/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ /* * btstack_util.c * * General utility functions * * Created by Matthias Ringwald on 7/23/09. */ #include "btstack_config.h" #include "btstack_debug.h" #include "btstack_util.h" #include <stdio.h> #include <string.h> /** * @brief Compare two Bluetooth addresses * @param a * @param b * @return 0 if equal */ int bd_addr_cmp(bd_addr_t a, bd_addr_t b){ return memcmp(a,b, BD_ADDR_LEN); } /** * @brief Copy Bluetooth address * @param dest * @param src */ void bd_addr_copy(bd_addr_t dest, bd_addr_t src){ memcpy(dest,src,BD_ADDR_LEN); } uint16_t little_endian_read_16(const uint8_t * buffer, int pos){ return ((uint16_t) buffer[pos]) | (((uint16_t)buffer[(pos)+1]) << 8); } uint32_t little_endian_read_24(const uint8_t * buffer, int pos){ return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16); } uint32_t little_endian_read_32(const uint8_t * buffer, int pos){ return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16) | (((uint32_t) buffer[(pos)+3]) << 24); } void little_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){ buffer[pos++] = value; buffer[pos++] = value >> 8; } void little_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){ buffer[pos++] = value; buffer[pos++] = value >> 8; buffer[pos++] = value >> 16; buffer[pos++] = value >> 24; } uint32_t big_endian_read_16( const uint8_t * buffer, int pos) { return ((uint16_t) buffer[(pos)+1]) | (((uint16_t)buffer[ pos ]) << 8); } uint32_t big_endian_read_32( const uint8_t * buffer, int pos) { return ((uint32_t) buffer[(pos)+3]) | (((uint32_t)buffer[(pos)+2]) << 8) | (((uint32_t)buffer[(pos)+1]) << 16) | (((uint32_t) buffer[pos]) << 24); } void big_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){ buffer[pos++] = value >> 8; buffer[pos++] = value; } void big_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){ buffer[pos++] = value >> 24; buffer[pos++] = value >> 16; buffer[pos++] = value >> 8; buffer[pos++] = value; } // general swap/endianess utils void reverse_bytes(const uint8_t *src, uint8_t *dst, int len){ int i; for (i = 0; i < len; i++) dst[len - 1 - i] = src[i]; } void reverse_24(const uint8_t * src, uint8_t * dst){ reverse_bytes(src, dst, 3); } void reverse_48(const uint8_t * src, uint8_t * dst){ reverse_bytes(src, dst, 6); } void reverse_56(const uint8_t * src, uint8_t * dst){ reverse_bytes(src, dst, 7); } void reverse_64(const uint8_t * src, uint8_t * dst){ reverse_bytes(src, dst, 8); } void reverse_128(const uint8_t * src, uint8_t * dst){ reverse_bytes(src, dst, 16); } void reverse_256(const uint8_t * src, uint8_t * dst){ reverse_bytes(src, dst, 32); } void reverse_bd_addr(const bd_addr_t src, bd_addr_t dest){ reverse_bytes(src, dest, 6); } uint32_t btstack_min(uint32_t a, uint32_t b){ return a < b ? a : b; } uint32_t btstack_max(uint32_t a, uint32_t b){ return a > b ? a : b; } char char_for_nibble(int nibble){ if (nibble < 10) return '0' + nibble; nibble -= 10; if (nibble < 6) return 'A' + nibble; return '?'; } static inline char char_for_high_nibble(int value){ return char_for_nibble((value >> 4) & 0x0f); } static inline char char_for_low_nibble(int value){ return char_for_nibble(value & 0x0f); } int nibble_for_char(char c){ if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'f') return c - 'a' + 10; if (c >= 'A' && c <= 'F') return c - 'A' + 10; return -1; } void printf_hexdump(const void *data, int size){ if (size <= 0) return; int i; for (i=0; i<size;i++){ printf("%02X ", ((uint8_t *)data)[i]); } printf("\n"); } void log_info_hexdump(const void *data, int size){ #ifdef ENABLE_LOG_INFO #define ITEMS_PER_LINE 16 // template '0x12, ' #define BYTES_PER_BYTE 6 char buffer[BYTES_PER_BYTE*ITEMS_PER_LINE+1]; int i, j; j = 0; for (i=0; i<size;i++){ // help static analyzer proof that j stays within bounds if (j > BYTES_PER_BYTE * (ITEMS_PER_LINE-1)){ j = 0; } uint8_t byte = ((uint8_t *)data)[i]; buffer[j++] = '0'; buffer[j++] = 'x'; buffer[j++] = char_for_high_nibble(byte); buffer[j++] = char_for_low_nibble(byte); buffer[j++] = ','; buffer[j++] = ' '; if (j >= BYTES_PER_BYTE * ITEMS_PER_LINE ){ buffer[j] = 0; log_info("%s", buffer); j = 0; } } if (j != 0){ buffer[j] = 0; log_info("%s", buffer); } #endif } void log_info_key(const char * name, sm_key_t key){ #ifdef ENABLE_LOG_INFO char buffer[16*2+1]; int i; int j = 0; for (i=0; i<16;i++){ uint8_t byte = key[i]; buffer[j++] = char_for_high_nibble(byte); buffer[j++] = char_for_low_nibble(byte); } buffer[j] = 0; log_info("%-6s %s", name, buffer); #endif } // UUIDs are stored in big endian, similar to bd_addr_t // Bluetooth Base UUID: 00000000-0000-1000-8000- 00805F9B34FB const uint8_t bluetooth_base_uuid[] = { 0x00, 0x00, 0x00, 0x00, /* - */ 0x00, 0x00, /* - */ 0x10, 0x00, /* - */ 0x80, 0x00, /* - */ 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB }; void uuid_add_bluetooth_prefix(uint8_t *uuid, uint32_t shortUUID){ memcpy(uuid, bluetooth_base_uuid, 16); big_endian_store_32(uuid, 0, shortUUID); } int uuid_has_bluetooth_prefix(uint8_t * uuid128){ return memcmp(&uuid128[4], &bluetooth_base_uuid[4], 12) == 0; } static char uuid128_to_str_buffer[32+4+1]; char * uuid128_to_str(uint8_t * uuid){ int i; int j = 0; // after 4, 6, 8, and 10 bytes = XYXYXYXY-XYXY-XYXY-XYXY-XYXYXYXYXYXY, there's a dash const int dash_locations = (1<<3) | (1<<5) | (1<<7) | (1<<9); for (i=0;i<16;i++){ uint8_t byte = uuid[i]; uuid128_to_str_buffer[j++] = char_for_high_nibble(byte); uuid128_to_str_buffer[j++] = char_for_low_nibble(byte); if (dash_locations & (1<<i)){ uuid128_to_str_buffer[j++] = '-'; } } return uuid128_to_str_buffer; } static char bd_addr_to_str_buffer[6*3]; // 12:45:78:01:34:67\0 char * bd_addr_to_str(bd_addr_t addr){ // orig code // sprintf(bd_addr_to_str_buffer, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); // sprintf-free code char * p = bd_addr_to_str_buffer; int i; for (i = 0; i < 6 ; i++) { uint8_t byte = addr[i]; *p++ = char_for_high_nibble(byte); *p++ = char_for_low_nibble(byte); *p++ = ':'; } *--p = 0; return (char *) bd_addr_to_str_buffer; } static int scan_hex_byte(const char * byte_string){ int upper_nibble = nibble_for_char(*byte_string++); if (upper_nibble < 0) return -1; int lower_nibble = nibble_for_char(*byte_string); if (lower_nibble < 0) return -1; return (upper_nibble << 4) | lower_nibble; } int sscanf_bd_addr(const char * addr_string, bd_addr_t addr){ uint8_t buffer[BD_ADDR_LEN]; int result = 0; int i; for (i = 0; i < BD_ADDR_LEN; i++) { int single_byte = scan_hex_byte(addr_string); if (single_byte < 0) break; addr_string += 2; buffer[i] = single_byte; // don't check seperator after last byte if (i == BD_ADDR_LEN - 1) { result = 1; break; } char separator = *addr_string++; if (separator != ':' && separator != '-' && separator != ' ') break; } if (result){ bd_addr_copy(addr, buffer); } return result; }