/* * Copyright (C) 2011-2012 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at contact@bluekitchen-gmbh.com * */ #include #include #include "debug.h" #include "hci.h" #include "l2cap.h" #include "central_device_db.h" #include "sm.h" #include "gap_le.h" // // SM internal types and globals // typedef enum { // general states SM_STATE_IDLE, SM_STATE_SEND_PAIRING_FAILED, SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY, SM_STATE_TIMEOUT, // no other security messages are exchanged // get random number for use as TK Passkey if we show it SM_STATE_PH2_GET_RANDOM_TK, SM_STATE_PH2_W4_RANDOM_TK, // get local random number for confirm c1 SM_STATE_PH2_C1_GET_RANDOM_A, SM_STATE_PH2_C1_W4_RANDOM_A, SM_STATE_PH2_C1_GET_RANDOM_B, SM_STATE_PH2_C1_W4_RANDOM_B, // calculate confirm c1 SM_STATE_PH2_C1_GET_ENC_A, SM_STATE_PH2_C1_W4_ENC_A, SM_STATE_PH2_C1_GET_ENC_B, SM_STATE_PH2_C1_W4_ENC_B, SM_STATE_PH2_SEND_PAIRING_RANDOM, // RESPONDER ROLE SM_STATE_SEND_SECURITY_REQUEST, // Phase 1: Pairing Feature Exchange SM_STATE_W4_PAIRING_REQUEST, SM_STATE_PH1_SEND_PAIRING_RESPONSE, SM_STATE_PH1_W4_PAIRING_CONFIRM, SM_STATE_PH1_W4_USER_RESPONSE, // Phase 2: Authenticating and Encrypting // calculate confirm values for remote connection SM_STATE_PH2_C1_SEND_PAIRING_CONFIRM, SM_STATE_PH2_W4_PAIRING_RANDOM, SM_STATE_PH2_C1_GET_ENC_C, SM_STATE_PH2_C1_W4_ENC_C, SM_STATE_PH2_C1_GET_ENC_D, SM_STATE_PH2_C1_W4_ENC_D, // calc STK SM_STATE_PH2_CALC_STK, SM_STATE_PH2_W4_STK, SM_STATE_PH2_ENCRYPT_WITH_STK, SM_STATE_PH2_W4_LTK_REQUEST, SM_STATE_PH2_W4_CONNECTION_ENCRYPTED, // Phase 3: Transport Specific Key Distribution // calculate DHK, Y, EDIV, and LTK SM_STATE_PH3_GET_RANDOM, SM_STATE_PH3_W4_RANDOM, SM_STATE_PH3_GET_DIV, SM_STATE_PH3_W4_DIV, SM_STATE_PH3_Y_GET_ENC, SM_STATE_PH3_Y_W4_ENC, SM_STATE_PH3_LTK_GET_ENC, SM_STATE_PH3_LTK_W4_ENC, // SM_STATE_DISTRIBUTE_KEYS, // re establish previously distribued LTK SM_STATE_PH4_Y_GET_ENC, SM_STATE_PH4_Y_W4_ENC, SM_STATE_PH4_LTK_GET_ENC, SM_STATE_PH4_LTK_W4_ENC, SM_STATE_PH4_SEND_LTK, // INITITIATOR ROLE SM_STATE_INITIATOR_CONNECTED, // PH1 SM_STATE_INITIATOR_SEND_PAIRING_REQUEST, SM_STATE_INITIATOR_W4_PAIRING_RESPONSE, // PH2 SM_STATE_INITIATOR_PH2_W4_PAIRING_CONFIRM, SM_STATE_INITIATOR_PH2_W4_PAIRING_RANDOM, SM_STATE_INITIATOR_XXX, } security_manager_state_t; typedef enum { DKG_W4_WORKING, DKG_CALC_IRK, DKG_W4_IRK, DKG_CALC_DHK, DKG_W4_DHK, DKG_READY } derived_key_generation_t; typedef enum { RAU_IDLE, RAU_GET_RANDOM, RAU_W4_RANDOM, RAU_GET_ENC, RAU_W4_ENC, RAU_SET_ADDRESS, } random_address_update_t; typedef enum { CMAC_IDLE, CMAC_CALC_SUBKEYS, CMAC_W4_SUBKEYS, CMAC_CALC_MI, CMAC_W4_MI, CMAC_CALC_MLAST, CMAC_W4_MLAST } cmac_state_t; typedef enum { CSRK_LOOKUP_IDLE, CSRK_LOOKUP_W4_READY, CSRK_LOOKUP_STARTED, } csrk_lookup_state_t; typedef enum { JUST_WORKS, PK_RESP_INPUT, // Initiator displays PK, initiator inputs PK PK_INIT_INPUT, // Responder displays PK, responder inputs PK OK_BOTH_INPUT, // Only input on both, both input PK OOB // OOB available on both sides } stk_generation_method_t; typedef enum { SM_USER_RESPONSE_IDLE, SM_USER_RESPONSE_PENDING, SM_USER_RESPONSE_CONFIRM, SM_USER_RESPONSE_PASSKEY, SM_USER_RESPONSE_DECLINE } sm_user_response_t; typedef enum { SM_AES128_IDLE, SM_AES128_ACTIVE } sm_aes128_state_t; typedef struct sm_pairing_packet { uint8_t code; uint8_t io_capability; uint8_t oob_data_flag; uint8_t auth_req; uint8_t max_encryption_key_size; uint8_t initiator_key_distribution; uint8_t responder_key_distribution; } sm_pairing_packet_t; // // GLOBAL DATA // // configuration static uint8_t sm_accepted_stk_generation_methods; static uint8_t sm_max_encryption_key_size; static uint8_t sm_min_encryption_key_size; static uint8_t sm_auth_req = 0; static uint8_t sm_io_capabilities = IO_CAPABILITY_UNKNOWN; static uint8_t sm_slave_request_security; static uint8_t sm_authenticate_outgoing_connections = 0; // might go away // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values static sm_key_t sm_persistent_er; static sm_key_t sm_persistent_ir; // derived from sm_persistent_ir static sm_key_t sm_persistent_dhk; static sm_key_t sm_persistent_irk; static uint8_t sm_persistent_irk_ready = 0; // used for testing static derived_key_generation_t dkg_state = DKG_W4_WORKING; // derived from sm_persistent_er // .. // random address update static random_address_update_t rau_state = RAU_IDLE; static bd_addr_t sm_random_address; // CMAC calculation static cmac_state_t sm_cmac_state; static sm_key_t sm_cmac_k; static uint16_t sm_cmac_message_len; static uint8_t * sm_cmac_message; static sm_key_t sm_cmac_m_last; static sm_key_t sm_cmac_x; static uint8_t sm_cmac_block_current; static uint8_t sm_cmac_block_count; static void (*sm_cmac_done_handler)(uint8_t hash[8]); // resolvable private address lookup static int sm_central_device_test; static int sm_central_device_matched; static int sm_central_ah_calculation_active; static uint8_t sm_central_device_addr_type; static bd_addr_t sm_central_device_address; // aes128 crypto engine static sm_aes128_state_t sm_aes128_state; // // Volume 3, Part H, Chapter 24 // "Security shall be initiated by the Security Manager in the device in the master role. // The device in the slave role shall be the responding device." // -> master := initiator, slave := responder // // data needed for security setup typedef struct sm_setup_context { // used during sm setup sm_key_t sm_tk; sm_key_t sm_aes128_plaintext; uint8_t sm_pairing_failed_reason; stk_generation_method_t sm_stk_generation_method; // stk and ltk sm_key_t sm_ltk; // defines which keys will be send after connection is encrypted int sm_key_distribution_send_set; int sm_key_distribution_received_set; // user response uint8_t sm_user_response; // local sm_key_t sm_local_random; sm_key_t sm_local_confirm; // peer sm_key_t sm_peer_random; sm_key_t sm_peer_confirm; // master sm_pairing_packet_t sm_m_preq; // pairing request // key distribution, received from master // commented keys that are not stored or used by Peripheral role // uint16_t sm_m_y; // uint16_t sm_m_div; // uint16_t sm_m_ediv; // uint8_t sm_m_rand[8]; uint8_t sm_m_addr_type; bd_addr_t sm_m_address; sm_key_t sm_m_csrk; sm_key_t sm_m_irk; // slave sm_pairing_packet_t sm_s_pres; // pairing response // key distribution, slave sends uint16_t sm_s_y; uint16_t sm_s_div; uint16_t sm_s_ediv; uint8_t sm_s_rand[8]; // commented keys are not used in Perihperal role uint8_t sm_s_addr_type; bd_addr_t sm_s_address; // sm_key_t sm_s_csrk; } sm_setup_context_t; // connection info available as long as connection exists typedef struct sm_connection { uint16_t sm_handle; uint8_t sm_role; // 0 - IamMaster, 1 = IamSlave bd_addr_t sm_peer_address; uint8_t sm_peer_addr_type; security_manager_state_t sm_state_responding; csrk_lookup_state_t sm_csrk_lookup_state; uint8_t sm_connection_encrypted; uint8_t sm_connection_authenticated; // [0..1] uint8_t sm_actual_encryption_key_size; authorization_state_t sm_connection_authorization_state; timer_source_t sm_timeout; } sm_connection_t; // static sm_setup_context_t the_setup; static sm_setup_context_t * setup = &the_setup; // static sm_connection_t single_connection; static