () ;

/%%

x @brief Set secret ER key for key generation as described in Core
Vj.0, Vol 8, Part G, 5.2.2
x @param er

v/

void sm_set_er (sm_key_t er);

/%%

x @brief Set secret IR key for key generation as described in Core
V4i.0, Vol 8, Part G, 5.2.2

*/

void sm_set_ir (sm_key_t ir);

VT

*

x @brief Registers OOB Data Callback. The callback should set the

oob_data and return 1 if OOB data is availble
x @param get_oob_data_callback

*/
void sm_register_oob_data_callback(int (xget_oob_data_callback)(
uint8_t addres_type, bd_addr_t addr, uint8_t x oob_data));

/%%
*
x @brief Registers packet handler. Called by att_server.c

*/

void sm _register_packet_handler (btstack_packet_handler_t handler);

/%%

96

x @brief Limit the STK generation methods. Bonding is stopped if
the resulting one isn’t in the list

x @param OR combination of SM.STK GENERATION_-METHOD.

*/

void sm_set_accepted_stk_generation_methods (uint8_t
accepted_stk_generation_methods);

/%%

x @brief Set the accepted encryption key size range. Bonding is
stopped if the result isn’t within the range

x @param min_size (default 7)

% @param maz_size (default 16)

*/

void sm_set_encryption_key_size_range (uint8_t min_size, uint8_t
max_size) ;

/%%

x @brief Sets the requested authentication requirements, bonding
yes/no, MITM yes/no

x @param OR combination of SM_AUTHREQ- flags

*/

void sm_set_authentication_requirements (uint8_t auth_req);

/%%

x @brief Sets the available IO Capabilities
x @param IO_CAPABILITY_

*/

void sm_set_io_capabilities(io_capability_t io_capability);

/%%
x @brief Let Peripheral request an encrypted conmnection right after
connecting
x @note Not used normally. Bonding is triggered by access to
protected attributes in ATT Server
*
/

void sm_set_request_security (int enable);

/%%

x @brief Trigger Security Request

x @note Not used normally. Bonding is triggered by access to
protected attributes in ATT Server

*/

void sm_send_security_request (uintl6_t handle);

VAT
x @brief Decline bonding triggered by event before
x @param addr_type and address

*/

void sm_bonding_decline (uint8_t addr_type, bd_addr_t address);

/%%
x @brief Confirm Just Works bonding
x @param addr_type and address

*/

97

void sm_just_works_confirm (uint8_t addr_type, bd_addr_t address);

/%%

x @brief Reports passkey input by wuser

x @param addr_type and address

* @param passkey in [0..999999]

v/

void sm_passkey_input(uint8_t addr_type, bd_addr_t address, uint32_t
passkey);

/%%

*

x @brief Get encryption key size.

x @param addr_type and address

x @return 0 if not encrypted, 7—16 otherwise

*/

int sm_encryption_key_size (uint8_t addr_type, bd_addr_t address);

/%%

x @brief Get authentication property.

x @param addr_type and address

x @return 1 if bonded with OOB/Passkey (AND MITM protection)
*/

int sm_authenticated (uint8_t addr_type, bd_addr_t address);

/%%

x @brief Queries authorization state.

x @param addr_type and address

x @return authorization_state for the current session

*/

authorization_state_t sm_authorization_state (uint8_t addr_type,
bd_addr_t address);

/%
x @brief Used by att_server.c to request user authorization.
x @param addr_type and address

*/

void sm_request_authorization (uint8_t addr_type, bd_addr_t address);

/%%

x @brief Report user authorization decline.
x @param addr_type and address

*/

void sm_authorization_decline (uint8_t addr_type, bd_addr_t address);

/%%
x @brief Report user authorization grant.
x @param addr_type and address

*/

void sm_authorization_grant(uint8_t addr_-type, bd_addr_t address);

/%%

x @brief Support for signed writes, used by att_server.

x @note Message and result are in little endian to allows passing
in ATT PDU without flipping them first.

v/

int sm_cmac_ready();

void sm_cmac_start(sm_key_t k, uintl6_t message_len, uint8_t =x
message , uint32_t sign_counter , void (xdone_handler)(uint8_t
hash [8])) ;

/%%

x @brief Identify device in LE Device DB.

