# # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import scipy.fftpack as fftpack import build.lc3 as lc3 import tables as T, appendix_c as C ### ------------------------------------------------------------------------ ### class Sns: def __init__(self, dt, sr): self.dt = dt self.sr = sr (self.ind_lf, self.ind_hf, self.shape, self.gain) = \ (None, None, None, None) (self.idx_a, self.ls_a, self.idx_b, self.ls_b) = \ (None, None, None, None) def get_data(self): data = { 'lfcb' : self.ind_lf, 'hfcb' : self.ind_hf, 'shape' : self.shape, 'gain' : self.gain, 'idx_a' : self.idx_a, 'ls_a' : self.ls_a } if self.idx_b is not None: data.update({ 'idx_b' : self.idx_b, 'ls_b' : self.ls_b }) return data def get_nbits(self): return 38 def spectral_shaping(self, scf, inv, x): ## 3.3.7.4 Scale factors interpolation scf_i = np.empty(4*len(scf)) scf_i[0 ] = scf[0] scf_i[1 ] = scf[0] scf_i[2:62:4] = scf[:15] + 1/8 * (scf[1:] - scf[:15]) scf_i[3:63:4] = scf[:15] + 3/8 * (scf[1:] - scf[:15]) scf_i[4:64:4] = scf[:15] + 5/8 * (scf[1:] - scf[:15]) scf_i[5:64:4] = scf[:15] + 7/8 * (scf[1:] - scf[:15]) scf_i[62 ] = scf[15 ] + 1/8 * (scf[15] - scf[14 ]) scf_i[63 ] = scf[15 ] + 3/8 * (scf[15] - scf[14 ]) n2 = 64 - min(len(x), 64) for i in range(n2): scf_i[i] = 0.5 * (scf_i[2*i] + scf_i[2*i+1]) scf_i = np.append(scf_i[:n2], scf_i[2*n2:]) g_sns = np.power(2, [ -scf_i, scf_i ][inv]) ## 3.3.7.4 Spectral shaping y = np.empty(len(x)) I = T.I[self.dt][self.sr] for b in range(len(g_sns)): y[I[b]:I[b+1]] = x[I[b]:I[b+1]] * g_sns[b] return y class SnsAnalysis(Sns): def __init__(self, dt, sr): super().__init__(dt, sr) def compute_scale_factors(self, e, att): dt = self.dt ## 3.3.7.2.1 Padding n2 = 64 - len(e) e = np.append(np.empty(n2), e) for i in range(n2): e[2*i+0] = e[2*i+1] = e[n2+i] ## 3.3.7.2.2 Smoothing e_s = np.zeros(len(e)) e_s[0 ] = 0.75 * e[0 ] + 0.25 * e[1 ] e_s[1:63] = 0.25 * e[0:62] + 0.5 * e[1:63] + 0.25 * e[2:64] e_s[ 63] = 0.25 * e[ 62] + 0.75 * e[ 63] ## 3.3.7.2.3 Pre-emphasis g_tilt = [ 14, 18, 22, 26, 30 ][self.sr] e_p = e_s * (10 ** ((np.arange(64) * g_tilt) / 630)) ## 3.3.7.2.4 Noise floor noise_floor = max(np.average(e_p) * (10 ** (-40/10)), 2 ** -32) e_p = np.fmax(e_p, noise_floor * np.ones(len(e))) ## 3.3.7.2.5 Logarithm e_l = np.log2(10 ** -31 + e_p) / 2 ## 3.3.7.2.6 Band energy grouping w = [ 1/12, 2/12, 3/12, 3/12, 2/12, 1/12 ] e_4 = np.zeros(len(e_l) // 4) e_4[0 ] = w[0] * e_l[0] + np.sum(w[1:] * e_l[:5]) e_4[1:15] = [ np.sum(w * e_l[4*i-1:4*i+5]) for i in range(1, 15) ] e_4[ 15] = np.sum(w[:5] * e_l[59:64]) + w[5] * e_l[63] ## 3.3.7.2.7 Mean removal and scaling, attack handling scf = 0.85 * (e_4 - np.average(e_4)) scf_a = np.zeros(len(scf)) scf_a[0 ] = np.average(scf[:3]) scf_a[1 ] = np.average(scf[:4]) scf_a[2:14] = [ np.average(scf[i:i+5]) for i in range(12) ] scf_a[ 14] = np.average(scf[12:]) scf_a[ 15] = np.average(scf[13:]) scf_a = (0.5 if self.dt == T.DT_10M else 0.3) * \ (scf_a - np.average(scf_a)) return scf_a if att else scf def enum_mpvq(self, v): sign = None index = 0 x = 0 for (n, vn) in enumerate(v[::-1]): if sign is not None and vn != 0: index = 2*index + sign if vn != 0: sign = 1 if vn < 0 else 0 index += T.SNS_MPVQ_OFFSETS[n][x] x += abs(vn) return (index, bool(sign)) def quantize(self, scf): ## 3.3.7.3.2 Stage 1 dmse_lf = [ np.sum((scf[:8] - T.SNS_LFCB[i]) ** 2) for i in range(32) ] dmse_hf = [ np.sum((scf[8:] - T.SNS_HFCB[i]) ** 2) for i in range(32) ] self.ind_lf = np.argmin(dmse_lf) self.ind_hf = np.argmin(dmse_hf) st1 = np.append(T.SNS_LFCB[self.ind_lf], T.SNS_HFCB[self.ind_hf]) r1 = scf - st1 ## 3.3.7.3.3 Stage 2 t2_rot = fftpack.dct(r1, norm = 'ortho') x = np.abs(t2_rot) ## 3.3.7.3.3 Stage 2 Shape search, step 1 K = 6 proj_fac = (K - 1) / sum(np.abs(t2_rot)) y3 = np.floor(x * proj_fac).astype(int) ## 3.3.7.3.3 Stage 2 Shape search, step 2 corr_xy = np.sum(y3 * x) energy_y = np.sum(y3 * y3) k0 = sum(y3) for k in range(k0, K): q_pvq = ((corr_xy + x) ** 2) / (energy_y + 2*y3 + 1) n_best = np.argmax(q_pvq) corr_xy += x[n_best] energy_y += 2*y3[n_best] + 1 y3[n_best] += 1 ## 3.3.7.3.3 Stage 2 Shape search, step 3 K = 8 y2 = y3.copy() for k in range(sum(y2), K): q_pvq = ((corr_xy + x) ** 2) / (energy_y + 2*y2 + 1) n_best = np.argmax(q_pvq) corr_xy += x[n_best] energy_y += 2*y2[n_best] + 1 y2[n_best] += 1 ## 3.3.7.3.3 Stage 2 Shape search, step 4 y1 = np.append(y2[:10], [0] * 6) ## 3.3.7.3.3 Stage 2 Shape search, step 5 corr_xy -= sum(y2[10:] * x[10:]) energy_y -= sum(y2[10:] * y2[10:]) ## 3.3.7.3.3 Stage 2 Shape search, step 6 K = 10 for k in range(sum(y1), K): q_pvq = ((corr_xy + x[:10]) ** 2) / (energy_y + 2*y1[:10] + 1) n_best = np.argmax(q_pvq) corr_xy += x[n_best] energy_y += 2*y1[n_best] + 1 y1[n_best] += 1 ## 3.3.7.3.3 Stage 2 Shape search, step 7 y0 = np.append(y1[:10], [ 0 ] * 6) q_pvq = ((corr_xy + x[10:]) ** 2) / (energy_y + 2*y0[10:] + 1) n_best = 10 + np.argmax(q_pvq) y0[n_best] += 1 ## 3.3.7.3.3 Stage 2 Shape search, step 8 y0 *= np.sign(t2_rot).astype(int) y1 *= np.sign(t2_rot).astype(int) y2 *= np.sign(t2_rot).astype(int) y3 *= np.sign(t2_rot).astype(int) ## 3.3.7.3.3 Stage 2 Shape search, step 9 xq = [ y / np.sqrt(sum(y ** 2)) for y in (y0, y1, y2, y3) ] ## 3.3.7.3.3 Shape and gain combination determination G = [ T.SNS_VQ_REG_ADJ_GAINS, T.SNS_VQ_REG_LF_ADJ_GAINS, T.SNS_VQ_NEAR_ADJ_GAINS, T.SNS_VQ_FAR_ADJ_GAINS ] dMSE = [ [ sum((t2_rot - G[j][i] * xq[j]) ** 2) for i in range(len(G[j])) ] for j in range(4) ] self.shape = np.argmin([ np.min(dMSE[j]) for j in range(4) ]) self.gain = np.argmin(dMSE[self.shape]) gain = G[self.shape][self.gain] ## 3.3.7.3.3 Enumeration of the selected PVQ pulse configurations if self.shape == 0: (self.idx_a, self.ls_a) = self.enum_mpvq(y0[:10]) (self.idx_b, self.ls_b) = self.enum_mpvq(y0[10:]) elif self.shape == 1: (self.idx_a, self.ls_a) = self.enum_mpvq(y1[:10]) (self.idx_b, self.ls_b) = (None, None) elif self.shape == 2: (self.idx_a, self.ls_a) = self.enum_mpvq(y2) (self.idx_b, self.ls_b) = (None, None) elif self.shape == 3: (self.idx_a, self.ls_a) = self.enum_mpvq(y3) (self.idx_b, self.ls_b) = (None, None) ## 3.3.7.3.4 Synthesis of the Quantized scale factor scf_q = st1 + gain * fftpack.idct(xq[self.shape], norm = 'ortho') return scf_q def run(self, eb, att, x): scf = self.compute_scale_factors(eb, att) scf_q = self.quantize(scf) y = self.spectral_shaping(scf_q, False, x) return y def store(self, b): shape = self.shape gain_msb_bits = np.array([ 1, 1, 2, 2 ])[shape] gain_lsb_bits = np.array([ 0, 1, 0, 1 ])[shape] b.write_uint(self.ind_lf, 5) b.write_uint(self.ind_hf, 5) b.write_bit(shape >> 1) b.write_uint(self.gain >> gain_lsb_bits, gain_msb_bits) b.write_bit(self.ls_a) if self.shape == 0: sz_shape_a = 2390004 index_joint = self.idx_a + \ (2 * self.idx_b + self.ls_b + 2) * sz_shape_a elif self.shape == 1: sz_shape_a = 2390004 index_joint = self.idx_a + (self.gain & 1) * sz_shape_a elif self.shape == 2: index_joint = self.idx_a elif self.shape == 3: sz_shape_a = 15158272 index_joint = sz_shape_a + (self.gain & 1) + 2 * self.idx_a b.write_uint(index_joint, 14 - gain_msb_bits) b.write_uint(index_joint >> (14 - gain_msb_bits), 12) class SnsSynthesis(Sns): def __init__(self, dt, sr): super().__init__(dt, sr) def deenum_mpvq(self, index, ls, npulses, n): y = np.zeros(n, dtype=np.int) pos = 0 for i in range(len(y)-1, -1, -1): if index > 0: yi = 0 while index < T.SNS_MPVQ_OFFSETS[i][npulses - yi]: yi += 1 index -= T.SNS_MPVQ_OFFSETS[i][npulses - yi] else: yi = npulses y[pos] = [ yi, -yi ][int(ls)] pos += 1 npulses -= yi if npulses <= 0: break if yi > 0: ls = index & 1 index >>= 1 return y def unquantize(self): ## 3.7.4.2.1-2 SNS VQ Decoding y = np.empty(16, dtype=np.int) if self.shape == 0: y[:10] = self.deenum_mpvq(self.idx_a, self.ls_a, 10, 10) y[10:] = self.deenum_mpvq(self.idx_b, self.ls_b, 1, 6) elif self.shape == 1: y[:10] = self.deenum_mpvq(self.idx_a, self.ls_a, 10, 10) y[10:] = np.zeros(6, dtype=np.int) elif self.shape == 2: y = self.deenum_mpvq(self.idx_a, self.ls_a, 8, 16) elif