sm_connection_t * connection = &single_connection; // @returns 1 if oob data is available // stores oob data in provided 16 byte buffer if not null static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t * addr, uint8_t * oob_data) = NULL; // used to notify applicationss that user interaction is neccessary, see sm_notify_t below static btstack_packet_handler_t sm_client_packet_handler = NULL; // horizontal: initiator capabilities // vertial: responder capabilities static const stk_generation_method_t stk_generation_method[5][5] = { { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, { JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT }, { PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT }, { JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS }, { PK_RESP_INPUT, PK_RESP_INPUT, PK_INIT_INPUT, JUST_WORKS, PK_RESP_INPUT }, }; static void sm_run(); static void sm_notify_client(uint8_t type, uint8_t addr_type, bd_addr_t address, uint32_t passkey, uint16_t index); static void print_hex16(const char * name, uint16_t value){ printf("%-6s 0x%04x\n", name, value); } // @returns 1 if all bytes are 0 static int sm_is_null_random(uint8_t random[8]){ int i; for (i=0; i < 8 ; i++){ if (random[i]) return 0; } return 1; } // Key utils static void sm_reset_tk(){ int i; for (i=0;i<16;i++){ setup->sm_tk[i] = 0; } } // "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0 // and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0."" static void sm_truncate_key(sm_key_t key, int max_encryption_size){ int i; for (i = max_encryption_size ; i < 16 ; i++){ key[15-i] = 0; } } // SMP Timeout implementation // Upon transmission of the Pairing Request command or reception of the Pairing Request command, // the Security Manager Timer shall be reset and started. // // The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission. // // If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed, // and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP // Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been // established. static void sm_2timeout_handler(timer_source_t * timer){ printf("SM timeout\n"); connection->sm_state_responding = SM_STATE_TIMEOUT; } static void sm_2timeout_start(){ run_loop_remove_timer(&connection->sm_timeout); run_loop_set_timer_handler(&connection->sm_timeout, sm_2timeout_handler); run_loop_set_timer(&connection->sm_timeout, 30000); // 30 seconds sm timeout run_loop_add_timer(&connection->sm_timeout); } static void sm_2timeout_stop(){ run_loop_remove_timer(&connection->sm_timeout); } static void sm_2timeout_reset(){ sm_2timeout_stop(); sm_2timeout_start(); } // end of sm timeout // GAP Random Address updates static gap_random_address_type_t gap_random_adress_type; static timer_source_t gap_random_address_update_timer; static uint32_t gap_random_adress_update_period; static void gap_random_address_trigger(){ if (rau_state != RAU_IDLE) return; printf("gap_random_address_trigger\n"); rau_state = RAU_GET_RANDOM; sm_run(); } static void gap_random_address_update_handler(timer_source_t * timer){ printf("GAP Random Address Update due\n"); run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period); run_loop_add_timer(&gap_random_address_update_timer); gap_random_address_trigger(); } static void gap_random_address_update_start(){ run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler); run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period); run_loop_add_timer(&gap_random_address_update_timer); } static void gap_random_address_update_stop(){ run_loop_remove_timer(&gap_random_address_update_timer); } // pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1 static void sm_aes128_start(sm_key_t key, sm_key_t plaintext){ sm_aes128_state = SM_AES128_ACTIVE; sm_key_t key_flipped, plaintext_flipped; swap128(key, key_flipped); swap128(plaintext, plaintext_flipped); hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped); } static void sm_ah_r_prime(uint8_t r[3], sm_key_t d1_prime){ // r'= padding || r memset(d1_prime, 0, 16); memcpy(&d1_prime[13], r, 3); } static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){ // d'= padding || r || d memset(d1_prime, 0, 16); net_store_16(d1_prime, 12, r); net_store_16(d1_prime, 14, d); } static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){ // r’ = padding || r memset(r_prime, 0, 16); memcpy(&r_prime[8], r, 8); } // calculate arguments for first AES128 operation in C1 function static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){ // p1 = pres || preq || rat’ || iat’ // "The octet of iat’ becomes the least significant octet of p1 and the most signifi- // cant octet of pres becomes the most significant octet of p1. // For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq // is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then // p1 is 0x05000800000302070710000001010001." sm_key_t p1; swap56(pres, &p1[0]); swap56(preq, &p1[7]); p1[14] = rat; p1[15] = iat; print_key("p1", p1); print_key("r", r); // t1 = r xor p1 int i; for (i=0;i<16;i++){ t1[i] = r[i] ^ p1[i]; } print_key("t1", t1); } // calculate arguments for second AES128 operation in C1 function static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){ // p2 = padding || ia || ra // "The least significant octet of ra becomes the least significant octet of p2 and // the most significant octet of padding becomes the most significant octet of p2. // For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is // 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6. sm_key_t p2; memset(p2, 0, 16); memcpy(&p2[4], ia, 6); memcpy(&p2[10], ra, 6); print_key("p2", p2); // c1 = e(k, t2_xor_p2) int i; for (i=0;i<16;i++){ t3[i] = t2[i] ^ p2[i]; } print_key("t3", t3); } static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){ print_key("r1", r1); print_key("r2", r2); memcpy(&r_prime[8], &r2[8], 8); memcpy(&r_prime[0], &r1[8], 8); } static void sm_notify_client(uint8_t type, uint8_t addr_type, bd_addr_t address, uint32_t passkey, uint16_t index){ sm_event_t event; event.type = type; event.addr_type = addr_type; BD_ADDR_COPY(event.address, address); event.passkey = passkey; event.central_device_db_index = index; log_info("sm_notify_client %02x, addres_type %u, address %s, num '%06u', index %u", event.type, event.addr_type, bd_addr_to_str(event.address), event.passkey, event.central_device_db_index); if (!sm_client_packet_handler) return; sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event)); } static void sm_notify_client_authorization(uint8_t type, uint8_t addr_type, bd_addr_t address, uint8_t result){ sm_event_t event; event.type = type; event.addr_type = addr_type; BD_ADDR_COPY(event.address, address); event.authorization_result = result; log_info("sm_notify_client_authorization %02x, address_type %u, address %s, result %u", event.type, event.addr_type, bd_addr_to_str(event.address), event.authorization_result); if (!sm_client_packet_handler) return; sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event)); } // decide on stk generation based on // - pairing request // - io capabilities // - OOB data availability static void sm_setup_tk(){ // default: just works setup->sm_stk_generation_method = JUST_WORKS; // If both devices have out of band authentication data, then the Authentication // Requirements Flags shall be ignored when selecting the pairing method and the // Out of Band pairing method shall be used. if (setup->sm_m_preq.oob_data_flag && setup->sm_s_pres.oob_data_flag){ printf("SM: have OOB data"); print_key("OOB", setup->sm_tk); setup->sm_stk_generation_method = OOB; return; } // If both devices have not set the MITM option in the Authentication Requirements // Flags, then the IO capabilities shall be ignored and the Just Works association // model shall be used. if ( ((setup->sm_m_preq.auth_req & SM_AUTHREQ_MITM_PROTECTION) == 0x00) && ((setup->sm_s_pres.auth_req & SM_AUTHREQ_MITM_PROTECTION) == 0)){ return; } // Also use just works if unknown io capabilites if ((setup->sm_m_preq.io_capability > IO_CAPABILITY_KEYBOARD_DISPLAY) || (setup->sm_m_preq.io_capability > IO_CAPABILITY_KEYBOARD_DISPLAY)){ return; } // Otherwise the IO capabilities of the devices shall be used to determine the // pairing method as defined in Table 2.4. setup->sm_stk_generation_method = stk_generation_method[setup->sm_s_pres.io_capability][setup->sm_m_preq.io_capability]; printf("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u\n", setup->sm_m_preq.io_capability, setup->sm_s_pres.io_capability, setup->sm_stk_generation_method); } static int sm_key_distribution_flags_for_set(uint8_t key_set){ int flags = 0; if (key_set & SM_KEYDIST_ENC_KEY){ flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; } if (key_set & SM_KEYDIST_ID_KEY){ flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION; flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; } if (key_set & SM_KEYDIST_SIGN){ flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; } return flags; } static void sm_setup_key_distribution(uint8_t key_set){ // TODO: handle initiator case here // distribute keys as requested by initiator setup->sm_key_distribution_received_set = 0; setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set); } // CSRK Key Lookup /* static */ int sm_central_device_lookup_active(){ return sm_central_device_test >= 0; } static void sm_central_device_start_lookup(uint8_t addr_type, bd_addr_t addr){ memcpy(sm_central_device_address, addr, 6); sm_central_device_addr_type = addr_type; sm_central_device_test = 0; sm_central_device_matched = -1; sm_notify_client(SM_IDENTITY_RESOLVING_STARTED, addr_type, addr, 0, 0); } // TODO use relevant connection structure static void sm_central_device_lookup_found(sm_key_t csrk){ memcpy(setup->sm_m_csrk, csrk, 16); } // CMAC Implementation using AES128 engine static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){ int i; int carry = 0; for (i=len-1; i >= 0 ; i--){ int new_carry = data[i] >> 7; data[i] = data[i] << 1 | carry; carry = new_carry; } } // while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now static inline void sm_next_responding_state(){ connection->sm_state_responding = (security_manager_state_t) (((int)connection->sm_state_responding) + 1); } static inline void dkg_next_state(){ dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1); } static inline void rau_next_state(){ rau_state = (random_address_update_t) (((int)rau_state) + 1); } static inline void sm_cmac_next_state(){ sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1); } static int sm_cmac_last_block_complete(){ if (sm_cmac_message_len == 0) return 0; return (sm_cmac_message_len & 0x0f) == 0; } void sm_cmac_start(sm_key_t k, uint16_t message_len, uint8_t * message, void (*done_handler)(uint8_t hash[8])){ memcpy(sm_cmac_k, k, 16); sm_cmac_message_len = message_len; sm_cmac_message = message; sm_cmac_done_handler = done_handler; sm_cmac_block_current = 0; memset(sm_cmac_x, 0, 16); // step 2: n := ceil(len/const_Bsize); sm_cmac_block_count = (message_len + 15) / 16; // step 3: .. if (sm_cmac_block_count==0){ sm_cmac_block_count = 1; } // first, we need to compute l for k1, k2, and m_last sm_cmac_state = CMAC_CALC_SUBKEYS; // let's go sm_run(); } int sm_cmac_ready(){ return sm_cmac_state == CMAC_IDLE; } static void sm_cmac_handle_aes_engine_ready(){ switch (sm_cmac_state){ case CMAC_CALC_SUBKEYS: { sm_key_t const_zero; memset(const_zero, 0, 16); sm_aes128_start(sm_cmac_k, const_zero); sm_cmac_next_state(); break; } case CMAC_CALC_MI: { int j; sm_key_t y; for (j=0;j<16;j++){ y[j] = sm_cmac_x[j] ^ sm_cmac_message[sm_cmac_block_current*16 + j]; } sm_cmac_block_current++; sm_aes128_start(sm_cmac_k, y); sm_cmac_next_state(); break; } case CMAC_CALC_MLAST: { int i; sm_key_t y; for (i=0;i<16;i++){ y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i]; } print_key("Y", y); sm_cmac_block_current++; sm_aes128_start(sm_cmac_k, y); sm_cmac_next_state(); break; } default: printf("sm_cmac_handle_aes_engine_ready called in state %u\n", sm_cmac_state); break; } } static void sm_cmac_handle_encryption_result(sm_key_t data){ switch (sm_cmac_state){ case CMAC_W4_SUBKEYS: { sm_key_t k1; memcpy(k1, data, 16); sm_shift_left_by_one_bit_inplace(16, k1); if (data[0] & 0x80){ k1[15] ^= 0x87; } sm_key_t k2; memcpy(k2, k1, 16); sm_shift_left_by_one_bit_inplace(16, k2); if (k1[0] & 0x80){ k2[15] ^= 0x87; } print_key("k", sm_cmac_k); print_key("k1", k1); print_key("k2", k2); // step 4: set m_last int i; if (sm_cmac_last_block_complete()){ for (i=0;i<16;i++){ sm_cmac_m_last[i] = sm_cmac_message[sm_cmac_message_len - 16 + i] ^ k1[i]; } } else { int valid_octets_in_last_block = sm_cmac_message_len & 0x0f; for (i=0;i<16;i++){ if (i < valid_octets_in_last_block){ sm_cmac_m_last[i] = sm_cmac_message[(sm_cmac_message_len & 0xfff0) + i] ^ k2[i]; continue; } if (i == valid_octets_in_last_block){ sm_cmac_m_last[i] = 0x80 ^ k2[i]; continue; } sm_cmac_m_last[i] = k2[i]; } } // next sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; break; } case CMAC_W4_MI: memcpy(sm_cmac_x, data, 16); sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST; break; case CMAC_W4_MLAST: // done print_key("CMAC", data); sm_cmac_done_handler(data); break; default: printf("sm_cmac_handle_encryption_result called in state %u\n", sm_cmac_state); break; } } static int sm_key_distribution_done(){ if (setup->sm_key_distribution_send_set) return 0; int recv_flags = sm_key_distribution_flags_for_set(setup->sm_m_preq.initiator_key_distribution); return recv_flags == setup->sm_key_distribution_received_set; } static void sm_pdu_received_in_wrong_state(){ setup->sm_pairing_failed_reason = SM_REASON_UNSPECIFIED_REASON; connection->sm_state_responding = SM_STATE_SEND_PAIRING_FAILED; } static void sm_run(void){ // assert that we can send either one if (!hci_can_send_packet_now_using_packet_buffer(HCI_COMMAND_DATA_PACKET)) return; if (!l2cap_can_send_connectionless_packet_now()) return; sm_key_t plaintext; // CSRK lookup if (connection->sm_csrk_lookup_state == CSRK_LOOKUP_W4_READY && !sm_central_device_lookup_active()){ sm_central_device_start_lookup(connection->sm_peer_addr_type, connection->sm_peer_address); connection->sm_csrk_lookup_state = CSRK_LOOKUP_STARTED; } // distributed key generation switch (dkg_state){ case DKG_CALC_IRK: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; { // IRK = d1(IR, 1, 