* @param handle

x @return index from le_device_db or —1 if not found/identified
*/

int sm_le_device_index (uintl6_t handle);

98

99

APPENDIX M. EVENTS AND ERRORS

L2CAP events and data packets are delivered to the packet handler specified
by [2cap_register_service resp. l2cap_create_channel_internal. Data packets have
the L2CAP_DATA _PACKET packet type. L2CAP provides the following events:

e [2CAP_EVENT_CHANNEL_OPENED - sent if channel establishment is
done. Status not equal zero indicates an error. Possible errors: out of
memory; connection terminated by local host, when the connection to
remote device fails.

e [2CAP_EVENT_CHANNEL_CLOSED - emitted when channel is closed.
No status information is provided.

e L2CAP_EVENT_INCOMING_CONNECTION - received when the con-
nection is requested by remote. Connection accept and decline are per-
formed with [2cap_accept_connection_internal and [2cap_decline_connecti-
on_internal respectively.

e [2CAP_EVENT_CREDITS - emitted when there is a chance to send a
new L2CAP packet. BTstack does not buffer packets. Instead, it requires
the application to retry sending if BTstack cannot deliver a packet to the
Bluetooth module. In this case, the 12cap_send_internal will return an
error.

e L2CAP_EVENT_SERVICE_REGISTERED - Status not equal zero indi-
cates an error. Possible errors: service is already registered; MAX _NO-
_L2CAP_SERVICES (defined in config.h) already registered.

100

All RFCOMM events and data packets are currently delivered to the packet
handler specified by rfcomm_register_packet_handler. Data packets have the
RFCOMM_DATA PACKET packet type. Here is the list of events provided
by RECOMM:

¢ RFCOMM_EVENT_INCOMING_CONNECTION - received when the con-
nection is requested by remote. Connection accept and decline are per-
formed with rfcomm_accept_connection_internal and rfcomm_decline_con-
nection_internal respectively.

¢ RFCOMM _EVENT_CHANNEL_CLOSED - emitted when channel is closed.
No status information is provided.

¢ RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE - sent if channel es-
tablishment is done. Status not equal zero indicates an error. Possible
errors: an L2CAP error, out of memory.

¢ RFCOMM _EVENT_CREDITS - The application can resume sending when
this even is received. See Section [£.3.1] for more on RFCOMM credit-
based flow-control.

¢ RFCOMM _EVENT_SERVICE _REGISTERED - Status not equal zero in-
dicates an error. Possible errors: service is already registered; MAX-
NO_RFCOMM_SERVICES (defined in config.h) already registered.

TABLE 4. L2CAP Events

Event / Event Parameters (size in bits) Event Code

L2CAP_EVENT _CHANNEL_OPENED 0x70
event(8), len(8), status(8), address(48), handle(16)
psm(16), local_cid(16), remote_cid(16), local-mtu(16),
remote-mtu(16)

L2CAP_EVENT_CHANNEL_CLOSED 0x71
event (8), len(8), channel(16)

L2CAP_EVENT_INCOMING_CONNECTION 0x72
event(8), len(8), address(48), handle(16), psm (16),
local_cid(16), remote_cid (16)

L2CAP_EVENT_CREDITS 0x74
event(8), len(8), local_cid(16), credits(8)

L2CAP_EVENT _SERVICE_REGISTERED 0x75
event(8), len(8), status(8), psm(16)

TABLE 5. RFCOMM Events

101

Event / Event Parameters (size in bits) Event Code
RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE 0x80
event(8), len(8), status(8), address(48), handle(16),
server_channel(8), rfcomm_cid(16), maz_frame_size(16)
RFCOMM_EVENT_CHANNEL_CLOSED 0x81
event(8), len(8), rfcomm_cid(16)
RFCOMM_EVENT_INCOMING_CONNECTION 0x82
event(8), len(8), address(48), channel (8),
rfcomm_cid(16)
RFCOMM_EVENT _CREDITS 0x84
event(8), len(8), rfcomm_cid(16), credits(8)
RFCOMM_EVENT _SERVICE_REGISTERED 0x85
event(8), len(8), status(8), rfcomm server channel_id(8)
TABLE 6. Errors
Error Error Code

