/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ #define __BTSTACK_FILE__ "hci.c" /* * hci.c * * Created by Matthias Ringwald on 4/29/09. * */ #include "btstack_config.h" #ifdef ENABLE_CLASSIC #ifdef HAVE_EMBEDDED_TICK #include "btstack_run_loop_embedded.h" #endif #endif #ifdef HAVE_PLATFORM_IPHONE_OS #include "../port/ios/src/btstack_control_iphone.h" #endif #ifdef ENABLE_BLE #include "gap.h" #endif #include #include #include #include #include "btstack_debug.h" #include "btstack_event.h" #include "btstack_linked_list.h" #include "btstack_memory.h" #include "bluetooth_company_id.h" #include "bluetooth_data_types.h" #include "gap.h" #include "hci.h" #include "hci_cmd.h" #include "hci_dump.h" #include "ad_parser.h" #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL #ifndef HCI_HOST_ACL_PACKET_NUM #error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_ACL_PACKET_NUM" #endif #ifndef HCI_HOST_ACL_PACKET_LEN #error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_ACL_PACKET_LEN" #endif #ifndef HCI_HOST_SCO_PACKET_NUM #error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_SCO_PACKET_NUM" #endif #ifndef HCI_HOST_SCO_PACKET_LEN #error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_SCO_PACKET_LEN" #endif #endif #define HCI_CONNECTION_TIMEOUT_MS 10000 #define HCI_RESET_RESEND_TIMEOUT_MS 200 // Names are arbitrarily shortened to 32 bytes if not requested otherwise #ifndef GAP_INQUIRY_MAX_NAME_LEN #define GAP_INQUIRY_MAX_NAME_LEN 32 #endif // GAP inquiry state: 0 = off, 0x01 - 0x30 = requested duration, 0xfe = active, 0xff = stop requested #define GAP_INQUIRY_DURATION_MIN 0x01 #define GAP_INQUIRY_DURATION_MAX 0x30 #define GAP_INQUIRY_STATE_ACTIVE 0x80 #define GAP_INQUIRY_STATE_IDLE 0 #define GAP_INQUIRY_STATE_W2_CANCEL 0x81 #define GAP_INQUIRY_STATE_W4_CANCELLED 0x82 // GAP Remote Name Request #define GAP_REMOTE_NAME_STATE_IDLE 0 #define GAP_REMOTE_NAME_STATE_W2_SEND 1 #define GAP_REMOTE_NAME_STATE_W4_COMPLETE 2 // GAP Pairing #define GAP_PAIRING_STATE_IDLE 0 #define GAP_PAIRING_STATE_SEND_PIN 1 #define GAP_PAIRING_STATE_SEND_PIN_NEGATIVE 2 #define GAP_PAIRING_STATE_SEND_PASSKEY 3 #define GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE 4 #define GAP_PAIRING_STATE_SEND_CONFIRMATION 5 #define GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE 6 // prototypes #ifdef ENABLE_CLASSIC static void hci_update_scan_enable(void); static void hci_emit_discoverable_enabled(uint8_t enabled); static int hci_local_ssp_activated(void); static int hci_remote_ssp_supported(hci_con_handle_t con_handle); static void hci_notify_if_sco_can_send_now(void); static void hci_emit_connection_complete(bd_addr_t address, hci_con_handle_t con_handle, uint8_t status); static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection); static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level); static void hci_connection_timeout_handler(btstack_timer_source_t *timer); static void hci_connection_timestamp(hci_connection_t *connection); static void hci_emit_l2cap_check_timeout(hci_connection_t *conn); static void gap_inquiry_explode(uint8_t * packet); #endif static int hci_power_control_on(void); static void hci_power_control_off(void); static void hci_state_reset(void); static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason); static void hci_emit_nr_connections_changed(void); static void hci_emit_hci_open_failed(void); static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status); static void hci_emit_event(uint8_t * event, uint16_t size, int dump); static void hci_emit_acl_packet(uint8_t * packet, uint16_t size); static void hci_run(void); static int hci_is_le_connection(hci_connection_t * connection); static int hci_number_free_acl_slots_for_connection_type( bd_addr_type_t address_type); #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL // called from test/ble_client/advertising_data_parser.c void le_handle_advertisement_report(uint8_t *packet, uint16_t size); static void hci_remove_from_whitelist(bd_addr_type_t address_type, bd_addr_t address); static hci_connection_t * gap_get_outgoing_connection(void); #endif #endif // the STACK is here #ifndef HAVE_MALLOC static hci_stack_t hci_stack_static; #endif static hci_stack_t * hci_stack = NULL; #ifdef ENABLE_CLASSIC // default name static const char * default_classic_name = "BTstack 00:00:00:00:00:00"; // test helper static uint8_t disable_l2cap_timeouts = 0; #endif /** * create connection for given address * * @return connection OR NULL, if no memory left */ static hci_connection_t * create_connection_for_bd_addr_and_type(bd_addr_t addr, bd_addr_type_t addr_type){ log_info("create_connection_for_addr %s, type %x", bd_addr_to_str(addr), addr_type); hci_connection_t * conn = btstack_memory_hci_connection_get(); if (!conn) return NULL; memset(conn, 0, sizeof(hci_connection_t)); bd_addr_copy(conn->address, addr); conn->address_type = addr_type; conn->con_handle = 0xffff; conn->authentication_flags = AUTH_FLAGS_NONE; conn->bonding_flags = 0; conn->requested_security_level = LEVEL_0; #ifdef ENABLE_CLASSIC btstack_run_loop_set_timer_handler(&conn->timeout, hci_connection_timeout_handler); btstack_run_loop_set_timer_context(&conn->timeout, conn); hci_connection_timestamp(conn); #endif conn->acl_recombination_length = 0; conn->acl_recombination_pos = 0; conn->num_acl_packets_sent = 0; conn->num_sco_packets_sent = 0; conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; btstack_linked_list_add(&hci_stack->connections, (btstack_linked_item_t *) conn); return conn; } /** * get le connection parameter range * * @return le connection parameter range struct */ void gap_get_connection_parameter_range(le_connection_parameter_range_t * range){ *range = hci_stack->le_connection_parameter_range; } /** * set le connection parameter range * */ void gap_set_connection_parameter_range(le_connection_parameter_range_t *range){ hci_stack->le_connection_parameter_range = *range; } /** * @brief Test if connection parameters are inside in existing rage * @param conn_interval_min (unit: 1.25ms) * @param conn_interval_max (unit: 1.25ms) * @param conn_latency * @param supervision_timeout (unit: 10ms) * @returns 1 if included */ int gap_connection_parameter_range_included(le_connection_parameter_range_t * existing_range, uint16_t le_conn_interval_min, uint16_t le_conn_interval_max, uint16_t le_conn_latency, uint16_t le_supervision_timeout){ if (le_conn_interval_min < existing_range->le_conn_interval_min) return 0; if (le_conn_interval_max > existing_range->le_conn_interval_max) return 0; if (le_conn_latency < existing_range->le_conn_latency_min) return 0; if (le_conn_latency > existing_range->le_conn_latency_max) return 0; if (le_supervision_timeout < existing_range->le_supervision_timeout_min) return 0; if (le_supervision_timeout > existing_range->le_supervision_timeout_max) return 0; return 1; } /** * @brief Set max number of connections in LE Peripheral role (if Bluetooth Controller supports it) * @note: default: 1 * @param max_peripheral_connections */ #ifdef ENABLE_LE_PERIPHERAL void gap_set_max_number_peripheral_connections(int max_peripheral_connections){ hci_stack->le_max_number_peripheral_connections = max_peripheral_connections; } #endif /** * get hci connections iterator * * @return hci connections iterator */ void hci_connections_get_iterator(btstack_linked_list_iterator_t *it){ btstack_linked_list_iterator_init(it, &hci_stack->connections); } /** * get connection for a given handle * * @return connection OR NULL, if not found */ hci_connection_t * hci_connection_for_handle(hci_con_handle_t con_handle){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * item = (hci_connection_t *) btstack_linked_list_iterator_next(&it); if ( item->con_handle == con_handle ) { return item; } } return NULL; } /** * get connection for given address * * @return connection OR NULL, if not found */ hci_connection_t * hci_connection_for_bd_addr_and_type(bd_addr_t addr, bd_addr_type_t addr_type){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); if (connection->address_type != addr_type) continue; if (memcmp(addr, connection->address, 6) != 0) continue; return connection; } return NULL; } #ifdef ENABLE_CLASSIC #ifdef ENABLE_SCO_OVER_HCI static int hci_number_sco_connections(void){ int connections = 0; btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); if (connection->address_type != BD_ADDR_TYPE_SCO) continue; connections++; } return connections; } #endif static void hci_connection_timeout_handler(btstack_timer_source_t *timer){ hci_connection_t * connection = (hci_connection_t *) btstack_run_loop_get_timer_context(timer); #ifdef HAVE_EMBEDDED_TICK if (btstack_run_loop_embedded_get_ticks() > connection->timestamp + btstack_run_loop_embedded_ticks_for_ms(HCI_CONNECTION_TIMEOUT_MS)){ // connections might be timed out hci_emit_l2cap_check_timeout(connection); } #else if (btstack_run_loop_get_time_ms() > connection->timestamp + HCI_CONNECTION_TIMEOUT_MS){ // connections might be timed out hci_emit_l2cap_check_timeout(connection); } #endif } static void hci_connection_timestamp(hci_connection_t *connection){ #ifdef HAVE_EMBEDDED_TICK connection->timestamp = btstack_run_loop_embedded_get_ticks(); #else connection->timestamp = btstack_run_loop_get_time_ms(); #endif } inline static void connectionSetAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags | flags); } inline static void connectionClearAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags & ~flags); } /** * add authentication flags and reset timer * @note: assumes classic connection * @note: bd_addr is passed in as litle endian uint8_t * as it is called from parsing packets */ static void hci_add_connection_flags_for_flipped_bd_addr(uint8_t *bd_addr, hci_authentication_flags_t flags){ bd_addr_t addr; reverse_bd_addr(bd_addr, addr); hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); if (conn) { connectionSetAuthenticationFlags(conn, flags); hci_connection_timestamp(conn); } } int hci_authentication_active_for_handle(hci_con_handle_t handle){ hci_connection_t * conn = hci_connection_for_handle(handle); if (!conn) return 0; if (conn->authentication_flags & LEGACY_PAIRING_ACTIVE) return 1; if (conn->authentication_flags & SSP_PAIRING_ACTIVE) return 1; return 0; } void gap_drop_link_key_for_bd_addr(bd_addr_t addr){ if (!hci_stack->link_key_db) return; log_info("gap_drop_link_key_for_bd_addr: %s", bd_addr_to_str(addr)); hci_stack->link_key_db->delete_link_key(addr); } void gap_store_link_key_for_bd_addr(bd_addr_t addr, link_key_t link_key, link_key_type_t type){ if (!hci_stack->link_key_db) return; log_info("gap_store_link_key_for_bd_addr: %s, type %u", bd_addr_to_str(addr), type); hci_stack->link_key_db->put_link_key(addr, link_key, type); } void gap_delete_all_link_keys(void){ bd_addr_t addr; link_key_t link_key; link_key_type_t type; btstack_link_key_iterator_t it; int ok = gap_link_key_iterator_init(&it); if (!ok) { log_error("could not initialize iterator"); return; } while (gap_link_key_iterator_get_next(&it, addr, link_key, &type)){ gap_drop_link_key_for_bd_addr(addr); } gap_link_key_iterator_done(&it); } int gap_link_key_iterator_init(btstack_link_key_iterator_t * it){ if (!hci_stack->link_key_db) return 0; if (!hci_stack->link_key_db->iterator_init) return 0; return hci_stack->link_key_db->iterator_init(it); } int gap_link_key_iterator_get_next(btstack_link_key_iterator_t * it, bd_addr_t bd_addr, link_key_t link_key, link_key_type_t * type){ if (!hci_stack->link_key_db) return 0; return hci_stack->link_key_db->iterator_get_next(it, bd_addr, link_key, type); } void gap_link_key_iterator_done(btstack_link_key_iterator_t * it){ if (!hci_stack->link_key_db) return; hci_stack->link_key_db->iterator_done(it); } #endif static int hci_is_le_connection(hci_connection_t * connection){ return connection->address_type == BD_ADDR_TYPE_LE_PUBLIC || connection->address_type == BD_ADDR_TYPE_LE_RANDOM; } /** * count connections */ static int nr_hci_connections(void){ int count = 0; btstack_linked_item_t *it; for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next, count++); return count; } static int hci_number_free_acl_slots_for_connection_type(bd_addr_type_t address_type){ unsigned int num_packets_sent_classic = 0; unsigned int num_packets_sent_le = 0; btstack_linked_item_t *it; for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; if (connection->address_type == BD_ADDR_TYPE_CLASSIC){ num_packets_sent_classic += connection->num_acl_packets_sent; } else { num_packets_sent_le += connection->num_acl_packets_sent; } } log_debug("ACL classic buffers: %u used of %u", num_packets_sent_classic, hci_stack->acl_packets_total_num); int free_slots_classic = hci_stack->acl_packets_total_num - num_packets_sent_classic; int free_slots_le = 0; if (free_slots_classic < 0){ log_error("hci_number_free_acl_slots: outgoing classic packets (%u) > total classic packets (%u)", num_packets_sent_classic, hci_stack->acl_packets_total_num); return 0; } if (hci_stack->le_acl_packets_total_num){ // if we have LE slots, they are used free_slots_le = hci_stack->le_acl_packets_total_num - num_packets_sent_le; if (free_slots_le < 0){ log_error("hci_number_free_acl_slots: outgoing le packets (%u) > total le packets (%u)", num_packets_sent_le, hci_stack->le_acl_packets_total_num); return 0; } } else { // otherwise, classic slots are used for LE, too free_slots_classic -= num_packets_sent_le; if (free_slots_classic < 0){ log_error("hci_number_free_acl_slots: outgoing classic + le packets (%u + %u) > total packets (%u)", num_packets_sent_classic, num_packets_sent_le, hci_stack->acl_packets_total_num); return 0; } } switch (address_type){ case BD_ADDR_TYPE_UNKNOWN: log_error("hci_number_free_acl_slots: unknown address type"); return 0; case BD_ADDR_TYPE_CLASSIC: return free_slots_classic; default: if (hci_stack->le_acl_packets_total_num){ return free_slots_le; } return free_slots_classic; } } int hci_number_free_acl_slots_for_handle(hci_con_handle_t con_handle){ // get connection type hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection){ log_error("hci_number_free_acl_slots: handle 0x%04x not in connection list", con_handle); return 0; } return hci_number_free_acl_slots_for_connection_type(connection->address_type); } #ifdef ENABLE_CLASSIC static int hci_number_free_sco_slots(void){ unsigned int num_sco_packets_sent = 0; btstack_linked_item_t *it; for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; num_sco_packets_sent += connection->num_sco_packets_sent; } if (num_sco_packets_sent > hci_stack->sco_packets_total_num){ log_info("hci_number_free_sco_slots:packets (%u) > total packets (%u)", num_sco_packets_sent, hci_stack->sco_packets_total_num); return 0; } // log_info("hci_number_free_sco_slots u", handle, num_sco_packets_sent); return hci_stack->sco_packets_total_num - num_sco_packets_sent; } #endif // only used to send HCI Host Number Completed Packets static int hci_can_send_comand_packet_transport(void){ if (hci_stack->hci_packet_buffer_reserved) return 0; // check for async hci transport implementations if (hci_stack->hci_transport->can_send_packet_now){ if (!hci_stack->hci_transport->can_send_packet_now(HCI_COMMAND_DATA_PACKET)){ return 0; } } return 1; } // new functions replacing hci_can_send_packet_now[_using_packet_buffer] int hci_can_send_command_packet_now(void){ if (hci_can_send_comand_packet_transport() == 0) return 0; return hci_stack->num_cmd_packets > 0; } static int hci_transport_can_send_prepared_packet_now(uint8_t packet_type){ // check for async hci transport implementations if (!hci_stack->hci_transport->can_send_packet_now) return 1; return