#include #include #include #include #include #include "att.h" #include "hci.h" #include "hci_dump.h" #include "l2cap.h" #include "rijndael.h" static btstack_packet_handler_t le_data_handler; static void (*event_packet_handler) (void * connection, uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size) = NULL; static uint8_t packet_buffer[256]; static uint16_t packet_buffer_len = 0; static uint8_t aes128_cyphertext[16]; uint8_t * mock_packet_buffer(void){ return packet_buffer; } void mock_clear_packet_buffer(void){ packet_buffer_len = 0; } static void dump_packet(int packet_type, uint8_t * buffer, uint16_t size){ #if 0 static int packet_counter = 1; char var_name[80]; sprintf(var_name, "test_%s_packet_%02u", packet_type == HCI_COMMAND_DATA_PACKET ? "command" : "acl", packet_counter); printf("uint8_t %s[] = { ", var_name); for (int i = 0; i < size ; i++){ if ((i % 16) == 0) printf("\n "); printf ("0x%02x, ", buffer[i]); } printf("};\n"); packet_counter++; #endif } void aes128_calc_cyphertext(uint8_t key[16], uint8_t plaintext[16], uint8_t cyphertext[16]){ uint32_t rk[RKLENGTH(KEYBITS)]; int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS); rijndaelEncrypt(rk, nrounds, plaintext, cyphertext); } void mock_simulate_hci_event(uint8_t * packet, uint16_t size){ hci_dump_packet(HCI_EVENT_PACKET, 1, packet, size); if (event_packet_handler){ event_packet_handler(NULL, HCI_EVENT_PACKET, NULL, packet, size); } if (le_data_handler){ le_data_handler(HCI_EVENT_PACKET, NULL, packet, size); } } void aes128_report_result(void){ uint8_t le_enc_result[22]; uint8_t enc1_data[] = { 0x0e, 0x14, 0x01, 0x17, 0x20, 0x00 }; memcpy (le_enc_result, enc1_data, 6); swap128(aes128_cyphertext, &le_enc_result[6]); mock_simulate_hci_event(&le_enc_result[0], sizeof(le_enc_result)); } void mock_simulate_sm_data_packet(uint8_t * packet, uint16_t len){ uint16_t handle = 0x40; uint16_t cid = 0x06; uint8_t acl_buffer[len + 8]; // 0 - Connection handle : PB=10 : BC=00 bt_store_16(acl_buffer, 0, handle | (0 << 12) | (0 << 14)); // 2 - ACL length bt_store_16(acl_buffer, 2, len + 4); // 4 - L2CAP packet length bt_store_16(acl_buffer, 4, len + 0); // 6 - L2CAP channel DEST bt_store_16(acl_buffer, 6, cid); memcpy(&acl_buffer[8], packet, len); hci_dump_packet(HCI_ACL_DATA_PACKET, 1, &acl_buffer[0], len + 8); le_data_handler(SM_DATA_PACKET, handle, packet, len); } void mock_simulate_command_complete(const hci_cmd_t *cmd){ uint8_t packet[] = {HCI_EVENT_COMMAND_COMPLETE, 4, 1, cmd->opcode & 0xff, cmd->opcode >> 8, 0}; mock_simulate_hci_event((uint8_t *)&packet, sizeof(packet)); } void mock_simulate_hci_state_working(void){ uint8_t packet[] = {BTSTACK_EVENT_STATE, 0, HCI_STATE_WORKING}; mock_simulate_hci_event((uint8_t *)&packet, sizeof(packet)); } void mock_simulate_connected(void){ uint8_t packet[] = { 0x3e, 0x13, 0x01, 0x00, 0x40, 0x00, 0x01, 0x01, 0x18, 0x12, 0x5e, 0x68, 0xc9, 0x73, 0x18, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05}; mock_simulate_hci_event((uint8_t *)&packet, sizeof(packet)); } void att_init_connection(att_connection_t * att_connection){ att_connection->mtu = 23; att_connection->encryption_key_size = 0; att_connection->authenticated = 0; att_connection->authorized = 0; } int hci_can_send_packet_now_using_packet_buffer(uint8_t packet_type){ return 1; } // get addr type and address used in advertisement packets void hci_le_advertisement_address(uint8_t * addr_type, bd_addr_t addr){ *addr_type = 0; uint8_t dummy[] = { 0x00, 0x1b, 0xdc, 0x07, 0x32, 0xef }; memcpy(addr, dummy, 6); } int l2cap_can_send_connectionless_packet_now(void){ return packet_buffer_len == 0; } int hci_send_cmd(const hci_cmd_t *cmd, ...){ va_list argptr; va_start(argptr, cmd); uint16_t len = hci_create_cmd_internal(packet_buffer, cmd, argptr); va_end(argptr); hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet_buffer, len); dump_packet(HCI_COMMAND_DATA_PACKET, packet_buffer, len); packet_buffer_len = len; // track le encrypt and le rand if (cmd->opcode == hci_le_encrypt.opcode){ uint8_t * key_flipped = &packet_buffer[3]; uint8_t key[16]; swap128(key_flipped, key); // printf("le_encrypt key "); // hexdump(key, 16); uint8_t * plaintext_flipped = &packet_buffer[19]; uint8_t plaintext[16]; swap128(plaintext_flipped, plaintext); // printf("le_encrypt txt "); // hexdump(plaintext, 16); aes128_calc_cyphertext(key, plaintext, aes128_cyphertext); // printf("le_encrypt res "); // hexdump(aes128_cyphertext, 16); } return 0; } void l2cap_register_fixed_channel(btstack_packet_handler_t packet_handler, uint16_t channel_id) { le_data_handler = packet_handler; } void l2cap_register_packet_handler(void (*handler)(void * connection, uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size)){ printf("l2cap_register_packet_handler\n"); event_packet_handler = handler; } int l2cap_reserve_packet_buffer(void){ printf("l2cap_reserve_packet_buffer\n"); return 1; } int l2cap_send_prepared_connectionless(uint16_t handle, uint16_t cid, uint16_t len){ printf("l2cap_send_prepared_connectionless\n"); return 0; } int l2cap_send_connectionless(uint16_t handle, uint16_t cid, uint8_t * buffer, uint16_t len){ // printf("l2cap_send_connectionless\n"); int pb = hci_non_flushable_packet_boundary_flag_supported() ? 0x00 : 0x02; // 0 - Connection handle : PB=pb : BC=00 bt_store_16(packet_buffer, 0, handle | (pb << 12) | (0 << 14)); // 2 - ACL length bt_store_16(packet_buffer, 2, len + 4); // 4 - L2CAP packet length bt_store_16(packet_buffer, 4, len + 0); // 6 - L2CAP channel DEST bt_store_16(packet_buffer, 6, cid); memcpy(&packet_buffer[8], buffer, len); hci_dump_packet(HCI_ACL_DATA_PACKET, 0, &packet_buffer[0], len + 8); dump_packet(HCI_ACL_DATA_PACKET, packet_buffer, len + 8); packet_buffer_len = len + 8; return 0; } void hci_disconnect_security_block(hci_con_handle_t con_handle){ printf("hci_disconnect_security_block \n"); } int hci_non_flushable_packet_boundary_flag_supported(void){ return 1; } void l2cap_run(void){ }