BTSTACK_-MEMORY_ALLOC_FAILED
BTSTACK_ACL_.BUFFERS_FULL
L2CAP_COMMAND_REJECT_REASON_COMMAND_NOT_UNDERSTOOD
L2CAP_COMMAND_REJECT_REASON_SIGNALING_MTU_EXCEEDED
L2CAP_.COMMAND_REJECT_REASON_INVALID_CID_IN_REQUEST
L2CAP_CONNECTION_RESPONSE_RESULT_SUCCESSFUL
L2CAP_CONNECTION_RESPONSE_RESULT_PENDING
L2CAP_CONNECTION_RESPONSE_RESULT_REFUSED_PSM
L2CAP_CONNECTION_RESPONSE_RESULT_REFUSED_SECURITY
L2CAP_CONNECTION_RESPONSE_RESULT_REFUSED_RESOURCES
L2CAP_CONFIG_RESPONSE_RESULT_SUCCESSFUL
L2CAP_CONFIG_RESPONSE_RESULT_UNACCEPTABLE_PARAMS
L2CAP_CONFIG_RESPONSE_RESULT_REJECTED
L2CAP_CONFIG_RESPONSE_RESULT_UNKNOWN_OPTIONS
L2CAP_SERVICE_ALREADY_REGISTERED
RFCOMM_-MULTIPLEXER_STOPPED
RFCOMM_CHANNEL_ALREADY_REGISTERED
RFCOMM_NO_OUTGOING_CREDITS
SDP_HANDLE_ALREADY_REGISTERED

0x56
0x57
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x65
0x66
0x67
0x68
0x69
0x6a
0x70
0x71
0x72
0x80

102

APPENDIX N. REVISION HISTORY

103

Rev

Date

Comments

1.x

1.3

1.2

1.1

April 27, 2015
November 6, 2014
November 1, 2013

August 30, 2013

Added more platforms. Replaced Recipes with
Protocols and Profiles. Added more examples.

Introducing GATT client and server. Work in
progress.

Explained Secure Simple Pairing in ”Pairing of
devices”.

Introduced SDP client. Updated Quick Recipe
on "Query remote SDP service”.

	1. Quick Start
	1.1. General Tools
	1.2. Getting BTstack from GitHub
	1.3. Compiling the examples and loading firmware
	1.4. Run the Example
	1.5. Platform specifics
	1.5.1. libusb
	1.5.2. Texas Instruments MSP430-based boards
	1.5.3. Texas Instruments CC256x-based chipsets
	1.5.4. MSP-EXP430F5438 + CC256x Platform
	1.5.5. STM32F103RB Nucleo + CC256x Platform
	1.5.6. PIC32 Bluetooth Audio Development Kit

	2. BTstack Architecture
	2.1. Single threaded design
	2.2. No blocking anywhere
	2.3. No artificially limited buffers/pools
	2.4. Statically bounded memory

	3. How to use BTstack
	3.1. Memory configuration
	3.2. Run loop
	3.3. BTstack initialization
	3.4. Services
	3.5. Where to get data - packet handlers

	4. Protocols
	4.1. HCI - Host Controller Interface
	4.1.1. Defining custom HCI command templates
	4.1.2. Sending HCI command based on a template

	4.2. L2CAP - Logical Link Control and Adaptation Protocol
	4.2.1. Access an L2CAP service on a remote device
	4.2.2. Provide an L2CAP service
	4.2.3. L2CAP LE - L2CAP Low Energy Protocol

	4.3. RFCOMM - Radio Frequency Communication Protocol
	4.3.1. RFCOMM flow control.
	4.3.2. Access an RFCOMM service on a remote device
	4.3.3. Provide an RFCOMM service
	4.3.4. Living with a single output buffer
	4.3.5. Slowing down RFCOMM data reception

	4.4. SDP - Service Discovery Protocol
	4.4.1. Create and announce SDP records
	4.4.2. Query remote SDP service

	4.5. BNEP - Bluetooth Network Encapsulation Protocol
	4.5.1. Receive BNEP events
	4.5.2. Access a BNEP service on a remote device
	4.5.3. Provide BNEP service