hci_stack->hci_transport->can_send_packet_now(packet_type); } static int hci_can_send_prepared_acl_packet_for_address_type(bd_addr_type_t address_type){ if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return 0; return hci_number_free_acl_slots_for_connection_type(address_type) > 0; } int hci_can_send_acl_le_packet_now(void){ if (hci_stack->hci_packet_buffer_reserved) return 0; return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_LE_PUBLIC); } int hci_can_send_prepared_acl_packet_now(hci_con_handle_t con_handle) { if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return 0; return hci_number_free_acl_slots_for_handle(con_handle) > 0; } int hci_can_send_acl_packet_now(hci_con_handle_t con_handle){ if (hci_stack->hci_packet_buffer_reserved) return 0; return hci_can_send_prepared_acl_packet_now(con_handle); } #ifdef ENABLE_CLASSIC int hci_can_send_acl_classic_packet_now(void){ if (hci_stack->hci_packet_buffer_reserved) return 0; return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_CLASSIC); } int hci_can_send_prepared_sco_packet_now(void){ if (!hci_transport_can_send_prepared_packet_now(HCI_SCO_DATA_PACKET)) return 0; if (!hci_stack->synchronous_flow_control_enabled) return 1; return hci_number_free_sco_slots() > 0; } int hci_can_send_sco_packet_now(void){ if (hci_stack->hci_packet_buffer_reserved) return 0; return hci_can_send_prepared_sco_packet_now(); } void hci_request_sco_can_send_now_event(void){ hci_stack->sco_waiting_for_can_send_now = 1; hci_notify_if_sco_can_send_now(); } #endif // used for internal checks in l2cap.c int hci_is_packet_buffer_reserved(void){ return hci_stack->hci_packet_buffer_reserved; } // reserves outgoing packet buffer. @returns 1 if successful int hci_reserve_packet_buffer(void){ if (hci_stack->hci_packet_buffer_reserved) { log_error("hci_reserve_packet_buffer called but buffer already reserved"); return 0; } hci_stack->hci_packet_buffer_reserved = 1; return 1; } void hci_release_packet_buffer(void){ hci_stack->hci_packet_buffer_reserved = 0; } // assumption: synchronous implementations don't provide can_send_packet_now as they don't keep the buffer after the call static int hci_transport_synchronous(void){ return hci_stack->hci_transport->can_send_packet_now == NULL; } static int hci_send_acl_packet_fragments(hci_connection_t *connection){ // log_info("hci_send_acl_packet_fragments %u/%u (con 0x%04x)", hci_stack->acl_fragmentation_pos, hci_stack->acl_fragmentation_total_size, connection->con_handle); // max ACL data packet length depends on connection type (LE vs. Classic) and available buffers uint16_t max_acl_data_packet_length = hci_stack->acl_data_packet_length; if (hci_is_le_connection(connection) && hci_stack->le_data_packets_length > 0){ max_acl_data_packet_length = hci_stack->le_data_packets_length; } // testing: reduce buffer to minimum // max_acl_data_packet_length = 52; log_debug("hci_send_acl_packet_fragments entered"); int err; // multiple packets could be send on a synchronous HCI transport while (1){ log_debug("hci_send_acl_packet_fragments loop entered"); // get current data const uint16_t acl_header_pos = hci_stack->acl_fragmentation_pos - 4; int current_acl_data_packet_length = hci_stack->acl_fragmentation_total_size - hci_stack->acl_fragmentation_pos; int more_fragments = 0; // if ACL packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length if (current_acl_data_packet_length > max_acl_data_packet_length){ more_fragments = 1; current_acl_data_packet_length = max_acl_data_packet_length; } // copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragmnent) if (acl_header_pos > 0){ uint16_t handle_and_flags = little_endian_read_16(hci_stack->hci_packet_buffer, 0); handle_and_flags = (handle_and_flags & 0xcfff) | (1 << 12); little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos, handle_and_flags); } // update header len little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos + 2, current_acl_data_packet_length); // count packet connection->num_acl_packets_sent++; log_debug("hci_send_acl_packet_fragments loop before send (more fragments %d)", more_fragments); // update state for next fragment (if any) as "transport done" might be sent during send_packet already if (more_fragments){ // update start of next fragment to send hci_stack->acl_fragmentation_pos += current_acl_data_packet_length; } else { // done hci_stack->acl_fragmentation_pos = 0; hci_stack->acl_fragmentation_total_size = 0; } // send packet uint8_t * packet = &hci_stack->hci_packet_buffer[acl_header_pos]; const int size = current_acl_data_packet_length + 4; hci_dump_packet(HCI_ACL_DATA_PACKET, 0, packet, size); err = hci_stack->hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size); log_debug("hci_send_acl_packet_fragments loop after send (more fragments %d)", more_fragments); // done yet? if (!more_fragments) break; // can send more? if (!hci_can_send_prepared_acl_packet_now(connection->con_handle)) return err; } log_debug("hci_send_acl_packet_fragments loop over"); // release buffer now for synchronous transport if (hci_transport_synchronous()){ hci_release_packet_buffer(); // notify upper stack that it might be possible to send again uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; hci_emit_event(&event[0], sizeof(event), 0); // don't dump } return err; } // pre: caller has reserved the packet buffer int hci_send_acl_packet_buffer(int size){ // log_info("hci_send_acl_packet_buffer size %u", size); if (!hci_stack->hci_packet_buffer_reserved) { log_error("hci_send_acl_packet_buffer called without reserving packet buffer"); return 0; } uint8_t * packet = hci_stack->hci_packet_buffer; hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); // check for free places on Bluetooth module if (!hci_can_send_prepared_acl_packet_now(con_handle)) { log_error("hci_send_acl_packet_buffer called but no free ACL buffers on controller"); hci_release_packet_buffer(); return BTSTACK_ACL_BUFFERS_FULL; } hci_connection_t *connection = hci_connection_for_handle( con_handle); if (!connection) { log_error("hci_send_acl_packet_buffer called but no connection for handle 0x%04x", con_handle); hci_release_packet_buffer(); return 0; } #ifdef ENABLE_CLASSIC hci_connection_timestamp(connection); #endif // hci_dump_packet( HCI_ACL_DATA_PACKET, 0, packet, size); // setup data hci_stack->acl_fragmentation_total_size = size; hci_stack->acl_fragmentation_pos = 4; // start of L2CAP packet return hci_send_acl_packet_fragments(connection); } #ifdef ENABLE_CLASSIC // pre: caller has reserved the packet buffer int hci_send_sco_packet_buffer(int size){ // log_info("hci_send_acl_packet_buffer size %u", size); if (!hci_stack->hci_packet_buffer_reserved) { log_error("hci_send_acl_packet_buffer called without reserving packet buffer"); return 0; } uint8_t * packet = hci_stack->hci_packet_buffer; // skip checks in loopback mode if (!hci_stack->loopback_mode){ hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); // same for ACL and SCO // check for free places on Bluetooth module if (!hci_can_send_prepared_sco_packet_now()) { log_error("hci_send_sco_packet_buffer called but no free ACL buffers on controller"); hci_release_packet_buffer(); return BTSTACK_ACL_BUFFERS_FULL; } // track send packet in connection struct hci_connection_t *connection = hci_connection_for_handle( con_handle); if (!connection) { log_error("hci_send_sco_packet_buffer called but no connection for handle 0x%04x", con_handle); hci_release_packet_buffer(); return 0; } connection->num_sco_packets_sent++; } hci_dump_packet( HCI_SCO_DATA_PACKET, 0, packet, size); int err = hci_stack->hci_transport->send_packet(HCI_SCO_DATA_PACKET, packet, size); if (hci_transport_synchronous()){ hci_release_packet_buffer(); // notify upper stack that it might be possible to send again uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; hci_emit_event(&event[0], sizeof(event), 