0) sm_key_t d1_prime; sm_d1_d_prime(1, 0, d1_prime); // plaintext sm_aes128_start(sm_persistent_ir, d1_prime); dkg_next_state(); } case DKG_CALC_DHK: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; { // DHK = d1(IR, 3, 0) sm_key_t d1_prime; sm_d1_d_prime(3, 0, d1_prime); // plaintext sm_aes128_start(sm_persistent_ir, d1_prime); dkg_next_state(); } return; default: break; } // random address updates switch (rau_state){ case RAU_GET_RANDOM: hci_send_cmd(&hci_le_rand); rau_next_state(); return; case RAU_GET_ENC: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; { sm_key_t r_prime; sm_ah_r_prime(sm_random_address, r_prime); sm_aes128_start(sm_persistent_irk, r_prime); rau_next_state(); } return; case RAU_SET_ADDRESS: printf("New random address: %s\n", bd_addr_to_str(sm_random_address)); hci_send_cmd(&hci_le_set_random_address, sm_random_address); rau_state = RAU_IDLE; return; default: break; } // CSRK device lookup by public or resolvable private address if (sm_central_device_test >= 0){ printf("Central Device Lookup: device %u/%u\n", sm_central_device_test, central_device_db_count()); while (sm_central_device_test < central_device_db_count()){ int addr_type; bd_addr_t addr; sm_key_t irk; central_device_db_info(sm_central_device_test, &addr_type, addr, irk); printf("device type %u, addr: %s\n", addr_type, bd_addr_to_str(addr)); if (sm_central_device_addr_type == addr_type && memcmp(addr, sm_central_device_address, 6) == 0){ printf("Central Device Lookup: found CSRK by { addr_type, address} \n"); sm_central_device_matched = sm_central_device_test; sm_central_device_test = -1; sm_key_t csrk; central_device_db_csrk(sm_central_device_matched, csrk); sm_central_device_lookup_found(csrk); sm_notify_client(SM_IDENTITY_RESOLVING_SUCCEEDED, sm_central_device_addr_type, sm_central_device_address, 0, sm_central_device_matched); break; } if (setup->sm_m_addr_type == 0){ sm_central_device_test++; continue; } if (sm_aes128_state == SM_AES128_ACTIVE) break; printf("Central Device Lookup: calculate AH\n"); print_key("IRK", irk); sm_key_t r_prime; sm_ah_r_prime(sm_central_device_address, r_prime); sm_aes128_start(irk, r_prime); sm_central_ah_calculation_active = 1; return; } if (sm_central_device_test >= central_device_db_count()){ printf("Central Device Lookup: not found\n"); sm_central_device_test = -1; sm_notify_client(SM_IDENTITY_RESOLVING_FAILED, sm_central_device_addr_type, sm_central_device_address, 0, 0); } } // cmac switch (sm_cmac_state){ case CMAC_CALC_SUBKEYS: case CMAC_CALC_MI: case CMAC_CALC_MLAST: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; sm_cmac_handle_aes_engine_ready(); return; default: break; } // responding state switch (connection->sm_state_responding){ // initiator side case SM_STATE_INITIATOR_SEND_PAIRING_REQUEST: setup->sm_m_preq.code = SM_CODE_PAIRING_REQUEST; l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t)); sm_2timeout_reset(); connection->sm_state_responding = SM_STATE_INITIATOR_W4_PAIRING_RESPONSE; break; // responder side case SM_STATE_SEND_SECURITY_REQUEST: { uint8_t buffer[2]; buffer[0] = SM_CODE_SECURITY_REQUEST; buffer[1] = SM_AUTHREQ_BONDING; l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); connection->sm_state_responding = SM_STATE_IDLE; return; } case SM_STATE_PH1_SEND_PAIRING_RESPONSE: { // echo initiator for now setup->sm_s_pres.code = SM_CODE_PAIRING_RESPONSE; setup->sm_s_pres.initiator_key_distribution = setup->sm_m_preq.initiator_key_distribution; setup->sm_s_pres.responder_key_distribution = setup->sm_m_preq.responder_key_distribution; l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t)); sm_2timeout_reset(); // notify client for: JUST WORKS confirm, PASSKEY display or input setup->sm_user_response = SM_USER_RESPONSE_IDLE; switch (setup->sm_stk_generation_method){ case PK_RESP_INPUT: setup->sm_user_response = SM_USER_RESPONSE_PENDING; sm_notify_client(SM_PASSKEY_INPUT_NUMBER, setup->sm_m_addr_type, setup->sm_m_address, 0, 0); break; case PK_INIT_INPUT: sm_notify_client(SM_PASSKEY_DISPLAY_NUMBER, setup->sm_m_addr_type, setup->sm_m_address, READ_NET_32(setup->sm_tk, 12), 0); break; case JUST_WORKS: switch (setup->sm_s_pres.io_capability){ case IO_CAPABILITY_KEYBOARD_DISPLAY: case IO_CAPABILITY_DISPLAY_YES_NO: setup->sm_user_response = SM_USER_RESPONSE_PENDING; sm_notify_client(SM_JUST_WORKS_REQUEST, setup->sm_m_addr_type, setup->sm_m_address, READ_NET_32(setup->sm_tk, 12), 0); break; default: // cannot ask user break; } break; default: break; } connection->sm_state_responding = SM_STATE_PH1_W4_PAIRING_CONFIRM; return; } case SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY: hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle); connection->sm_state_responding = SM_STATE_IDLE; return; case SM_STATE_SEND_PAIRING_FAILED: { uint8_t buffer[2]; buffer[0] = SM_CODE_PAIRING_FAILED; buffer[1] = setup->sm_pairing_failed_reason; l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); sm_2timeout_stop(); connection->sm_state_responding = SM_STATE_IDLE; break; } case SM_STATE_PH2_SEND_PAIRING_RANDOM: { uint8_t buffer[17]; buffer[0] = SM_CODE_PAIRING_RANDOM; swap128(setup->sm_local_random, &buffer[1]); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); sm_2timeout_reset(); if (connection->sm_role){ connection->sm_state_responding = SM_STATE_PH2_W4_LTK_REQUEST; } else { connection->sm_state_responding = SM_STATE_INITIATOR_PH2_W4_PAIRING_RANDOM; } break; } case SM_STATE_PH2_GET_RANDOM_TK: case SM_STATE_PH2_C1_GET_RANDOM_A: case SM_STATE_PH2_C1_GET_RANDOM_B: case SM_STATE_PH3_GET_RANDOM: case SM_STATE_PH3_GET_DIV: hci_send_cmd(&hci_le_rand); sm_next_responding_state(); return; case SM_STATE_PH2_C1_GET_ENC_B: case SM_STATE_PH2_C1_GET_ENC_D: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; sm_aes128_start(setup->sm_tk, setup->sm_aes128_plaintext); sm_next_responding_state(); return; case SM_STATE_PH3_LTK_GET_ENC: case SM_STATE_PH4_LTK_GET_ENC: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; sm_aes128_start(sm_persistent_er, setup->sm_aes128_plaintext); sm_next_responding_state(); return; case SM_STATE_PH2_C1_GET_ENC_C: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; // calculate m_confirm using aes128 engine - step 1 sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext); sm_aes128_start(setup->sm_tk, plaintext); sm_next_responding_state(); break; case SM_STATE_PH2_C1_GET_ENC_A: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; // calculate confirm using aes128 engine - step 1 sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext); sm_aes128_start(setup->sm_tk, plaintext); sm_next_responding_state(); break; case SM_STATE_PH2_CALC_STK: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; // calculate STK if (connection->sm_role){ sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext); } else { sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext); } sm_aes128_start(setup->sm_tk, plaintext); sm_next_responding_state(); break; case SM_STATE_PH3_Y_GET_ENC: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; // PH3B2 - calculate Y from - enc // Y = dm(DHK, Rand) sm_dm_r_prime(setup->sm_s_rand, plaintext); sm_aes128_start(sm_persistent_dhk, plaintext); sm_next_responding_state(); return; case