#!/usr/bin/env python3 import matplotlib.pyplot as plt #from pylab import * import pickle import pylab as P import numpy as np from matplotlib.backends.backend_pdf import PdfPages from matplotlib.patches import Polygon import itertools import os def histplot(data,labels, colors, x_label, y_label, title, fig_name, cdf): fig, ax = plt.subplots() if cdf: n, bins, patches = ax.hist(data, 20, weights=None, histtype='step', normed=True, cumulative=True, label= labels, color = colors) legend = ax.legend(loc='lower left', shadow=False) ax.grid(True) else: n, bins, patches = ax.hist( data, 20, weights=None, histtype='bar', label= labels, color = colors) legend = ax.legend(loc='upper right', shadow=False) for line in ax.get_lines(): line.set_linewidth(1.5) ax.set_xlabel(x_label) ax.set_ylabel(y_label) for label in legend.get_texts(): label.set_fontsize('small') for label in legend.get_lines(): label.set_linewidth(1.5) # the legend line width fig.suptitle(title, fontsize=12) #plt.show() pp = PdfPages(fig_name) pp.savefig(fig) pp.close() return [n, bins, patches] def accplot(data, labels, colors, x_label, y_label, title, fig_name, annotation): mean = np.zeros(len(data)) for i in range(len(data)): if len(data[i]) > 0: mean[i] = len(data[i]) /(1.0*max(data[i])) mean = round(mean) fig, ax = plt.subplots() for i in range(len(data)): if len(data[i]) > 0: ax.plot(data[i], range(len(data[i])), colors[i], label= labels[i]+', '+mean[i]+' adv/s, total nr. '+str(len(data[i]))) ax.set_xlabel(x_label) ax.set_ylabel(y_label) for tl in ax.get_yticklabels(): tl.set_color('k') legend = ax.legend(loc='upper left', shadow=False) for label in legend.get_texts(): label.set_fontsize('small') for label in legend.get_lines(): label.set_linewidth(1.5) # the legend line width for line in ax.get_lines(): line.set_linewidth(1.5) fig.suptitle(title, fontsize=12) ax.text(400, 5000, annotation , style='italic', bbox={'facecolor':'gray', 'alpha':0.5, 'pad':10}) #plt.show() pp = PdfPages(fig_name) pp.savefig(fig) pp.close() return fig def mean_common_len(data): mcl = 0 for i in range(len(data) - 1): if len(data[i]) > 0: if mcl == 0: mcl = len(data[i]) else: mcl = min(mcl, len(data[i])) return mcl def mean_common_time(data): mct = 0 for i in range(len(data) - 1): if len(data[i]) > 0: if mct == 0: mct = max(data[i]) else: mct = min(mct, max(data[i])) return mct def normalize(s): return map(lambda x: (x - s[0]), s) def delta(s): rs = list() for i in range(len(s)-1): rs.append(s[i+1] - s[i]) return rs def round(s): return map(lambda x: "{0:.4f}".format(x), s) def cut(s, V): r = list() for i in range(len(s)): if s[i] <= V: r.append(s[i]) return r def prepare_data(exp_name, sensor_name): prefix = '../data/processed/' scanning_type = exp_name+'_continuous' mn = pickle.load(open(prefix+scanning_type+'_mac_'+sensor_name+'.data', 'rb')) # mac nio, mm = pickle.load(open(prefix+scanning_type+'_mac_mac.data', 'rb')) # mac mac, rn = pickle.load(open(prefix+scanning_type+'_rug_'+sensor_name+'.data', 'rb')) # ruggear nio, rm = pickle.load(open(prefix+scanning_type+'_rug_mac.data', 'rb')) # ruggear mac, scanning_type = exp_name+'_normal' try: normal_rn = pickle.load(open(prefix + scanning_type+'_rug_'+sensor_name+'.data', 'rb')) # ruggear mac, normal except: normal_rn = list() try: normal_mn = pickle.load(open(prefix + scanning_type+'_mac_'+sensor_name+'.data', 'rb')) # ruggear mac, normal except: normal_mn = list() try: normal_rm = pickle.load(open(prefix + scanning_type+'_rug_mac.data', 'rb')) # ruggear mac, normal except: normal_rm = list() try: normal_mm = pickle.load(open(prefix + scanning_type+'_mac_mac.data', 