	4.6. ATT - Attribute Protocol
	4.7. SMP - Security Manager Protocol
	4.7.1. Initialization
	4.7.2. Configuration
	4.7.3. Identity Resolving
	4.7.4. Bonding process

	5. Profiles
	5.1. GAP - Generic Access Profile: Classic
	5.1.1. Become discoverable
	5.1.2. Discover remote devices
	5.1.3. Pairing of Devices
	5.1.4. Dedicated Bonding

	5.2. SPP - Serial Port Profile
	5.2.1. Accessing an SPP Server on a remote device
	5.2.2. Providing an SPP Server

	5.3. PAN - Personal Area Networking Profile
	5.3.1. Accessing a remote PANU service
	5.3.2. Providing a PANU service

	5.4. GAP LE - Generic Access Profile for Low Energy
	5.4.1. Private addresses.
	5.4.2. Advertising and Discovery

	5.5. GATT - Generic Attribute Profile
	5.5.1. GATT Client
	5.5.2. GATT Server

	6. Examples
	6.1. led_counter: Hello World: blinking LED without Bluetooth
	6.1.1. Periodic Timer Setup
	6.1.2. Main Application Setup

	6.2. gap_inquiry: GAP Inquiry Example
	6.2.1. Bluetooth Logic
	6.2.2. Main Application Setup

	6.3. sdp_general_query: Dump remote SDP Records
	6.3.1. SDP Client Setup
	6.3.2. SDP Client Query
	6.3.3. Handling SDP Client Query Results

	6.4. sdp_bnep_query: Dump remote BNEP PAN protocol UUID and L2CAP PSM
	6.4.1. SDP Client Setup
	6.4.2. SDP Client Query
	6.4.3. Handling SDP Client Query Result

	6.5. spp_counter: SPP Server - Heartbeat Counter over RFCOMM
	6.5.1. SPP Service Setup
	6.5.2. Periodic Timer Setup
	6.5.3. Bluetooth Logic

	6.6. spp_flowcontrol: SPP Server - Flow Control
	6.6.1. SPP Service Setup
	6.6.2. Periodic Timer Setup

	6.7. panu_demo: PANU Demo
	6.7.1. Main application configuration
	6.7.2. TUN / TAP interface routines
	6.7.3. SDP parser callback
	6.7.4. Packet Handler

	6.8. gatt_browser: GATT Client - Discovering primary services and their characteristics
	6.8.1. GATT client setup
	6.8.2. HCI packet handler
	6.8.3. GATT Client event handler

	6.9. le_counter: LE Peripheral - Heartbeat Counter over GATT
	6.9.1. Main Application Setup
	6.9.2. Managing LE Advertisements
	6.9.3. Packet Handler
	6.9.4. Heartbeat Handler
	6.9.5. ATT Read
	6.9.6. ATT Write

	6.10. spp_and_le_counter: Dual mode example
	6.10.1. Advertisements
	6.10.2. Packet Handler
	6.10.3. Heartbeat Handler
	6.10.4. Main Application Setup

	7. Porting to Other Platforms
	7.1. Time Abstraction Layer
	7.1.1. Tick Hardware Abstraction
	7.1.2. Time MS Hardware Abstraction

	7.2. Bluetooth Hardware Control API
	7.3. HCI Transport Implementation
	7.3.1. HCI UART Transport Layer (H4)
	7.3.2. H4 with eHCILL support

	7.4. Persistent Storage API

	8. Integrating with Existing Systems
	8.1. Adapting BTstack for Single-Threaded Environments
	8.2. Adapting BTstack for Multi-Threaded Environments

	Appendix A. Run Loop API
	Appendix B. HCI API
	Appendix C. L2CAP API
	Appendix D. RFCOMM API
	Appendix E. SDP API
	Appendix F. SDP Client API
	Appendix G. SDP RFCOMM Query API
	Appendix H. GATT Client API
	Appendix I. PAN API
	Appendix J. BNEP API
	Appendix K. GAP API
	Appendix L. SM API
	Appendix M. Events and Errors
	Appendix N. Revision History