0); // don't dump } return err; } #endif static void acl_handler(uint8_t *packet, int size){ // log_info("acl_handler: size %u", size); // get info hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); hci_connection_t *conn = hci_connection_for_handle(con_handle); uint8_t acl_flags = READ_ACL_FLAGS(packet); uint16_t acl_length = READ_ACL_LENGTH(packet); // ignore non-registered handle if (!conn){ log_error( "hci.c: acl_handler called with non-registered handle %u!" , con_handle); return; } // assert packet is complete if (acl_length + 4 != size){ log_error("hci.c: acl_handler called with ACL packet of wrong size %d, expected %u => dropping packet", size, acl_length + 4); return; } #ifdef ENABLE_CLASSIC // update idle timestamp hci_connection_timestamp(conn); #endif #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL hci_stack->host_completed_packets = 1; conn->num_packets_completed++; #endif // handle different packet types switch (acl_flags & 0x03) { case 0x01: // continuation fragment // sanity checks if (conn->acl_recombination_pos == 0) { log_error( "ACL Cont Fragment but no first fragment for handle 0x%02x", con_handle); return; } if (conn->acl_recombination_pos + acl_length > 4 + HCI_ACL_BUFFER_SIZE){ log_error( "ACL Cont Fragment to large: combined packet %u > buffer size %u for handle 0x%02x", conn->acl_recombination_pos + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); conn->acl_recombination_pos = 0; return; } // append fragment payload (header already stored) memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + conn->acl_recombination_pos], &packet[4], acl_length ); conn->acl_recombination_pos += acl_length; // log_error( "ACL Cont Fragment: acl_len %u, combined_len %u, l2cap_len %u", acl_length, // conn->acl_recombination_pos, conn->acl_recombination_length); // forward complete L2CAP packet if complete. if (conn->acl_recombination_pos >= conn->acl_recombination_length + 4 + 4){ // pos already incl. ACL header hci_emit_acl_packet(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], conn->acl_recombination_pos); // reset recombination buffer conn->acl_recombination_length = 0; conn->acl_recombination_pos = 0; } break; case 0x02: { // first fragment // sanity check if (conn->acl_recombination_pos) { log_error( "ACL First Fragment but data in buffer for handle 0x%02x, dropping stale fragments", con_handle); conn->acl_recombination_pos = 0; } // peek into L2CAP packet! uint16_t l2cap_length = READ_L2CAP_LENGTH( packet ); // log_info( "ACL First Fragment: acl_len %u, l2cap_len %u", acl_length, l2cap_length); // compare fragment size to L2CAP packet size if (acl_length >= l2cap_length + 4){ // forward fragment as L2CAP packet hci_emit_acl_packet(packet, acl_length + 4); } else { if (acl_length > HCI_ACL_BUFFER_SIZE){ log_error( "ACL First Fragment to large: fragment %u > buffer size %u for handle 0x%02x", 4 + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); return; } // store first fragment and tweak acl length for complete package memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], packet, acl_length + 4); conn->acl_recombination_pos = acl_length + 4; conn->acl_recombination_length = l2cap_length; little_endian_store_16(conn->acl_recombination_buffer, HCI_INCOMING_PRE_BUFFER_SIZE + 2, l2cap_length +4); } break; } default: log_error( "hci.c: acl_handler called with invalid packet boundary flags %u", acl_flags & 0x03); return; } // execute main loop hci_run(); } static void hci_shutdown_connection(hci_connection_t *conn){ log_info("Connection closed: handle 0x%x, %s", conn->con_handle, bd_addr_to_str(conn->address)); #ifdef ENABLE_CLASSIC #ifdef ENABLE_SCO_OVER_HCI int addr_type = conn->address_type; #endif #endif btstack_run_loop_remove_timer(&conn->timeout); btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); // now it's gone hci_emit_nr_connections_changed(); #ifdef ENABLE_CLASSIC #ifdef ENABLE_SCO_OVER_HCI // update SCO if (addr_type == BD_ADDR_TYPE_SCO && hci_stack->hci_transport && hci_stack->hci_transport->set_sco_config){ hci_stack->hci_transport->set_sco_config(hci_stack->sco_voice_setting_active, hci_number_sco_connections()); } #endif #endif } #ifdef ENABLE_CLASSIC static const uint16_t packet_type_sizes[] = { 0, HCI_ACL_2DH1_SIZE, HCI_ACL_3DH1_SIZE, HCI_ACL_DM1_SIZE, HCI_ACL_DH1_SIZE, 0, 0, 0, HCI_ACL_2DH3_SIZE, HCI_ACL_3DH3_SIZE, HCI_ACL_DM3_SIZE, HCI_ACL_DH3_SIZE, HCI_ACL_2DH5_SIZE, HCI_ACL_3DH5_SIZE, HCI_ACL_DM5_SIZE, HCI_ACL_DH5_SIZE }; static const uint8_t packet_type_feature_requirement_bit[] = { 0, // 3 slot packets 1, // 5 slot packets 25, // EDR 2 mpbs 26, // EDR 3 mbps 39, // 3 slot EDR packts 40, // 5 slot EDR packet }; static const uint16_t packet_type_feature_packet_mask[] = { 0x0f00, // 3 slot packets 0xf000, // 5 slot packets 0x1102, // EDR 2 mpbs 0x2204, // EDR 3 mbps 0x0300, // 3 slot EDR packts 0x3000, // 5 slot EDR packet }; static uint16_t hci_acl_packet_types_for_buffer_size_and_local_features(uint16_t buffer_size, uint8_t * local_supported_features){ // enable packet types based on size uint16_t packet_types = 0; unsigned int i; for (i=0;i<16;i++){ if (packet_type_sizes[i] == 0) continue; if (packet_type_sizes[i] <= buffer_size){ packet_types |= 1 << i; } } // disable packet types due to missing local supported features for (i=0;i> 3] & (1<<(bit_idx & 7))) != 0; if (feature_set) continue; log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, packet_type_feature_packet_mask[i]); packet_types &= ~packet_type_feature_packet_mask[i]; } // flip bits for "may not be used" packet_types ^= 0x3306; return packet_types; } uint16_t hci_usable_acl_packet_types(void){ return hci_stack->packet_types; } #endif uint8_t* hci_get_outgoing_packet_buffer(void){ // hci packet buffer is >= acl data packet length return hci_stack->hci_packet_buffer; } uint16_t hci_max_acl_data_packet_length(void){ return hci_stack->acl_data_packet_length; } #ifdef ENABLE_CLASSIC int hci_extended_sco_link_supported(void){ // No. 31, byte 3, bit 7 return (hci_stack->local_supported_features[3] & (1 << 7)) != 0; } #endif int hci_non_flushable_packet_boundary_flag_supported(void){ // No. 54, byte 6, bit 6 return (hci_stack->local_supported_features[6] & (1 << 6)) != 0; } static int gap_ssp_supported(void){ // No. 51, byte 6, bit 3 return (hci_stack->local_supported_features[6] & (1 << 3)) != 0; } static int hci_classic_supported(void){ #ifdef ENABLE_CLASSIC // No. 37, byte 4, bit 5, = No BR/EDR Support return (hci_stack->local_supported_features[4] & (1 << 5)) == 0; #else return 0; #endif } static int hci_le_supported(void){ #ifdef ENABLE_BLE // No. 37, byte 4, bit 6 = LE Supported (Controller) return (hci_stack->local_supported_features[4] & (1 << 6)) != 0; #else return 0; #endif } #ifdef ENABLE_BLE /** * @brief Get addr type and address used for LE in Advertisements, Scan Responses, */ void gap_le_get_own_address(uint8_t * addr_type, bd_addr_t addr){ *addr_type = hci_stack->le_own_addr_type; if (hci_stack->le_own_addr_type){ memcpy(addr, hci_stack->le_random_address, 6); } else { memcpy(addr, hci_stack->local_bd_addr, 6); } } #ifdef ENABLE_LE_CENTRAL void le_handle_advertisement_report(uint8_t *packet, uint16_t size){ int offset = 3; int num_reports = packet[offset]; offset += 1; int i; // log_info("HCI: handle adv report with num reports: %d", num_reports); uint8_t event[12 + LE_ADVERTISING_DATA_SIZE]; // use upper bound to avoid var size automatic var for (i=0; ile_advertisements_active && hci_stack->le_advertisements_enabled){ // get number of active le slave connections int num_slave_connections = 0; btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it); log_info("state %u, role %u, le_con %u", con->state, con->role, hci_is_le_connection(con)); if (con->state != OPEN) continue; if (con->role != HCI_ROLE_SLAVE) continue; if (!hci_is_le_connection(con)) continue; num_slave_connections++; } log_info("Num LE Peripheral roles: %u of %u", num_slave_connections, hci_stack->le_max_number_peripheral_connections); if (num_slave_connections < hci_stack->le_max_number_peripheral_connections){ hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_ENABLE; } } } #endif #endif #if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API) static uint32_t hci_transport_uart_get_main_baud_rate(void){ if (!hci_stack->config) return 0; uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; // Limit baud rate for Broadcom chipsets to 3 mbps if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION && baud_rate > 3000000){ baud_rate = 3000000; } return baud_rate; } static void hci_initialization_timeout_handler(btstack_timer_source_t * ds){ UNUSED(ds); switch (hci_stack->substate){ case HCI_INIT_W4_SEND_RESET: log_info("Resend HCI Reset"); hci_stack->substate = HCI_INIT_SEND_RESET; hci_stack->num_cmd_packets = 1; hci_run(); break; case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT_LINK_RESET: log_info("Resend HCI Reset - CSR Warm Boot with Link Reset"); if (hci_stack->hci_transport->reset_link){ hci_stack->hci_transport->reset_link(); } // no break - explicit fallthrough to HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT: log_info("Resend HCI Reset - CSR Warm Boot"); hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT; hci_stack->num_cmd_packets = 1; hci_run(); break; case HCI_INIT_W4_SEND_BAUD_CHANGE: if (hci_stack->hci_transport->set_baudrate){ uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); log_info("Local baud rate change to %"PRIu32"(timeout handler)", baud_rate); hci_stack->hci_transport->set_baudrate(baud_rate); } // For CSR, HCI Reset is sent on new baud rate. Don't forget to reset link for H5/BCSP if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO){ if (hci_stack->hci_transport->reset_link){ log_info("Link Reset"); hci_stack->hci_transport->reset_link(); } hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT; hci_run(); } break; case HCI_INIT_W4_CUSTOM_INIT_BCM_DELAY: // otherwise continue hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS; hci_send_cmd(&hci_read_local_supported_commands); break; default: break; } } #endif static void hci_initializing_next_state(void){ hci_stack->substate = (hci_substate_t )( ((int) hci_stack->substate) + 1); } #if defined(ENABLE_CLASSIC) || defined(ENABLE_LE_PERIPHERAL) static void hci_replace_bd_addr_placeholder(uint8_t * data, uint16_t size){ const int bd_addr_string_len = 17; int i = 0; while (i < size - bd_addr_string_len){ if (memcmp(&data[i], "00:00:00:00:00:00", bd_addr_string_len)) { i++; continue; } // set real address memcpy(&data[i], bd_addr_to_str(hci_stack->local_bd_addr), bd_addr_string_len); i += bd_addr_string_len; } } #endif // assumption: hci_can_send_command_packet_now() == true static void hci_initializing_run(void){ log_debug("hci_initializing_run: substate %u, can send %u", hci_stack->substate, hci_can_send_command_packet_now()); switch (hci_stack->substate){ case HCI_INIT_SEND_RESET: hci_state_reset(); #if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API) // prepare reset if command complete not received in 100ms btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); #endif // send command hci_stack->substate = HCI_INIT_W4_SEND_RESET; hci_send_cmd(&hci_reset); break; case HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION: hci_send_cmd(&hci_read_local_version_information); hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION; break; case HCI_INIT_SEND_READ_LOCAL_NAME: hci_send_cmd(&hci_read_local_name); hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_NAME; break; #if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API) case HCI_INIT_SEND_RESET_CSR_WARM_BOOT: hci_state_reset(); // prepare reset if command complete not received in 100ms btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); // send command hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT; hci_send_cmd(&hci_reset); break; case HCI_INIT_SEND_RESET_ST_WARM_BOOT: hci_state_reset(); hci_stack->substate = HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT; hci_send_cmd(&hci_reset); break; case HCI_INIT_SEND_BAUD_CHANGE: { uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer); hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE; hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); // STLC25000D: baudrate change happens within 0.5 s after command was send, // use timer to update baud rate after 100 ms (knowing exactly, when command was sent is non-trivial) if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS){ btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS); btstack_run_loop_add_timer(&hci_stack->timeout); } break; } case HCI_INIT_SEND_BAUD_CHANGE_BCM: { uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer); hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE_BCM; hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); break; } case HCI_INIT_CUSTOM_INIT: // Custom initialization if (hci_stack->chipset && hci_stack->chipset->next_command){ int valid_cmd = (*hci_stack->chipset->next_command)(hci_stack->hci_packet_buffer); if (valid_cmd){ int size = 3 + hci_stack->hci_packet_buffer[2]; hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, hci_stack->hci_packet_buffer, size); switch (valid_cmd) { case BTSTACK_CHIPSET_VALID_COMMAND: hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT; break; case BTSTACK_CHIPSET_WARMSTART_REQUIRED: // CSR Warm Boot: Wait a bit, then send HCI Reset until HCI Command Complete log_info("CSR Warm Boot"); btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO && hci_stack->config && hci_stack->chipset // && hci_stack->chipset->set_baudrate_command -- there's no such command && hci_stack->hci_transport->set_baudrate && hci_transport_uart_get_main_baud_rate()){ hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE; } else { hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT_LINK_RESET; } break; default: // should not get here break; } hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, hci_stack->hci_packet_buffer, size); break; } log_info("Init script done"); // Init script download on Broadcom chipsets causes: if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION || hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_EM_MICROELECTRONIC_MARIN_SA){ // - baud rate to reset, restore UART baud rate if needed int need_baud_change = hci_stack->config && hci_stack->chipset && hci_stack->chipset->set_baudrate_command && hci_stack->hci_transport->set_baudrate && ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; if (need_baud_change) { uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_init; log_info("Local baud rate change to %"PRIu32" after init script (bcm)", baud_rate); hci_stack->hci_transport->set_baudrate(baud_rate); } // - RTS will raise during update, but manual RTS/CTS in WICED port on RedBear Duo cannot handle this // -> Work around: wait a few milliseconds here. log_info("BCM delay after init script"); hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_BCM_DELAY; btstack_run_loop_set_timer(&hci_stack->timeout, 10); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); break; } } // otherwise continue hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS; hci_send_cmd(&hci_read_local_supported_commands); break; case HCI_INIT_SET_BD_ADDR: log_info("Set Public BD ADDR to %s", bd_addr_to_str(hci_stack->custom_bd_addr)); hci_stack->chipset->set_bd_addr_command(hci_stack->custom_bd_addr, hci_stack->hci_packet_buffer); hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); hci_stack->substate = HCI_INIT_W4_SET_BD_ADDR; hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3 + hci_stack->hci_packet_buffer[2]); break; #endif case HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS: log_info("Resend hci_read_local_supported_commands after CSR Warm Boot double reset"); hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS; hci_send_cmd(&hci_read_local_supported_commands); break; case HCI_INIT_READ_BD_ADDR: hci_stack->substate = HCI_INIT_W4_READ_BD_ADDR; hci_send_cmd(&hci_read_bd_addr); break; case HCI_INIT_READ_BUFFER_SIZE: hci_stack->substate = HCI_INIT_W4_READ_BUFFER_SIZE; hci_send_cmd(&hci_read_buffer_size); break; case HCI_INIT_READ_LOCAL_SUPPORTED_FEATURES: hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_FEATURES; hci_send_cmd(&hci_read_local_supported_features); break; #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL case HCI_INIT_SET_CONTROLLER_TO_HOST_FLOW_CONTROL: hci_stack->substate = HCI_INIT_W4_SET_CONTROLLER_TO_HOST_FLOW_CONTROL; hci_send_cmd(&hci_set_controller_to_host_flow_control, 3); // ACL + SCO Flow Control break; case HCI_INIT_HOST_BUFFER_SIZE: hci_stack->substate = HCI_INIT_W4_HOST_BUFFER_SIZE; hci_send_cmd(&hci_host_buffer_size, HCI_HOST_ACL_PACKET_LEN, HCI_HOST_SCO_PACKET_LEN, HCI_HOST_ACL_PACKET_NUM, HCI_HOST_SCO_PACKET_NUM); break; #endif case HCI_INIT_SET_EVENT_MASK: hci_stack->substate = HCI_INIT_W4_SET_EVENT_MASK; if (hci_le_supported()){ hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x3FFFFFFF); } else { // Kensington Bluetooth 2.1 USB Dongle (CSR Chipset) returns an error for 0xffff... hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x1FFFFFFF); } break; #ifdef ENABLE_CLASSIC case HCI_INIT_WRITE_SIMPLE_PAIRING_MODE: hci_stack->substate = HCI_INIT_W4_WRITE_SIMPLE_PAIRING_MODE; hci_send_cmd(&hci_write_simple_pairing_mode, hci_stack->ssp_enable); break; case HCI_INIT_WRITE_PAGE_TIMEOUT: hci_stack->substate = HCI_INIT_W4_WRITE_PAGE_TIMEOUT; hci_send_cmd(&hci_write_page_timeout, 0x6000); // ca. 15 sec break; case HCI_INIT_WRITE_CLASS_OF_DEVICE: hci_stack->substate = HCI_INIT_W4_WRITE_CLASS_OF_DEVICE; hci_send_cmd(&hci_write_class_of_device, hci_stack->class_of_device); break; case HCI_INIT_WRITE_LOCAL_NAME: { hci_stack->substate = HCI_INIT_W4_WRITE_LOCAL_NAME; hci_reserve_packet_buffer(); uint8_t * packet = hci_stack->hci_packet_buffer; // construct HCI Command and send uint16_t opcode = hci_write_local_name.opcode; hci_stack->last_cmd_opcode = opcode; packet[0] = opcode & 0xff; packet[1] = opcode >> 8; packet[2] = DEVICE_NAME_LEN; memset(&packet[3], 0, DEVICE_NAME_LEN); memcpy(&packet[3], hci_stack->local_name, strlen(hci_stack->local_name)); // expand '00:00:00:00:00:00' in name with bd_addr hci_replace_bd_addr_placeholder(&packet[3], DEVICE_NAME_LEN); hci_send_cmd_packet(packet, HCI_CMD_HEADER_SIZE + DEVICE_NAME_LEN); break; } case HCI_INIT_WRITE_EIR_DATA: { hci_stack->substate = HCI_INIT_W4_WRITE_EIR_DATA; hci_reserve_packet_buffer(); uint8_t * packet = hci_stack->hci_packet_buffer; // construct HCI Command and send uint16_t opcode = hci_write_extended_inquiry_response.opcode; hci_stack->last_cmd_opcode = opcode; packet[0] = opcode & 0xff; packet[1] = opcode >> 8; packet[2] = 1 + 240; packet[3] = 0; // FEC not required if (hci_stack->eir_data){ memcpy(&packet[4], hci_stack->eir_data, 240); } else { memset(&packet[4], 0, 240); int name_len = strlen(hci_stack->local_name); packet[4] = name_len + 1; packet[5] = BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME; memcpy(&packet[6], hci_stack->local_name, name_len); } // expand '00:00:00:00:00:00' in name with bd_addr hci_replace_bd_addr_placeholder(&packet[4], 240); hci_send_cmd_packet(packet, HCI_CMD_HEADER_SIZE + 1 + 240); break; } case HCI_INIT_WRITE_INQUIRY_MODE: hci_stack->substate = HCI_INIT_W4_WRITE_INQUIRY_MODE; hci_send_cmd(&hci_write_inquiry_mode, (int) hci_stack->inquiry_mode); break; case HCI_INIT_WRITE_SCAN_ENABLE: hci_send_cmd(&hci_write_scan_enable, (hci_stack->connectable << 1) | hci_stack->discoverable); // page scan hci_stack->substate = HCI_INIT_W4_WRITE_SCAN_ENABLE; break; // only sent if ENABLE_SCO_OVER_HCI is defined case HCI_INIT_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE: hci_stack->substate = HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE; hci_send_cmd(&hci_write_synchronous_flow_control_enable, 1); // SCO tracking enabled break; case HCI_INIT_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING: hci_stack->substate = HCI_INIT_W4_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING; hci_send_cmd(&hci_write_default_erroneous_data_reporting, 1); break; // only sent if ENABLE_SCO_OVER_HCI and manufacturer is Broadcom case HCI_INIT_BCM_WRITE_SCO_PCM_INT: hci_stack->substate = HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT; log_info("BCM: Route SCO data via HCI transport"); hci_send_cmd(&hci_bcm_write_sco_pcm_int, 1, 0, 0, 0, 0); break; #endif #ifdef ENABLE_BLE // LE INIT case HCI_INIT_LE_READ_BUFFER_SIZE: hci_stack->substate = HCI_INIT_W4_LE_READ_BUFFER_SIZE; hci_send_cmd(&hci_le_read_buffer_size); break; case HCI_INIT_LE_SET_EVENT_MASK: hci_stack->substate = HCI_INIT_W4_LE_SET_EVENT_MASK; hci_send_cmd(&hci_le_set_event_mask, 0x1FF, 0x0); break; case HCI_INIT_WRITE_LE_HOST_SUPPORTED: // LE Supported Host = 1, Simultaneous Host = 0 hci_stack->substate = HCI_INIT_W4_WRITE_LE_HOST_SUPPORTED; hci_send_cmd(&hci_write_le_host_supported, 1, 0); break; #endif #ifdef ENABLE_LE_DATA_LENGTH_EXTENSION case HCI_INIT_LE_READ_MAX_DATA_LENGTH: hci_stack->substate = HCI_INIT_W4_LE_READ_MAX_DATA_LENGTH; hci_send_cmd(&hci_le_read_maximum_data_length); break; case HCI_INIT_LE_WRITE_SUGGESTED_DATA_LENGTH: hci_stack->substate = HCI_INIT_W4_LE_WRITE_SUGGESTED_DATA_LENGTH; hci_send_cmd(&hci_le_write_suggested_default_data_length, hci_stack->le_supported_max_tx_octets, hci_stack->le_supported_max_tx_time); break; #endif #ifdef ENABLE_LE_CENTRAL case HCI_INIT_READ_WHITE_LIST_SIZE: hci_stack->substate = HCI_INIT_W4_READ_WHITE_LIST_SIZE; hci_send_cmd(&hci_le_read_white_list_size); break; case HCI_INIT_LE_SET_SCAN_PARAMETERS: // LE Scan Parameters: active scanning, 300 ms interval, 30 ms window, own address type, accept all advs hci_stack->substate = HCI_INIT_W4_LE_SET_SCAN_PARAMETERS; hci_send_cmd(&hci_le_set_scan_parameters, 1, 0x1e0, 0x30, hci_stack->le_own_addr_type, 0); break; #endif default: return; } } static void hci_init_done(void){ // done. tell the app log_info("hci_init_done -> HCI_STATE_WORKING"); hci_stack->state = HCI_STATE_WORKING; hci_emit_state(); hci_run(); } static void hci_initializing_event_handler(uint8_t * packet, uint16_t size){ UNUSED(size); // ok: less than 6 bytes are read from our buffer uint8_t command_completed = 0; if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE){ uint16_t opcode = little_endian_read_16(packet,3); if (opcode == hci_stack->last_cmd_opcode){ command_completed = 1; log_debug("Command complete for expected opcode %04x at substate %u", opcode, hci_stack->substate); } else { log_info("Command complete for different opcode %04x, expected %04x, at substate %u", opcode, hci_stack->last_cmd_opcode, hci_stack->substate); } } if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_STATUS){ uint8_t status = packet[2]; uint16_t opcode = little_endian_read_16(packet,4); if (opcode == hci_stack->last_cmd_opcode){ if (status){ command_completed = 1; log_debug("Command status error 0x%02x for expected opcode %04x at substate %u", status, opcode, hci_stack->substate); } else { log_info("Command status OK for expected opcode %04x, waiting for command complete", opcode); } } else { log_debug("Command status for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode); } } #if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API) // Vendor == CSR if (hci_stack->substate == HCI_INIT_W4_CUSTOM_INIT && hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC){ // TODO: track actual command command_completed = 