/* * Copyright (C) 2015 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ /* * hci_h4_transport_wiced.c * * HCI Transport API implementation for basic H4 protocol for use with btstack_run_loop_wiced.c */ #define __BTSTACK_FILE__ "hci_transport_h4_wiced.c" #include "btstack_config.h" #include "btstack_run_loop_wiced.h" #include "btstack_debug.h" #include "hci.h" #include "hci_transport.h" #include "platform_bluetooth.h" #include "wiced.h" #include #include // priority higher than WIFI to make sure RTS is set #define WICED_BT_UART_THREAD_PRIORITY (WICED_NETWORK_WORKER_PRIORITY - 2) #define WICED_BT_UART_THREAD_STACK_SIZE 300 // assert pre-buffer for packet type is available #if !defined(HCI_OUTGOING_PRE_BUFFER_SIZE) || (HCI_OUTGOING_PRE_BUFFER_SIZE == 0) #error HCI_OUTGOING_PRE_BUFFER_SIZE not defined. Please update hci.h #endif // Default of 512 bytes should be fine. Only needed with BTSTACK_FLOW_CONTROL_UART #ifndef RX_RING_BUFFER_SIZE #define RX_RING_BUFFER_SIZE 512 #endif // Use BTSTACK_FLOW_CONTROL_MANUAL is used when Bluetooth RTS/CTS are not connected to UART RTS/CTS pins // E.g. on RedBear Duo - WICED_BT_UART_MANUAL_CTS_RTS is defined static enum { BTSTACK_FLOW_CONTROL_OFF, BTSTACK_FLOW_CONTROL_UART, BTSTACK_FLOW_CONTROL_MANUAL, } btstack_flow_control_mode; static wiced_result_t btstack_uart_block_wiced_rx_worker_receive_block(void * arg); static wiced_worker_thread_t tx_worker_thread; static const uint8_t * tx_worker_data_buffer; static uint16_t tx_worker_data_size; static wiced_worker_thread_t rx_worker_thread; static uint8_t * rx_worker_read_buffer; static uint16_t rx_worker_read_size; static wiced_ring_buffer_t rx_ring_buffer; static uint8_t rx_data[RX_RING_BUFFER_SIZE]; // uart config static const btstack_uart_config_t * uart_config; // callbacks static void (*block_sent)(void); static void (*block_received)(void); // executed on main run loop static wiced_result_t btstack_uart_block_wiced_main_notify_block_send(void *arg){ if (block_sent){ block_sent(); } return WICED_SUCCESS; } // executed on main run loop static wiced_result_t btstack_uart_block_wiced_main_notify_block_read(void *arg){ if (block_received){ block_received(); } return WICED_SUCCESS; } // executed on tx worker thread static wiced_result_t btstack_uart_block_wiced_tx_worker_send_block(void * arg){ // wait for CTS to become low in manual flow control mode if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_MANUAL && wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]){ while (platform_gpio_input_get(wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]) == WICED_TRUE){ wiced_rtos_delay_milliseconds(10); } } // blocking send platform_uart_transmit_bytes(wiced_bt_uart_driver, tx_worker_data_buffer, tx_worker_data_size); // let transport know btstack_run_loop_wiced_execute_code_on_main_thread(&btstack_uart_block_wiced_main_notify_block_send, NULL); return WICED_SUCCESS; } // executed on rx worker thread static wiced_result_t btstack_uart_block_wiced_rx_worker_receive_block(void * arg){ if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_MANUAL && wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]){ platform_gpio_output_low(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]); } #ifdef WICED_UART_READ_DOES_NOT_RETURN_BYTES_READ // older API passes in number of bytes to read (checked in 3.3.1 and 3.4.0) platform_uart_receive_bytes(wiced_bt_uart_driver, rx_worker_read_buffer, rx_worker_read_size, WICED_NEVER_TIMEOUT); #else // newer API uses pointer to return number of read bytes uint32_t bytes = rx_worker_read_size; platform_uart_receive_bytes(wiced_bt_uart_driver, rx_worker_read_buffer, &bytes, WICED_NEVER_TIMEOUT); // assumption: bytes = bytes_to_read as timeout is never #endif if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_MANUAL && wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]){ platform_gpio_output_high(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]); } // let transport know btstack_run_loop_wiced_execute_code_on_main_thread(&btstack_uart_block_wiced_main_notify_block_read, NULL); return WICED_SUCCESS; } static int btstack_uart_block_wiced_init(const