/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ #define BTSTACK_FILE__ "spp_streamer_client.c" /* * spp_streamer_client.c */ // ***************************************************************************** /* EXAMPLE_START(spp_streamer_client): Performance - Stream Data over SPP (Client) * * @text Note: The SPP Streamer Client scans for and connects to SPP Streamer, * and measures the throughput. */ // ***************************************************************************** #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <inttypes.h> #include "btstack.h" // prototypes static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size); static uint8_t rfcomm_server_channel; #define NUM_ROWS 25 #define NUM_COLS 40 #define TEST_COD 0x1234 #define TEST_MODE_SEND 1 #define TEST_MODE_RECEIVE 2 #define TEST_MODE_DUPLEX 3 // configure test mode: send only, receive only, full duplex #define TEST_MODE TEST_MODE_SEND typedef enum { // SPP W4_PEER_COD, W4_SCAN_COMPLETE, W4_SDP_RESULT, W2_SEND_SDP_QUERY, W4_RFCOMM_CHANNEL, SENDING, DONE } state_t; static uint8_t test_data[NUM_ROWS * NUM_COLS]; static uint16_t spp_test_data_len; static btstack_packet_callback_registration_t hci_event_callback_registration; static btstack_context_callback_registration_t handle_sdp_client_query_request; static bd_addr_t peer_addr; static state_t state; // SPP static uint16_t rfcomm_mtu; static uint16_t rfcomm_cid = 0; // static uint32_t data_to_send = DATA_VOLUME; /** * RFCOMM can make use for ERTM. Due to the need to re-transmit packets, * a large buffer is needed to still get high throughput */ #ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM static uint8_t ertm_buffer[20000]; static l2cap_ertm_config_t ertm_config = { 0, // ertm mandatory 8, // max transmit 2000, 12000, 1000, // l2cap ertm mtu 8, 8, 0, // No FCS }; static int ertm_buffer_in_use; static void rfcomm_ertm_request_handler(rfcomm_ertm_request_t * ertm_request){ printf("ERTM Buffer requested, buffer in use %u\n", ertm_buffer_in_use); if (ertm_buffer_in_use) return; ertm_buffer_in_use = 1; ertm_request->ertm_config = &ertm_config; ertm_request->ertm_buffer = ertm_buffer; ertm_request->ertm_buffer_size = sizeof(ertm_buffer); } static void rfcomm_ertm_released_handler(uint16_t ertm_id){ printf("ERTM Buffer released, buffer in use %u, ertm_id %x\n", ertm_buffer_in_use, ertm_id); ertm_buffer_in_use = 0; } #endif /** * Find remote peer by COD */ #define INQUIRY_INTERVAL 5 static void start_scan(void){ printf("Starting inquiry scan..\n"); state = W4_PEER_COD; gap_inquiry_start(INQUIRY_INTERVAL); } static void stop_scan(void){ printf("Stopping inquiry scan..\n"); state = W4_SCAN_COMPLETE; gap_inquiry_stop(); } /* * @section Track throughput * @text We calculate the throughput by setting a start time and measuring the amount of * data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s * and reset the counter and start time. */ /* LISTING_START(tracking): Tracking throughput */ #define REPORT_INTERVAL_MS 3000 static uint32_t test_data_transferred; static uint32_t test_data_start; static void test_reset(void){ test_data_start = btstack_run_loop_get_time_ms(); test_data_transferred = 0; } static void test_track_transferred(int bytes_sent){ test_data_transferred += bytes_sent; // evaluate uint32_t now = btstack_run_loop_get_time_ms(); uint32_t time_passed = now - test_data_start; if (time_passed < REPORT_INTERVAL_MS) return; // print speed int bytes_per_second = test_data_transferred * 1000 / time_passed; printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000); // restart test_data_start = now; test_data_transferred = 0; } /* LISTING_END(tracking): Tracking throughput */ #if (TEST_MODE & TEST_MODE_SEND) static void spp_create_test_data(void){ int x,y; for (y=0;y<NUM_ROWS;y++){ for (x=0;x<NUM_COLS-2;x++){ test_data[y*NUM_COLS+x] = '0' + (x % 10); } test_data[y*NUM_COLS+NUM_COLS-2] = '\n'; test_data[y*NUM_COLS+NUM_COLS-1] = '\r'; } } static void spp_send_packet(void){ rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len); test_track_transferred(spp_test_data_len); rfcomm_request_can_send_now_event(rfcomm_cid); } #endif /* * @section SDP Query Packet Handler * * @text Store RFCOMM Channel for SPP service and initiates RFCOMM connection */ static void handle_query_rfcomm_event(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ UNUSED(packet_type); UNUSED(channel); UNUSED(size); switch (hci_event_packet_get_type(packet)){ case SDP_EVENT_QUERY_RFCOMM_SERVICE: rfcomm_server_channel = sdp_event_query_rfcomm_service_get_rfcomm_channel(packet); break; case SDP_EVENT_QUERY_COMPLETE: if (sdp_event_query_complete_get_status(packet)){ printf("SDP query failed 0x%02x\n", sdp_event_query_complete_get_status(packet)); break; } if (rfcomm_server_channel == 0){ printf("No SPP service found\n"); break; } printf("SDP query done, channel %u.