1; } // Vendor == Toshiba if (hci_stack->substate == HCI_INIT_W4_SEND_BAUD_CHANGE && hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC){ // TODO: track actual command command_completed = 1; // Fix: no HCI Command Complete received, so num_cmd_packets not reset hci_stack->num_cmd_packets = 1; } // Late response (> 100 ms) for HCI Reset e.g. on Toshiba TC35661: // Command complete for HCI Reset arrives after we've resent the HCI Reset command // // HCI Reset // Timeout 100 ms // HCI Reset // Command Complete Reset // HCI Read Local Version Information // Command Complete Reset - but we expected Command Complete Read Local Version Information // hang... // // Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend if (!command_completed && hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE && hci_stack->substate == HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION){ uint16_t opcode = little_endian_read_16(packet,3); if (opcode == hci_reset.opcode){ hci_stack->substate = HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION; return; } } // CSR & H5 // Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend if (!command_completed && hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE && hci_stack->substate == HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS){ uint16_t opcode = little_endian_read_16(packet,3); if (opcode == hci_reset.opcode){ hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS; return; } } // on CSR with BCSP/H5, the reset resend timeout leads to substate == HCI_INIT_SEND_RESET or HCI_INIT_SEND_RESET_CSR_WARM_BOOT // fix: Correct substate and behave as command below if (command_completed){ switch (hci_stack->substate){ case HCI_INIT_SEND_RESET: hci_stack->substate = HCI_INIT_W4_SEND_RESET; break; case HCI_INIT_SEND_RESET_CSR_WARM_BOOT: hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT; break; default: break; } } #endif if (!command_completed) return; int need_baud_change = 0; int need_addr_change = 0; #if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API) need_baud_change = hci_stack->config && hci_stack->chipset && hci_stack->chipset->set_baudrate_command && hci_stack->hci_transport->set_baudrate && ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; need_addr_change = hci_stack->custom_bd_addr_set && hci_stack->chipset && hci_stack->chipset->set_bd_addr_command; #endif switch(hci_stack->substate){ #if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API) case HCI_INIT_SEND_RESET: // on CSR with BCSP/H5, resend triggers resend of HCI Reset and leads to substate == HCI_INIT_SEND_RESET // fix: just correct substate and behave as command below hci_stack->substate = HCI_INIT_W4_SEND_RESET; btstack_run_loop_remove_timer(&hci_stack->timeout); break; case HCI_INIT_W4_SEND_RESET: btstack_run_loop_remove_timer(&hci_stack->timeout); break; case HCI_INIT_W4_SEND_READ_LOCAL_NAME: log_info("Received local name, need baud change %d", need_baud_change); if (need_baud_change){ hci_stack->substate = HCI_INIT_SEND_BAUD_CHANGE; return; } // skip baud change hci_stack->substate = HCI_INIT_CUSTOM_INIT; return; case HCI_INIT_W4_SEND_BAUD_CHANGE: // for STLC2500D, baud rate change already happened. // for others, baud rate gets changed now if ((hci_stack->manufacturer != BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS) && need_baud_change){ uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); log_info("Local baud rate change to %"PRIu32"(w4_send_baud_change)", baud_rate); hci_stack->hci_transport->set_baudrate(baud_rate); } hci_stack->substate = HCI_INIT_CUSTOM_INIT; return; case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT: btstack_run_loop_remove_timer(&hci_stack->timeout); hci_stack->substate = HCI_INIT_CUSTOM_INIT; return; case HCI_INIT_W4_CUSTOM_INIT: // repeat custom init hci_stack->substate = HCI_INIT_CUSTOM_INIT; return; #else case HCI_INIT_W4_SEND_RESET: hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS; return ; #endif case HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS: if (need_baud_change && ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) || (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_EM_MICROELECTRONIC_MARIN_SA))) { hci_stack->substate = HCI_INIT_SEND_BAUD_CHANGE_BCM; return; } if (need_addr_change){ hci_stack->substate = HCI_INIT_SET_BD_ADDR; return; } hci_stack->substate = HCI_INIT_READ_BD_ADDR; return; #if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API) case HCI_INIT_W4_SEND_BAUD_CHANGE_BCM: if (need_baud_change){ uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); log_info("Local baud rate change to %"PRIu32"(w4_send_baud_change_bcm))", baud_rate); hci_stack->hci_transport->set_baudrate(baud_rate); } if (need_addr_change){ hci_stack->substate = HCI_INIT_SET_BD_ADDR; return; } hci_stack->substate = HCI_INIT_READ_BD_ADDR; return; case HCI_INIT_W4_SET_BD_ADDR: // for STLC2500D + ATWILC3000, bd addr change only gets active after sending reset command if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS) || (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ATMEL_CORPORATION)){ hci_stack->substate = HCI_INIT_SEND_RESET_ST_WARM_BOOT; return; } // skipping st warm boot hci_stack->substate = HCI_INIT_READ_BD_ADDR; return; case HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT: hci_stack->substate = HCI_INIT_READ_BD_ADDR; return; #endif case HCI_INIT_W4_READ_BD_ADDR: // only read buffer size if supported if (hci_stack->local_supported_commands[0] & 0x01) { hci_stack->substate = HCI_INIT_READ_BUFFER_SIZE; return; } // skipping read buffer size hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_FEATURES; return; case HCI_INIT_W4_SET_EVENT_MASK: // skip Classic init commands for LE only chipsets if (!hci_classic_supported()){ #ifdef ENABLE_BLE if (hci_le_supported()){ hci_stack->substate = HCI_INIT_LE_READ_BUFFER_SIZE; // skip all classic command return; } #endif log_error("Neither BR/EDR nor LE supported"); hci_init_done(); return; } if (!gap_ssp_supported()){ hci_stack->substate = HCI_INIT_WRITE_PAGE_TIMEOUT; return; } break; #ifdef ENABLE_BLE case HCI_INIT_W4_LE_READ_BUFFER_SIZE: // skip write le host if not supported (e.g. on LE only EM9301) if (hci_stack->local_supported_commands[0] & 0x02) break; hci_stack->substate = HCI_INIT_LE_SET_EVENT_MASK; return; #ifdef ENABLE_LE_DATA_LENGTH_EXTENSION case HCI_INIT_W4_WRITE_LE_HOST_SUPPORTED: log_info("Supported commands %x", hci_stack->local_supported_commands[0] & 0x30); if ((hci_stack->local_supported_commands[0] & 0x30) == 0x30){ hci_stack->substate = HCI_INIT_LE_SET_EVENT_MASK; return; } // explicit fall through to reduce repetitions #endif #ifdef ENABLE_LE_CENTRAL hci_stack->substate = HCI_INIT_READ_WHITE_LIST_SIZE; #else hci_init_done(); #endif return; #endif #ifdef ENABLE_SCO_OVER_HCI case HCI_INIT_W4_WRITE_SCAN_ENABLE: // skip write synchronous flow control if not supported if (hci_stack->local_supported_commands[0] & 0x04) break; hci_stack->substate = HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE; // explicit fall through to reduce repetitions case HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE: // skip write default erroneous data reporting if not supported if (hci_stack->local_supported_commands[0] & 0x08) break; hci_stack->substate = HCI_INIT_W4_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING; // explicit fall through to reduce repetitions case HCI_INIT_W4_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING: // skip bcm set sco pcm config on non-Broadcom chipsets if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) break; hci_stack->substate = HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT; // explicit fall through to reduce repetitions case HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT: if (!hci_le_supported()){ // SKIP LE init for Classic