'rb')) # ruggear mac, normal except: normal_mm = list() T = mean_common_time([mm, mn, rm, rn, normal_rm, normal_rn, normal_mm, normal_mn]) L = mean_common_len([mm, mn, rm, rn, normal_rm, normal_rn, normal_mm, normal_mn]) Z = 15 print("mct %d, mcl %d" % (T,L)) mac_mac = normalize(mm) mac_nio = normalize(mn) ruggeer_mac = normalize(rm) ruggeer_nio = normalize(rn) ruggeer_nio_normal = normalize(normal_rn) ruggeer_mac_normal = normalize(normal_rm) mac_mac_normal = normalize(normal_mm) mac_nio_normal = normalize(normal_mn) delta_mn = delta(mac_nio) delta_mm = delta(mac_mac) delta_rn = delta(ruggeer_nio) delta_rm = delta(ruggeer_mac) rn_delays = list() for i in range(len(delta_rn)): rn_delays.append(range(delta_rn[i])) flattened_rn_delays = list(itertools.chain.from_iterable(rn_delays)) plot_data = [cut(mac_mac,T), cut(mac_nio,T), cut(ruggeer_mac,T), cut(ruggeer_nio,T)] plot_data_normal = [cut(mac_mac_normal,T), cut(mac_nio_normal,T), cut(ruggeer_mac_normal,T), cut(ruggeer_nio_normal,T)] hist_data = [delta_mm[0:L], delta_mn[0:L], delta_rm[0:L], delta_rn[0:L]] zoomed_hist_data = list() if len(hist_data[0]) >= Z and len(hist_data[1]) >= Z and len(hist_data[2]) >= Z and len(hist_data[3]) >= Z : zoomed_hist_data = [cut(hist_data[0],Z), cut(hist_data[1],Z), cut(hist_data[2],Z), cut(hist_data[3],Z)] return [plot_data, hist_data, zoomed_hist_data, flattened_rn_delays, plot_data_normal] def plot(exp_name, sensor_name, sensor_title, prefix): [plot_data, hist_data, zoomed_hist_data, rn_delays, plot_data_normal] = prepare_data(exp_name, sensor_name) labels = ['Scan. BCM, Adv. BCM', 'Scan. BCM, Adv. '+ sensor_title, 'Scan. RugGear, Adv. BCM', 'Scan. RugGear, Adv. '+sensor_title] plot_colors = ['r-','k-','b-','g-'] hist_colors = ['red','black','blue','green'] title = 'Continuous scanning over time' annotation = 'scan window 30ms, scan interval 30ms' x_label = 'Time [s]' y_label = 'Number of advertisements' accplot(plot_data, labels, plot_colors, x_label, y_label, title, prefix+sensor_name+'_acc_number_of_advertisements_continuous_scanning.pdf', annotation) x_label = 'Time interval between two advertisements [s]' title = 'Continuous scanning - interval distribution' histplot(hist_data, labels, hist_colors, x_label, y_label, title, prefix+sensor_name+'_histogram_advertisements_time_delay.pdf', 0) #if len(zoomed_hist_data) > 0: # title = 'Continuous scanning - interval distribution [0-15s]' # histplot(zoomed_hist_data, labels, hist_colors, x_label, y_label, title, prefix+sensor_name+'_histogram_advertisements_time_delay_zoomed.pdf', 0) title = 'Continuous scanning - expected waiting time' x_label = 'Expected waiting time until first scan [s]' [n, bins, patches] = histplot([rn_delays], [labels[3]], [hist_colors[3]], x_label, y_label, title, prefix+sensor_name+'_ruggear_expected_scan_response.pdf', 0) title = 'Continuous scanning - expected waiting time probability distribution' y_label = 'Advertisement probability' x_label = 'Time until first scan [s]' [n, bins, patches] = histplot([rn_delays], [labels[3]], [hist_colors[3]], x_label, y_label, title, prefix+sensor_name+'_ruggear_cdf.pdf', 1) title = 'Normal scanning over time' annotation = 'scan window 30ms, scan interval 300ms' x_label = 'Time [s]' y_label = 'Number of advertisements' accplot(plot_data_normal, labels, plot_colors, x_label, y_label, title, prefix+sensor_name+'_acc_number_of_advertisements_normal_scanning.pdf', annotation) picts_folder = "../picts_experiments/" if not os.access(picts_folder, os.F_OK): os.mkdir(picts_folder) plot('exp1','nio', 'Nio', picts_folder) plot('exp2','xg2', 'XG', picts_folder)