btstack_uart_config_t * config){ uart_config = config; // determine flow control mode based on hardware config and uart config if (uart_config->flowcontrol){ #ifdef WICED_BT_UART_MANUAL_CTS_RTS btstack_flow_control_mode = BTSTACK_FLOW_CONTROL_MANUAL; #else btstack_flow_control_mode = BTSTACK_FLOW_CONTROL_UART; #endif } else { btstack_flow_control_mode = BTSTACK_FLOW_CONTROL_OFF; } return 0; } static int btstack_uart_block_wiced_open(void){ // UART config wiced_uart_config_t wiced_uart_config = { .baud_rate = uart_config->baudrate, .data_width = DATA_WIDTH_8BIT, .parity = NO_PARITY, .stop_bits = STOP_BITS_1, }; if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_UART){ wiced_uart_config.flow_control = FLOW_CONTROL_CTS_RTS; } else { wiced_uart_config.flow_control = FLOW_CONTROL_DISABLED; } wiced_ring_buffer_t * ring_buffer = NULL; // configure HOST and DEVICE WAKE PINs platform_gpio_init(wiced_bt_control_pins[WICED_BT_PIN_HOST_WAKE], INPUT_HIGH_IMPEDANCE); platform_gpio_init(wiced_bt_control_pins[WICED_BT_PIN_DEVICE_WAKE], OUTPUT_PUSH_PULL); platform_gpio_output_low(wiced_bt_control_pins[WICED_BT_PIN_DEVICE_WAKE]); /* Configure Reg Enable pin to output. Set to HIGH */ if (wiced_bt_control_pins[ WICED_BT_PIN_POWER ]){ platform_gpio_init( wiced_bt_control_pins[ WICED_BT_PIN_POWER ], OUTPUT_OPEN_DRAIN_PULL_UP ); platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] ); } wiced_rtos_delay_milliseconds( 100 ); // Configure RTS if (wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]){ switch (btstack_flow_control_mode){ case BTSTACK_FLOW_CONTROL_OFF: // configure RTS pin as output and set to low - always on platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS], OUTPUT_PUSH_PULL); platform_gpio_output_low(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]); break; case BTSTACK_FLOW_CONTROL_UART: // configuration done by platform_uart_init break; case BTSTACK_FLOW_CONTROL_MANUAL: // configure RTS pin as output and set to high - controlled by btstack_uart_block_wiced_rx_worker_receive_block platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS], OUTPUT_PUSH_PULL); platform_gpio_output_high(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]); break; } } // Configure CTS if (wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]){ switch (btstack_flow_control_mode){ case BTSTACK_FLOW_CONTROL_OFF: // don't care break; case BTSTACK_FLOW_CONTROL_UART: // configuration done by platform_uart_init break; case BTSTACK_FLOW_CONTROL_MANUAL: // configure CTS to input, pull-up platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS], INPUT_PULL_UP); break; } } // use ring buffer to allow to receive RX_RING_BUFFER_SIZE/2 addition bytes - not needed with hardware UART if (btstack_flow_control_mode != BTSTACK_FLOW_CONTROL_UART){ ring_buffer_init((wiced_ring_buffer_t *) &rx_ring_buffer, (uint8_t*) rx_data, sizeof( rx_data ) ); ring_buffer = (wiced_ring_buffer_t *) &rx_ring_buffer; } platform_uart_init( wiced_bt_uart_driver, wiced_bt_uart_peripheral, &wiced_uart_config, ring_buffer ); // Reset Bluetooth via RESET line. Fallback to toggling POWER otherwise if ( wiced_bt_control_pins[ WICED_BT_PIN_RESET ]){ platform_gpio_init( wiced_bt_control_pins[ WICED_BT_PIN_RESET ], OUTPUT_PUSH_PULL ); platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] ); platform_gpio_output_low( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] ); wiced_rtos_delay_milliseconds( 100 ); platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] ); } else if ( wiced_bt_control_pins[ WICED_BT_PIN_POWER ]){ platform_gpio_output_low( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] ); wiced_rtos_delay_milliseconds( 100 ); platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] ); } // wait for Bluetooth to start up wiced_rtos_delay_milliseconds( 500 ); // create worker threads for rx/tx. only single request is posted to their queues wiced_rtos_create_worker_thread(&tx_worker_thread, WICED_BT_UART_THREAD_PRIORITY, WICED_BT_UART_THREAD_STACK_SIZE, 1); wiced_rtos_create_worker_thread(&rx_worker_thread, WICED_BT_UART_THREAD_PRIORITY, WICED_BT_UART_THREAD_STACK_SIZE, 1); // tx is