\n", rfcomm_server_channel); rfcomm_create_channel(packet_handler, peer_addr, rfcomm_server_channel, NULL); break; default: break; } } static void handle_start_sdp_client_query(void * context){ UNUSED(context); if (state != W2_SEND_SDP_QUERY) return; state = W4_RFCOMM_CHANNEL; sdp_client_query_rfcomm_channel_and_name_for_uuid(&handle_query_rfcomm_event, peer_addr, BLUETOOTH_ATTRIBUTE_PUBLIC_BROWSE_ROOT); } /* * @section Gerenal Packet Handler * * @text Handles startup (BTSTACK_EVENT_STATE), inquiry, pairing, starts SDP query for SPP service, and RFCOMM connection */ static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ UNUSED(channel); bd_addr_t event_addr; uint8_t rfcomm_channel_nr; uint32_t class_of_device; switch (packet_type) { case HCI_EVENT_PACKET: switch (hci_event_packet_get_type(packet)) { case BTSTACK_EVENT_STATE: if (btstack_event_state_get_state(packet) != HCI_STATE_WORKING) return; start_scan(); break; case GAP_EVENT_INQUIRY_RESULT: if (state != W4_PEER_COD) break; class_of_device = gap_event_inquiry_result_get_class_of_device(packet); gap_event_inquiry_result_get_bd_addr(packet, event_addr); if (class_of_device == TEST_COD){ memcpy(peer_addr, event_addr, 6); printf("Peer found: %s\n", bd_addr_to_str(peer_addr)); stop_scan(); } else { printf("Device found: %s with COD: 0x%06x\n", bd_addr_to_str(event_addr), (int) class_of_device); } break; case GAP_EVENT_INQUIRY_COMPLETE: switch (state){ case W4_PEER_COD: printf("Inquiry complete\n"); printf("Peer not found, starting scan again\n"); start_scan(); break; case W4_SCAN_COMPLETE: printf("Start to connect and query for SPP service\n"); state = W2_SEND_SDP_QUERY; handle_sdp_client_query_request.callback = &handle_start_sdp_client_query; (void) sdp_client_register_query_callback(&handle_sdp_client_query_request); break; default: break; } if (state == W4_PEER_COD){ } break; case HCI_EVENT_PIN_CODE_REQUEST: // inform about pin code request printf("Pin code request - using '0000'\n"); hci_event_pin_code_request_get_bd_addr(packet, event_addr); gap_pin_code_response(event_addr, "0000"); break; case HCI_EVENT_USER_CONFIRMATION_REQUEST: // inform about user confirmation request printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8)); printf("SSP User Confirmation Auto accept\n"); break; case RFCOMM_EVENT_INCOMING_CONNECTION: rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr); rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet); rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet); printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr)); rfcomm_accept_connection(rfcomm_cid); break; case RFCOMM_EVENT_CHANNEL_OPENED: if (rfcomm_event_channel_opened_get_status(packet)) { printf("RFCOMM channel open failed, status %u\n", rfcomm_event_channel_opened_get_status(packet)); } else { rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet); rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet); printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu); test_reset(); // disable page/inquiry scan to get max performance gap_discoverable_control(0); gap_connectable_control(0); #if (TEST_MODE & TEST_MODE_SEND) // configure test data spp_test_data_len = rfcomm_mtu; if (spp_test_data_len > sizeof(test_data)){ spp_test_data_len = sizeof(test_data); } spp_create_test_data(); state = SENDING; // start sending rfcomm_request_can_send_now_event(rfcomm_cid); #endif } break; #if (TEST_MODE & TEST_MODE_SEND) case RFCOMM_EVENT_CAN_SEND_NOW: spp_send_packet(); break; #endif case RFCOMM_EVENT_CHANNEL_CLOSED: printf("RFCOMM channel closed\n"); rfcomm_cid = 0; // re-enable page/inquiry scan again gap_discoverable_control(1); gap_connectable_control(1); break; default: break; } break; case RFCOMM_DATA_PACKET: test_track_transferred(size); #if 0 // optional: print received data as ASCII text printf("RCV: '"); for (i=0;i<size;i++){ putchar(packet[i]); } printf("'\n"); #endif break; default: break; } } /* * @section Main Application Setup * * @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups. */ /* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */ int btstack_main(int argc, const char * argv[]); int btstack_main(int argc, const char * argv[]){ UNUSED(argc); (void)argv; l2cap_init(); rfcomm_init(); #ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM // setup ERTM management rfcomm_enable_l2cap_ertm(&rfcomm_ertm_request_handler, &rfcomm_ertm_released_handler); #endif // register for HCI events hci_event_callback_registration.callback = &packet_handler; hci_add_event_handler(&hci_event_callback_registration); // init SDP gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO); // turn on! hci_power_control(HCI_POWER_ON); return 0; } /* LISTING_END */ /* EXAMPLE_END */