SM_STATE_PH2_C1_SEND_PAIRING_CONFIRM: { uint8_t buffer[17]; buffer[0] = SM_CODE_PAIRING_CONFIRM; swap128(setup->sm_local_confirm, &buffer[1]); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); sm_2timeout_reset(); if (connection->sm_role){ connection->sm_state_responding = SM_STATE_PH2_W4_PAIRING_RANDOM; } else { connection->sm_state_responding = SM_STATE_INITIATOR_PH2_W4_PAIRING_CONFIRM; } return; } case SM_STATE_PH2_ENCRYPT_WITH_STK: { sm_key_t stk_flipped; swap128(setup->sm_ltk, stk_flipped); hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped); connection->sm_state_responding = SM_STATE_PH2_W4_CONNECTION_ENCRYPTED; return; } case SM_STATE_PH4_SEND_LTK: { sm_key_t ltk_flipped; swap128(setup->sm_ltk, ltk_flipped); hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped); connection->sm_state_responding = SM_STATE_IDLE; return; } case SM_STATE_PH4_Y_GET_ENC: // already busy? if (sm_aes128_state == SM_AES128_ACTIVE) break; log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_s_ediv); // Y = dm(DHK, Rand) sm_dm_r_prime(setup->sm_s_rand, plaintext); sm_aes128_start(sm_persistent_dhk, plaintext); sm_next_responding_state(); return; case SM_STATE_DISTRIBUTE_KEYS: if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){ setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; uint8_t buffer[17]; buffer[0] = SM_CODE_ENCRYPTION_INFORMATION; swap128(setup->sm_ltk, &buffer[1]); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); sm_2timeout_reset(); return; } if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){ setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; uint8_t buffer[11]; buffer[0] = SM_CODE_MASTER_IDENTIFICATION; bt_store_16(buffer, 1, setup->sm_s_ediv); swap64(setup->sm_s_rand, &buffer[3]); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); sm_2timeout_reset(); return; } if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){ setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION; uint8_t buffer[17]; buffer[0] = SM_CODE_IDENTITY_INFORMATION; swap128(sm_persistent_irk, &buffer[1]); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); sm_2timeout_reset(); return; } if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){ setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; uint8_t buffer[8]; buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION; buffer[1] = setup->sm_s_addr_type; bt_flip_addr(&buffer[2], setup->sm_s_address); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); sm_2timeout_reset(); return; } if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){ setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; uint8_t buffer[17]; buffer[0] = SM_CODE_SIGNING_INFORMATION; // swap128(sm_s_csrk, &buffer[1]); memset(&buffer[1], 0, 16); // csrk not calculated l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); sm_2timeout_reset(); return; } if (sm_key_distribution_done()){ sm_2timeout_stop(); connection->sm_state_responding = SM_STATE_IDLE; } break; default: break; } } // note: aes engine is ready as we just got the aes result, also, setup->sm_aes128_plaintext and sm_aes128_key can be set again static void sm_handle_encryption_result(uint8_t * data){ sm_aes128_state = SM_AES128_IDLE; if (sm_central_ah_calculation_active){ sm_central_ah_calculation_active = 0; // compare calulated address against connecting device uint8_t hash[3]; swap24(data, hash); if (memcmp(&sm_central_device_address[3], hash, 3) == 0){ // found sm_central_device_matched = sm_central_device_test; sm_central_device_test = -1; sm_key_t csrk; central_device_db_csrk(sm_central_device_matched, csrk); sm_central_device_lookup_found(csrk); sm_notify_client(SM_IDENTITY_RESOLVING_SUCCEEDED, sm_central_device_addr_type, sm_central_device_address, 0, sm_central_device_matched); log_info("Central Device Lookup: matched resolvable private address"); return; } // no match sm_central_device_test++; return; } switch (dkg_state){ case DKG_W4_IRK: swap128(data, sm_persistent_irk); print_key("irk", sm_persistent_irk); dkg_next_state(); return; case DKG_W4_DHK: swap128(data, sm_persistent_dhk); print_key("dhk", sm_persistent_dhk); dkg_next_state(); // SM INIT FINISHED, start application code - TODO untangle that if (sm_client_packet_handler) { uint8_t event[] = { BTSTACK_EVENT_STATE, 0, HCI_STATE_WORKING }; sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) event, sizeof(event)); } return; default: break; } switch (rau_state){ case RAU_W4_ENC: swap24(data, &sm_random_address[3]); rau_next_state(); return; default: break; } switch (sm_cmac_state){ case CMAC_W4_SUBKEYS: case CMAC_W4_MI: case CMAC_W4_MLAST: { sm_key_t t; swap128(data, t); sm_cmac_handle_encryption_result(t); } return; default: break; } switch (connection->sm_state_responding){ case SM_STATE_PH2_C1_W4_ENC_A: case SM_STATE_PH2_C1_W4_ENC_C: { sm_key_t t2; swap128(data, t2); sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_aes128_plaintext); } sm_next_responding_state(); return; case SM_STATE_PH2_C1_W4_ENC_B: swap128(data, setup->sm_local_confirm); print_key("c1!", setup->sm_local_confirm); connection->sm_state_responding = SM_STATE_PH2_C1_SEND_PAIRING_CONFIRM; return; case SM_STATE_PH2_C1_W4_ENC_D: { sm_key_t peer_confirm_test; swap128(data, peer_confirm_test); print_key("c1!", peer_confirm_test); if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){ setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED; connection->sm_state_responding = SM_STATE_SEND_PAIRING_FAILED; return; } if (connection->sm_role){ connection->sm_state_responding = SM_STATE_PH2_SEND_PAIRING_RANDOM; } else { connection->sm_state_responding = SM_STATE_PH2_CALC_STK; } } return; case SM_STATE_PH2_W4_STK: swap128(data, setup->sm_ltk); sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size); print_key("stk", setup->sm_ltk); connection->sm_state_responding = SM_STATE_PH2_ENCRYPT_WITH_STK; return; case SM_STATE_PH3_Y_W4_ENC:{ sm_key_t y128; swap128(data, y128); setup->sm_s_y = READ_NET_16(y128, 14); print_hex16("y", setup->sm_s_y); // PH3B3 - calculate EDIV setup->sm_s_ediv = setup->sm_s_y ^ setup->sm_s_div; print_hex16("ediv", setup->sm_s_ediv); // PH3B4 - calculate LTK - enc // LTK = d1(ER, DIV, 0)) sm_d1_d_prime(setup->sm_s_div, 0, setup->sm_aes128_plaintext); connection->sm_state_responding = SM_STATE_PH3_LTK_GET_ENC; return; } case SM_STATE_PH4_Y_W4_ENC:{ sm_key_t y128; swap128(data, y128); setup->sm_s_y = READ_NET_16(y128, 14); print_hex16("y", setup->sm_s_y); // PH3B3 - calculate DIV setup->sm_s_div = setup->sm_s_y ^ setup->sm_s_ediv; print_hex16("ediv", setup->sm_s_ediv); // PH3B4 - calculate LTK - enc // LTK = d1(ER, DIV, 0)) sm_d1_d_prime(setup->sm_s_div, 0, setup->sm_aes128_plaintext); connection->sm_state_responding = SM_STATE_PH4_LTK_GET_ENC; return; } case SM_STATE_PH3_LTK_W4_ENC: swap128(data, setup->sm_ltk); print_key("ltk", setup->sm_ltk); // distribute keys connection->sm_state_responding = SM_STATE_DISTRIBUTE_KEYS; return; case SM_STATE_PH4_LTK_W4_ENC: swap128(data, setup->sm_ltk); sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size); print_key("ltk", setup->sm_ltk); connection->sm_state_responding = SM_STATE_PH4_SEND_LTK; return; default: break; } } // note: random generator is ready. this doesn NOT imply that aes engine is unused! static void sm_handle_random_result(uint8_t * data){ switch (rau_state){ case RAU_W4_RANDOM: // non-resolvable vs. resolvable switch (gap_random_adress_type){ case GAP_RANDOM_ADDRESS_RESOLVABLE: // resolvable: use random as prand and calc address hash // "The two most significant bits of prand shall be equal to ‘0’ and ‘1" memcpy(sm_random_address, data, 3); sm_random_address[0] &= 0x3f; sm_random_address[0] |= 0x40; rau_state = RAU_GET_ENC; break; case GAP_RANDOM_ADDRESS_NON_RESOLVABLE: default: // "The two most significant bits of the address shall be equal to ‘0’"" memcpy(sm_random_address, data, 6); sm_random_address[0] &= 0x3f; rau_state = RAU_SET_ADDRESS; break; } return; default: break; } switch (connection->sm_state_responding){ case SM_STATE_PH2_W4_RANDOM_TK: { // map random to 0-999999 without speding much cycles on a modulus operation uint32_t tk = * (uint32_t*) data; // random endianess tk = tk & 0xfffff; // 1048575 if (tk >= 999999){ tk = tk - 999999; } sm_reset_tk(); net_store_32(setup->sm_tk, 12, tk); if (connection->sm_role){ connection->sm_state_responding = SM_STATE_PH1_SEND_PAIRING_RESPONSE; } else { connection->sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A; } return; } case SM_STATE_PH2_C1_W4_RANDOM_A: memcpy(&setup->sm_local_random[0], data, 8); // random endinaness connection->sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_B; return; case SM_STATE_PH2_C1_W4_RANDOM_B: memcpy(&setup->sm_local_random[8], data, 8); // random endinaness connection->sm_state_responding = SM_STATE_PH2_C1_GET_ENC_A; return; case SM_STATE_PH3_W4_RANDOM: swap64(data, setup->sm_s_rand); // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_s_rand setup->sm_s_rand[7] = (setup->sm_s_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1); // no db for authenticated flag hack: store flag in bit 4 of LSB setup->sm_s_rand[7] = (setup->sm_s_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4); connection->sm_state_responding = SM_STATE_PH3_GET_DIV; return; case SM_STATE_PH3_W4_DIV: // use 16 bit from random value as div setup->sm_s_div = READ_NET_16(data, 0); print_hex16("div", setup->sm_s_div); connection->sm_state_responding = SM_STATE_PH3_Y_GET_ENC; return; default: break; } } static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ sm_run(); int have_oob_data; switch (packet_type) { case HCI_EVENT_PACKET: switch (packet[0]) { case BTSTACK_EVENT_STATE: // bt stack activated, get started if (packet[2] == HCI_STATE_WORKING) { printf("HCI Working!\n"); dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK; sm_run(); return; // don't notify app packet handler just yet } break; case HCI_EVENT_LE_META: switch (packet[2]) { case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: printf("sm: connected\n"); if (packet[3]) return; // connection failed // only single connection for peripheral if (connection->sm_handle){ printf("Already connected, ignoring incoming connection\n"); return; } connection->sm_handle = READ_BT_16(packet, 4); connection->sm_role = packet[6]; connection->sm_peer_addr_type = packet[7]; bt_flip_addr(connection->sm_peer_address, &packet[8]); printf("New connection, role %s\n", connection->sm_role ? "slave" : "master"); // reset security properties connection->sm_connection_encrypted = 0; connection->sm_connection_authenticated = 0; connection->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN; // fill in sm setup sm_reset_tk(); // query client for OOB data have_oob_data = 0; if (sm_get_oob_data) { have_oob_data = (*sm_get_oob_data)(connection->sm_peer_addr_type, &connection->sm_peer_address, setup->sm_tk); } if (connection->sm_role){ // slave hci_le_advertisement_address(&setup->sm_s_addr_type, &setup->sm_s_address); setup->sm_m_addr_type = packet[7]; bt_flip_addr(setup->sm_m_address, &packet[8]); setup->sm_s_pres.io_capability = sm_io_capabilities; setup->sm_s_pres.oob_data_flag = have_oob_data; setup->sm_s_pres.auth_req = sm_auth_req; setup->sm_s_pres.max_encryption_key_size = sm_max_encryption_key_size; connection->sm_state_responding = SM_STATE_W4_PAIRING_REQUEST; } else { // master hci_le_advertisement_address(&setup->sm_m_addr_type, &setup->sm_m_address); printf("hci_le_advertisement_address type %u\n", setup->sm_m_addr_type); setup->sm_s_addr_type = packet[7]; bt_flip_addr(setup->sm_s_address, &packet[8]); setup->sm_m_preq.io_capability = sm_io_capabilities; setup->sm_m_preq.oob_data_flag = have_oob_data; setup->sm_m_preq.auth_req = sm_auth_req; setup->sm_m_preq.max_encryption_key_size = sm_max_encryption_key_size; setup->sm_m_preq.initiator_key_distribution = 0x07; setup->sm_m_preq.responder_key_distribution = 0x07; connection->sm_state_responding = SM_STATE_INITIATOR_CONNECTED; } // request security if we're slave and requested by app if (connection->sm_role == 0x01 && sm_slave_request_security){ connection->sm_state_responding = SM_STATE_SEND_SECURITY_REQUEST; } // hack (probablu) start security if requested before if (connection->sm_role == 0x00 && sm_authenticate_outgoing_connections){ connection->sm_state_responding = SM_STATE_INITIATOR_SEND_PAIRING_REQUEST; } // prepare CSRK lookup connection->sm_csrk_lookup_state = CSRK_LOOKUP_W4_READY; if (!sm_central_device_lookup_active()){ // try to lookup device sm_central_device_start_lookup(connection->sm_peer_addr_type, connection->sm_peer_address); connection->sm_csrk_lookup_state = CSRK_LOOKUP_STARTED; } break; case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST: log_info("LTK Request: state %u", connection->sm_state_responding); if (connection->sm_state_responding == SM_STATE_PH2_W4_LTK_REQUEST){ connection->sm_state_responding = SM_STATE_PH2_CALC_STK; break; } // re-establish previously used LTK using Rand and EDIV swap64(&packet[5], setup->sm_s_rand); setup->sm_s_ediv = READ_BT_16(packet, 13); // assume that we don't have a LTK for ediv == 0 and random == null if (setup->sm_s_ediv == 0 && sm_is_null_random(setup->sm_s_rand)){ printf("LTK Request: ediv & random are empty\n"); connection->sm_state_responding = SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY; break; } // re-establish used key encryption size // no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_s_rand connection->sm_actual_encryption_key_size = (setup->sm_s_rand[7] & 0x0f) + 1; // no db for authenticated flag hack: flag is stored in bit 4 of LSB connection->sm_connection_authenticated = (setup->sm_s_rand[7] & 0x10) >> 4; connection->sm_state_responding = SM_STATE_PH4_Y_GET_ENC; break; default: break; } break; case HCI_EVENT_ENCRYPTION_CHANGE: if (connection->sm_handle != READ_BT_16(packet, 3)) break; connection->sm_connection_encrypted = packet[5]; log_info("Eencryption state change: %u", connection->sm_connection_encrypted); if (!connection->sm_connection_encrypted) break; if (connection->sm_state_responding == SM_STATE_PH2_W4_CONNECTION_ENCRYPTED) { if (connection->sm_role){ connection->sm_state_responding = SM_STATE_PH3_GET_RANDOM; } else { connection->sm_state_responding = SM_STATE_INITIATOR_XXX; } } break; case HCI_EVENT_DISCONNECTION_COMPLETE: connection->sm_state_responding = SM_STATE_IDLE; connection->sm_handle = 0; break; case HCI_EVENT_COMMAND_COMPLETE: if (COMMAND_COMPLETE_EVENT(packet, hci_le_encrypt)){ sm_handle_encryption_result(&packet[6]); break; } if (COMMAND_COMPLETE_EVENT(packet, hci_le_rand)){ sm_handle_random_result(&packet[6]); break; } } // forward packet to higher layer if (sm_client_packet_handler){ sm_client_packet_handler(packet_type, 0, packet, size); } } sm_run(); } static inline int sm_calc_actual_encryption_key_size(int other){ if (other < sm_min_encryption_key_size) return 0; if (other < sm_max_encryption_key_size) return other; return sm_max_encryption_key_size; } /** * @return ok */ static int sm_validate_stk_generation_method(){ // check if STK generation method is acceptable by client switch (setup->sm_stk_generation_method){ case JUST_WORKS: return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0; case PK_RESP_INPUT: case PK_INIT_INPUT: case OK_BOTH_INPUT: return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0; case OOB: return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0; } } static void sm_packet_handler(uint8_t packet_type, uint16_t handle, uint8_t *packet, uint16_t size){ if (packet_type == HCI_EVENT_PACKET) { sm_event_packet_handler(packet_type, handle, packet, size); return; } if (packet_type != SM_DATA_PACKET) return; if (handle != connection->sm_handle){ printf("sm_packet_handler: packet from handle %u, but expecting from %u\n", handle, connection->sm_handle); return; } if (packet[0] == SM_CODE_PAIRING_FAILED){ connection->sm_state_responding = SM_STATE_IDLE; return; } switch (connection->sm_state_responding){ // a sm timeout requries a new physical connection case SM_STATE_TIMEOUT: return; // Initiator case SM_STATE_INITIATOR_W4_PAIRING_RESPONSE: if (packet[0] != SM_CODE_PAIRING_RESPONSE){ sm_pdu_received_in_wrong_state(); break; } // store pairing request memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t)); // identical to responder, just other encryption size field // check key size connection->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(setup->sm_s_pres.max_encryption_key_size); if (connection->sm_actual_encryption_key_size == 0){ setup->sm_pairing_failed_reason = SM_REASON_ENCRYPTION_KEY_SIZE; connection->sm_state_responding = SM_STATE_SEND_PAIRING_FAILED; break; } // setup key distribution sm_setup_key_distribution(setup->sm_s_pres.initiator_key_distribution); // identical to responder // start SM timeout sm_2timeout_start(); // decide on STK generation method sm_setup_tk(); printf("SMP: generation method %u\n", setup->sm_stk_generation_method); // check if STK generation method is acceptable by client if (!sm_validate_stk_generation_method()){ setup->sm_pairing_failed_reason = SM_REASON_AUTHENTHICATION_REQUIREMENTS; connection->sm_state_responding = SM_STATE_SEND_PAIRING_FAILED; break; } // JUST WORKS doens't provide authentication connection->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1; // generate random number first, if we need to show passkey if (setup->sm_stk_generation_method == PK_RESP_INPUT){ connection->sm_state_responding = SM_STATE_PH2_GET_RANDOM_TK; break; } connection->sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A; break; case SM_STATE_INITIATOR_PH2_W4_PAIRING_CONFIRM: if (packet[0] != SM_CODE_PAIRING_CONFIRM){ sm_pdu_received_in_wrong_state(); break; } // store s_confirm swap128(&packet[1], setup->sm_peer_confirm); connection->sm_state_responding = SM_STATE_PH2_SEND_PAIRING_RANDOM; break; case SM_STATE_INITIATOR_PH2_W4_PAIRING_RANDOM: if (packet[0] != SM_CODE_PAIRING_RANDOM){ sm_pdu_received_in_wrong_state(); break;; } // received random value swap128(&packet[1], setup->sm_peer_random); connection->sm_state_responding = SM_STATE_PH2_C1_GET_ENC_C; break; // Responder case SM_STATE_IDLE: case SM_STATE_W4_PAIRING_REQUEST: { if (packet[0] != SM_CODE_PAIRING_REQUEST){ sm_pdu_received_in_wrong_state(); break;; } // store pairing request memcpy(&setup->sm_m_preq, packet, sizeof(sm_pairing_packet_t)); // check key size connection->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(setup->sm_s_pres.max_encryption_key_size); if (connection->sm_actual_encryption_key_size == 0){ setup->sm_pairing_failed_reason = SM_REASON_ENCRYPTION_KEY_SIZE; connection->sm_state_responding = SM_STATE_SEND_PAIRING_FAILED; break; } // setup key distribution sm_setup_key_distribution(setup->sm_m_preq.responder_key_distribution); // start SM timeout sm_2timeout_start(); // decide on STK generation method sm_setup_tk(); printf("SMP: generation method %u\n", setup->sm_stk_generation_method); // check if STK generation method is acceptable by client if (!sm_validate_stk_generation_method()){ setup->sm_pairing_failed_reason = SM_REASON_AUTHENTHICATION_REQUIREMENTS; connection->sm_state_responding = SM_STATE_SEND_PAIRING_FAILED; break; } // JUST WORKS doens't provide authentication connection->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1; // generate random number first, if we need to show passkey if (setup->sm_stk_generation_method == PK_INIT_INPUT){ connection->sm_state_responding = SM_STATE_PH2_GET_RANDOM_TK; break; } connection->sm_state_responding = SM_STATE_PH1_SEND_PAIRING_RESPONSE; break; } case SM_STATE_PH1_W4_PAIRING_CONFIRM: if (packet[0] != SM_CODE_PAIRING_CONFIRM){ sm_pdu_received_in_wrong_state(); break;; } // received confirm value swap128(&packet[1], setup->sm_peer_confirm); // notify client to hide shown passkey if (setup->sm_stk_generation_method == PK_INIT_INPUT){ sm_notify_client(SM_PASSKEY_DISPLAY_CANCEL, setup->sm_m_addr_type, setup->sm_m_address, 0, 0); } // handle user cancel pairing? if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){ setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED; connection->sm_state_responding = SM_STATE_SEND_PAIRING_FAILED; break; } // wait for user action? if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){ connection->sm_state_responding = SM_STATE_PH1_W4_USER_RESPONSE; break; } // calculate and send s_confirm connection->sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A; break; case SM_STATE_PH2_W4_PAIRING_RANDOM: if (packet[0] != SM_CODE_PAIRING_RANDOM){ sm_pdu_received_in_wrong_state(); break;; } // received random value swap128(&packet[1], setup->sm_peer_random); connection->sm_state_responding = SM_STATE_PH2_C1_GET_ENC_C; break; case SM_STATE_DISTRIBUTE_KEYS: switch(packet[0]){ case SM_CODE_ENCRYPTION_INFORMATION: setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION; // swap128(&packet[1], sm_m_ltk); break; case SM_CODE_MASTER_IDENTIFICATION: setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION; // sm_m_ediv = READ_BT_16(packet, 1); // swap64(&packet[3], sm_m_rand); break; case SM_CODE_IDENTITY_INFORMATION: setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION; swap128(&packet[1], setup->sm_m_irk); break; case SM_CODE_IDENTITY_ADDRESS_INFORMATION: setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; // note: we don't update addr_type and address as higher layer would get confused // note: if needed, we could use a different variable pair // setup->sm_m_addr_type = packet[1]; // BD_ADDR_COPY(setup->sm_m_address, &packet[2]); break; case SM_CODE_SIGNING_INFORMATION: setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION; swap128(&packet[1], setup->sm_m_csrk); // store, if: it's a public address, or, we got an IRK if (setup->sm_m_addr_type == 0 || (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION)) { sm_central_device_matched = central_device_db_add(setup->sm_m_addr_type, setup->sm_m_address, setup->sm_m_irk, setup->sm_m_csrk); break; } break; default: // Unexpected PDU printf("Unexpected PDU %u in SM_STATE_DISTRIBUTE_KEYS\n", packet[0]); break; } // done with key distribution? if (sm_key_distribution_done()){ sm_2timeout_stop(); connection->sm_state_responding = SM_STATE_IDLE; } break; default: // Unexpected PDU printf("Unexpected PDU %u in state %u\n", packet[0], connection->sm_state_responding); break; } // try to send preparared packet sm_run(); } // Security Manager Client API void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t * addr, uint8_t * oob_data)){ sm_get_oob_data = get_oob_data_callback; } void sm_register_packet_handler(btstack_packet_handler_t handler){ sm_client_packet_handler = handler; } void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){ sm_accepted_stk_generation_methods = accepted_stk_generation_methods; } void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){ sm_min_encryption_key_size = min_size; sm_max_encryption_key_size = max_size; } void sm_set_authentication_requirements(uint8_t auth_req){ sm_auth_req = auth_req; } void sm_set_io_capabilities(io_capability_t io_capability){ sm_io_capabilities = io_capability; } void sm_set_request_security(int enable){ sm_slave_request_security = enable; } void sm_set_er(sm_key_t er){ memcpy(sm_persistent_er, er, 16); } void sm_set_ir(sm_key_t ir){ memcpy(sm_persistent_ir, ir, 16); } // Testing support only void sm_test_set_irk(sm_key_t irk){ memcpy(sm_persistent_irk, irk, 16); sm_persistent_irk_ready = 1; } /** * @brief Trigger Security Request * @note Not used normally. Bonding is triggered by access to protected attributes in ATT Server */ void sm_send_security_request(){ connection->sm_state_responding = SM_STATE_SEND_SECURITY_REQUEST; sm_run(); } void sm_init(){ // set some (BTstack default) ER and IR int i; sm_key_t er; sm_key_t ir; for (i=0;i<16;i++){ er[i] = 0x30 + i; ir[i] = 0x90 + i; } sm_set_er(er); sm_set_ir(ir); connection->sm_state_responding = SM_STATE_IDLE; // defaults sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS | SM_STK_GENERATION_METHOD_OOB | SM_STK_GENERATION_METHOD_PASSKEY; sm_max_encryption_key_size = 16; sm_min_encryption_key_size = 7; sm_cmac_state = CMAC_IDLE; sm_aes128_state = SM_AES128_IDLE; sm_central_device_test = -1; // no private address to resolve yet sm_central_ah_calculation_active = 0; gap_random_adress_update_period = 15 * 60 * 1000; // attach to lower layers l2cap_register_fixed_channel(sm_packet_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL); } static int sm_get_connection(uint8_t addr_type, bd_addr_t address){ // TODO compare to current connection return 1; } // @returns 0 if not encrypted, 7-16 otherwise int sm_encryption_key_size(uint8_t addr_type, bd_addr_t address){ if (!sm_get_connection(addr_type, address)) return 0; // wrong connection if (!connection->sm_connection_encrypted) return 0; return connection->sm_actual_encryption_key_size; } int sm_authenticated(uint8_t addr_type, bd_addr_t address){ if (!sm_get_connection(addr_type, address)) return 0; // wrong connection if (!connection->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated return connection->sm_connection_authenticated; } authorization_state_t sm_authorization_state(uint8_t addr_type, bd_addr_t address){ if (!sm_get_connection(addr_type, address)) return AUTHORIZATION_UNKNOWN; // wrong connection if (!connection->sm_connection_encrypted) return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized if (!connection->sm_connection_authenticated) return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized return connection->sm_connection_authorization_state; } // request authorization void sm_request_authorization(uint8_t addr_type, bd_addr_t address){ printf("sm_request_authorization in role %u, state %u\n", connection->sm_role, connection->sm_state_responding); if (connection->sm_role){ // code has no effect so far connection->sm_connection_authorization_state = AUTHORIZATION_PENDING; sm_notify_client(SM_AUTHORIZATION_REQUEST, setup->sm_m_addr_type, setup->sm_m_address, 0, 0); } else { // HACK sm_authenticate_outgoing_connections = 1; // used as a trigger to start central/master/initiator security procedures if (connection->sm_state_responding == SM_STATE_INITIATOR_CONNECTED){ connection->sm_state_responding = SM_STATE_INITIATOR_SEND_PAIRING_REQUEST; } } } // called by client app on authorization request void sm_authorization_decline(uint8_t addr_type, bd_addr_t address){ if (!sm_get_connection(addr_type, address)) return; // wrong connection connection->sm_connection_authorization_state = AUTHORIZATION_DECLINED; sm_notify_client_authorization(SM_AUTHORIZATION_RESULT, setup->sm_m_addr_type, setup->sm_m_address, 0); } void sm_authorization_grant(uint8_t addr_type, bd_addr_t address){ if (!sm_get_connection(addr_type, address)) return; // wrong connection connection->sm_connection_authorization_state = AUTHORIZATION_GRANTED; sm_notify_client_authorization(SM_AUTHORIZATION_RESULT, setup->sm_m_addr_type, setup->sm_m_address, 1); } // GAP Bonding API void sm_bonding_decline(uint8_t addr_type, bd_addr_t address){ if (!sm_get_connection(addr_type, address)) return; // wrong connection setup->sm_user_response = SM_USER_RESPONSE_DECLINE; if (connection->sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){ setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED; connection->sm_state_responding = SM_STATE_SEND_PAIRING_FAILED; } sm_run(); } void sm_just_works_confirm(uint8_t addr_type, bd_addr_t address){ if (!sm_get_connection(addr_type, address)) return; // wrong connection setup->sm_user_response = SM_USER_RESPONSE_CONFIRM; if (connection->sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){ connection->sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A; } sm_run(); } void sm_passkey_input(uint8_t addr_type, bd_addr_t address, uint32_t passkey){ if (!sm_get_connection(addr_type, address)) return; // wrong connection sm_reset_tk(); net_store_32(setup->sm_tk, 12, passkey); setup->sm_user_response = SM_USER_RESPONSE_PASSKEY; if (connection->sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){ connection->sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A; } sm_run(); } // GAP LE API void gap_random_address_set_mode(gap_random_address_type_t random_address_type){ gap_random_address_update_stop(); gap_random_adress_type = random_address_type; if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return; gap_random_address_update_start(); gap_random_address_trigger(); } void gap_random_address_set_update_period(int period_ms){ gap_random_adress_update_period = period_ms; if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return; gap_random_address_update_stop(); gap_random_address_update_start(); }