self.shape == 3: y = self.deenum_mpvq(self.idx_a, self.ls_a, 6, 16) ## 3.7.4.2.3 Unit energy normalization y = y / np.sqrt(sum(y ** 2)) ## 3.7.4.2.4 Reconstruction of the quantized scale factors G = [ T.SNS_VQ_REG_ADJ_GAINS, T.SNS_VQ_REG_LF_ADJ_GAINS, T.SNS_VQ_NEAR_ADJ_GAINS, T.SNS_VQ_FAR_ADJ_GAINS ] gain = G[self.shape][self.gain] scf = np.append(T.SNS_LFCB[self.ind_lf], T.SNS_HFCB[self.ind_hf]) \ + gain * fftpack.idct(y, norm = 'ortho') return scf def load(self, b): self.ind_lf = b.read_uint(5) self.ind_hf = b.read_uint(5) shape_msb = b.read_bit() gain_msb_bits = 1 + shape_msb self.gain = b.read_uint(gain_msb_bits) self.ls_a = b.read_bit() index_joint = b.read_uint(14 - gain_msb_bits) index_joint |= b.read_uint(12) << (14 - gain_msb_bits) if shape_msb == 0: sz_shape_a = 2390004 if index_joint >= sz_shape_a * 14: raise ValueError('Invalide SNS joint index') self.idx_a = index_joint % sz_shape_a index_joint = index_joint // sz_shape_a if index_joint >= 2: self.shape = 0 self.idx_b = (index_joint - 2) // 2 self.ls_b = (index_joint - 2) % 2 else: self.shape = 1 self.gain = (self.gain << 1) + (index_joint & 1) else: sz_shape_a = 15158272 if index_joint >= sz_shape_a + 1549824: raise ValueError('Invalide SNS joint index') if index_joint < sz_shape_a: self.shape = 2 self.idx_a = index_joint else: self.shape = 3 index_joint -= sz_shape_a self.gain = (self.gain << 1) + (index_joint % 2) self.idx_a = index_joint // 2 def run(self, x): scf = self.unquantize() y = self.spectral_shaping(scf, True, x) return y ### ------------------------------------------------------------------------ ### def check_analysis(rng, dt, sr): ok = True analysis = SnsAnalysis(dt, sr) for i in range(10): x = rng.random(T.NE[dt][sr]) * 1e4 e = rng.random(min(len(x), 64)) * 1e10 for att in (0, 1): y = analysis.run(e, att, x) data = analysis.get_data() (y_c, data_c) = lc3.sns_analyze(dt, sr, e, att, x) for k in data.keys(): ok = ok and data_c[k] == data[k] ok = ok and lc3.sns_get_nbits() == analysis.get_nbits() ok = ok and np.amax(np.abs(y - y_c)) < 1e-1 return ok def check_synthesis(rng, dt, sr): ok = True synthesis = SnsSynthesis(dt, sr) for i in range(100): synthesis.ind_lf = rng.integers(0, 32) synthesis.ind_hf = rng.integers(0, 32) shape = rng.integers(0, 4) sz_shape_a = [ 2390004, 2390004, 15158272, 774912 ][shape] sz_shape_b = [ 6, 1, 0, 0 ][shape] synthesis.shape = shape synthesis.gain = rng.integers(0, [ 2, 4, 4, 8 ][shape]) synthesis.idx_a = rng.integers(0, sz_shape_a, endpoint=True) synthesis.ls_a = bool(rng.integers(0, 1, endpoint=True)) synthesis.idx_b = rng.integers(0, sz_shape_b, endpoint=True) synthesis.ls_b = bool(rng.integers(0, 