ready tx_worker_data_size = 0; return 0; } static int btstack_uart_block_wiced_close(void){ // not implemented return 0; } static void btstack_uart_block_wiced_set_block_received( void (*block_handler)(void)){ block_received = block_handler; } static void btstack_uart_block_wiced_set_block_sent( void (*block_handler)(void)){ block_sent = block_handler; } static int btstack_uart_block_wiced_set_baudrate(uint32_t baudrate){ #if defined(_STM32F205RGT6_) || defined(STM32F40_41xxx) || defined(STM32F411xE) || (STM32F412xG) // directly use STM peripheral functions to change baud rate dynamically // set TX to high log_info("set baud %u", (int) baudrate); const platform_gpio_t* gpio = wiced_bt_uart_pins[WICED_BT_PIN_UART_TX]; platform_gpio_output_high(gpio); // reconfigure TX pin as GPIO GPIO_InitTypeDef gpio_init_structure; gpio_init_structure.GPIO_Speed = GPIO_Speed_50MHz; gpio_init_structure.GPIO_Mode = GPIO_Mode_OUT; gpio_init_structure.GPIO_OType = GPIO_OType_PP; gpio_init_structure.GPIO_PuPd = GPIO_PuPd_NOPULL; gpio_init_structure.GPIO_Pin = (uint32_t) ( 1 << gpio->pin_number ); GPIO_Init( gpio->port, &gpio_init_structure ); // disable USART USART_Cmd( wiced_bt_uart_peripheral->port, DISABLE ); // setup init structure USART_InitTypeDef uart_init_structure; uart_init_structure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; uart_init_structure.USART_BaudRate = baudrate; uart_init_structure.USART_WordLength = USART_WordLength_8b; uart_init_structure.USART_StopBits = USART_StopBits_1; uart_init_structure.USART_Parity = USART_Parity_No; if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_UART){ uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_RTS_CTS; } else { uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; } USART_Init(wiced_bt_uart_peripheral->port, &uart_init_structure); // enable USART again USART_Cmd( wiced_bt_uart_peripheral->port, ENABLE ); // set TX pin as USART again gpio_init_structure.GPIO_Mode = GPIO_Mode_AF; GPIO_Init( gpio->port, &gpio_init_structure ); #else log_error("btstack_uart_block_wiced_set_baudrate not implemented for this WICED Platform"); #endif return 0; } static int btstack_uart_block_wiced_set_parity(int parity){ log_error("btstack_uart_block_wiced_set_parity not implemented"); return 0; } static void btstack_uart_block_wiced_send_block(const uint8_t *buffer, uint16_t length){ // store in request tx_worker_data_buffer = buffer; tx_worker_data_size = length; wiced_rtos_send_asynchronous_event(&tx_worker_thread, &btstack_uart_block_wiced_tx_worker_send_block, NULL); } static void btstack_uart_block_wiced_receive_block(uint8_t *buffer, uint16_t len){ rx_worker_read_buffer = buffer; rx_worker_read_size = len; wiced_rtos_send_asynchronous_event(&rx_worker_thread, &btstack_uart_block_wiced_rx_worker_receive_block, NULL); } // static void btstack_uart_block_wiced_set_sleep(uint8_t sleep){ // } // static void btstack_uart_block_wiced_set_csr_irq_handler( void (*csr_irq_handler)(void)){ // } static const btstack_uart_block_t btstack_uart_block_wiced = { /* int (*init)(hci_transport_config_uart_t * config); */ &btstack_uart_block_wiced_init, /* int (*open)(void); */ &btstack_uart_block_wiced_open, /* int (*close)(void); */ &btstack_uart_block_wiced_close, /* void (*set_block_received)(void (*handler)(void)); */ &btstack_uart_block_wiced_set_block_received, /* void (*set_block_sent)(void (*handler)(void)); */ &btstack_uart_block_wiced_set_block_sent, /* int (*set_baudrate)(uint32_t baudrate); */ &btstack_uart_block_wiced_set_baudrate, /* int (*set_parity)(int parity); */ &btstack_uart_block_wiced_set_parity, /* int (*set_flowcontrol)(int flowcontrol); */ NULL, /* void (*receive_block)(uint8_t *buffer, uint16_t len); */ &btstack_uart_block_wiced_receive_block, /* void (*send_block)(const uint8_t *buffer, uint16_t length); */ &btstack_uart_block_wiced_send_block, /* int (*get_supported_sleep_modes); */ NULL, /* void (*set_sleep)(btstack_uart_sleep_mode_t sleep_mode); */ NULL, /* void (*set_wakeup_handler)(void (*handler)(void)); */ NULL, }; const btstack_uart_block_t * btstack_uart_block_wiced_instance(void){ return &btstack_uart_block_wiced; }