1, endpoint=True)) x = rng.random(T.NE[dt][sr]) * 1e4 y = synthesis.run(x) y_c = lc3.sns_synthesize(dt, sr, synthesis.get_data(), x) ok = ok and np.amax(np.abs(y - y_c)) < 1e0 return ok def check_analysis_appendix_c(dt): sr = T.SRATE_16K ok = True for i in range(len(C.E_B[dt])): scf = lc3.sns_compute_scale_factors(dt, sr, C.E_B[dt][i], False) ok = ok and np.amax(np.abs(scf - C.SCF[dt][i])) < 1e-4 (lf, hf) = lc3.sns_resolve_codebooks(scf) ok = ok and lf == C.IND_LF[dt][i] and hf == C.IND_HF[dt][i] (y, yn, shape, gain) = lc3.sns_quantize(scf, lf, hf) ok = ok and np.any(y[0][:16] - C.SNS_Y0[dt][i] == 0) ok = ok and np.any(y[1][:10] - C.SNS_Y1[dt][i] == 0) ok = ok and np.any(y[2][:16] - C.SNS_Y2[dt][i] == 0) ok = ok and np.any(y[3][:16] - C.SNS_Y3[dt][i] == 0) ok = ok and shape == 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i] ok = ok and gain == C.G_IND[dt][i] scf_q = lc3.sns_unquantize(lf, hf, yn[shape], shape, gain) ok = ok and np.amax(np.abs(scf_q - C.SCF_Q[dt][i])) < 1e-5 x = lc3.sns_spectral_shaping(dt, sr, C.SCF_Q[dt][i], False, C.X[dt][i]) ok = ok and np.amax(np.abs(1 - x/C.X_S[dt][i])) < 1e-5 (x, data) = lc3.sns_analyze(dt, sr, C.E_B[dt][i], False, C.X[dt][i]) ok = ok and data['lfcb'] == C.IND_LF[dt][i] ok = ok and data['hfcb'] == C.IND_HF[dt][i] ok = ok and data['shape'] == \ 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i] ok = ok and data['gain'] == C.G_IND[dt][i] ok = ok and data['idx_a'] == C.IDX_A[dt][i] ok = ok and data['ls_a'] == C.LS_IND_A[dt][i] ok = ok and (C.IDX_B[dt][i] is None or data['idx_b'] == C.IDX_B[dt][i]) ok = ok and (C.LS_IND_B[dt][i] is None or data['ls_b'] == C.LS_IND_B[dt][i]) ok = ok and np.amax(np.abs(1 - x/C.X_S[dt][i])) < 1e-5 return ok def check_synthesis_appendix_c(dt): sr = T.SRATE_16K ok = True for i in range(len(C.X_HAT_TNS[dt])): data = { 'lfcb' : C.IND_LF[dt][i], 'hfcb' : C.IND_HF[dt][i], 'shape' : 2*C.SUBMODE_MSB[dt][i] + C.SUBMODE_LSB[dt][i], 'gain' : C.G_IND[dt][i], 'idx_a' : C.IDX_A[dt][i], 'ls_a' : C.LS_IND_A[dt][i], 'idx_b' : C.IDX_B[dt][i] if C.IDX_B[dt][i] is not None else 0, 'ls_b' : C.LS_IND_B[dt][i] if C.LS_IND_B[dt][i] is not None else 0, } x = lc3.sns_synthesize(dt, sr, data, C.X_HAT_TNS[dt][i]) ok = ok and np.amax(np.abs(x - C.X_HAT_SNS[dt][i])) < 1e0 return ok def check(): rng = np.random.default_rng(1234) ok = True for dt in range(T.NUM_DT): for sr in range(T.NUM_SRATE): ok = ok and check_analysis(rng, dt, sr) ok = ok and check_synthesis(rng, dt, sr) for dt in range(T.NUM_DT): ok = ok and check_analysis_appendix_c(dt) ok = ok and check_synthesis_appendix_c(dt) return ok ### ------------------------------------------------------------------------ ###