only configuration hci_init_done(); return; } break; #else /* !ENABLE_SCO_OVER_HCI */ case HCI_INIT_W4_WRITE_SCAN_ENABLE: #ifdef ENABLE_BLE if (hci_le_supported()){ hci_stack->substate = HCI_INIT_LE_READ_BUFFER_SIZE; return; } #endif // SKIP LE init for Classic only configuration hci_init_done(); return; #endif /* ENABLE_SCO_OVER_HCI */ // Response to command before init done state -> init done case (HCI_INIT_DONE-1): hci_init_done(); return; default: break; } hci_initializing_next_state(); } static void event_handler(uint8_t *packet, int size){ uint16_t event_length = packet[1]; // assert packet is complete if (size != event_length + 2){ log_error("hci.c: event_handler called with event packet of wrong size %d, expected %u => dropping packet", size, event_length + 2); return; } bd_addr_t addr; bd_addr_type_t addr_type; hci_con_handle_t handle; hci_connection_t * conn; int i; #ifdef ENABLE_CLASSIC uint8_t link_type; #endif // log_info("HCI:EVENT:%02x", hci_event_packet_get_type(packet)); switch (hci_event_packet_get_type(packet)) { case HCI_EVENT_COMMAND_COMPLETE: // get num cmd packets - limit to 1 to reduce complexity hci_stack->num_cmd_packets = packet[2] ? 1 : 0; if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_name)){ if (packet[5]) break; // terminate, name 248 chars packet[6+248] = 0; log_info("local name: %s", &packet[6]); } if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_buffer_size)){ // "The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets" if (hci_stack->state == HCI_STATE_INITIALIZING){ uint16_t acl_len = little_endian_read_16(packet, 6); uint16_t sco_len = packet[8]; // determine usable ACL/SCO payload size hci_stack->acl_data_packet_length = btstack_min(acl_len, HCI_ACL_PAYLOAD_SIZE); hci_stack->sco_data_packet_length = btstack_min(sco_len, HCI_ACL_PAYLOAD_SIZE); hci_stack->acl_packets_total_num = little_endian_read_16(packet, 9); hci_stack->sco_packets_total_num = little_endian_read_16(packet, 11); log_info("hci_read_buffer_size: ACL size module %u -> used %u, count %u / SCO size %u, count %u", acl_len, hci_stack->acl_data_packet_length, hci_stack->acl_packets_total_num, hci_stack->sco_data_packet_length, hci_stack->sco_packets_total_num); } } #ifdef ENABLE_BLE if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_read_buffer_size)){ hci_stack->le_data_packets_length = little_endian_read_16(packet, 6); hci_stack->le_acl_packets_total_num = packet[8]; // determine usable ACL payload size if (HCI_ACL_PAYLOAD_SIZE < hci_stack->le_data_packets_length){ hci_stack->le_data_packets_length = HCI_ACL_PAYLOAD_SIZE; } log_info("hci_le_read_buffer_size: size %u, count %u", hci_stack->le_data_packets_length, hci_stack->le_acl_packets_total_num); } #endif #ifdef ENABLE_LE_DATA_LENGTH_EXTENSION if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_read_maximum_data_length)){ hci_stack->le_supported_max_tx_octets = little_endian_read_16(packet, 6); hci_stack->le_supported_max_tx_time = little_endian_read_16(packet, 8); log_info("hci_le_read_maximum_data_length: tx octets %u, tx time %u us", hci_stack->le_supported_max_tx_octets, hci_stack->le_supported_max_tx_time); } #endif #ifdef ENABLE_LE_CENTRAL if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_read_white_list_size)){ hci_stack->le_whitelist_capacity = packet[6]; log_info("hci_le_read_white_list_size: size %u", hci_stack->le_whitelist_capacity); } #endif if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)) { reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], hci_stack->local_bd_addr); log_info("Local Address, Status: 0x%02x: Addr: %s", packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE], bd_addr_to_str(hci_stack->local_bd_addr)); #ifdef ENABLE_CLASSIC if (hci_stack->link_key_db){ hci_stack->link_key_db->set_local_bd_addr(hci_stack->local_bd_addr); } #endif } #ifdef ENABLE_CLASSIC if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_write_scan_enable)){ hci_emit_discoverable_enabled(hci_stack->discoverable); } if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_inquiry_cancel)){ if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W4_CANCELLED){ hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE; uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0}; hci_emit_event(event, sizeof(event), 1); } } #endif // Note: HCI init checks if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_features)){ memcpy(hci_stack->local_supported_features, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1], 8); #ifdef ENABLE_CLASSIC // determine usable ACL packet types based on host buffer size and supported features hci_stack->packet_types = hci_acl_packet_types_for_buffer_size_and_local_features(HCI_ACL_PAYLOAD_SIZE, &hci_stack->local_supported_features[0]); log_info("Packet types %04x, eSCO %u", hci_stack->packet_types, hci_extended_sco_link_supported()); #endif // Classic/LE log_info("BR/EDR support %u, LE support %u", hci_classic_supported(), hci_le_supported()); } if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_version_information)){ // hci_stack->hci_version = little_endian_read_16(packet, 4); // hci_stack->hci_revision = little_endian_read_16(packet, 6); // hci_stack->lmp_version = little_endian_read_16(packet, 8); hci_stack->manufacturer = little_endian_read_16(packet, 10); // hci_stack->lmp_subversion = little_endian_read_16(packet, 12); log_info("Manufacturer: 0x%04x", hci_stack->manufacturer); } if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_commands)){ hci_stack->local_supported_commands[0] = (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+14] & 0x80) >> 7 | // bit 0 = Octet 14, bit 7 (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+24] & 0x40) >> 5 | // bit 1 = Octet 24, bit 6 (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+10] & 0x10) >> 2 | // bit 2 = Octet 10, bit 4 (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+18] & 0x08) | // bit 3 = Octet 18, bit 3 (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+34] & 0x01) << 4 | // bit 4 = Octet 34, bit 0 (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1+35] & 0x08) << 2; // bit 5 = Octet 35, bit 3 log_info("Local supported commands summary 0x%02x", hci_stack->local_supported_commands[0]); } #ifdef ENABLE_CLASSIC if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_write_synchronous_flow_control_enable)){ if (packet[5] == 0){ hci_stack->synchronous_flow_control_enabled = 1; } } #endif break; case HCI_EVENT_COMMAND_STATUS: // get num cmd packets - limit to 1 to reduce complexity hci_stack->num_cmd_packets = packet[3] ? 1 : 0; break; case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS:{ int offset = 3; for (i=0; iaddress_type == BD_ADDR_TYPE_SCO){ #ifdef ENABLE_CLASSIC if (conn->num_sco_packets_sent >= num_packets){ conn->num_sco_packets_sent -= num_packets; } else { log_error("hci_number_completed_packets, more sco slots freed then sent."); conn->num_sco_packets_sent = 0; } hci_notify_if_sco_can_send_now(); #endif } else { if (conn->num_acl_packets_sent >= num_packets){ conn->num_acl_packets_sent -= num_packets; } else { log_error("hci_number_completed_packets, more acl slots freed then sent."); conn->num_acl_packets_sent = 0; } } // log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u", num_packets, handle, conn->num_acl_packets_sent); } break; } #ifdef ENABLE_CLASSIC case HCI_EVENT_INQUIRY_COMPLETE: if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_ACTIVE){ hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE; uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0}; hci_emit_event(event, sizeof(event), 1); } break; case HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE: if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W4_COMPLETE){ hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_IDLE; } break; case HCI_EVENT_CONNECTION_REQUEST: reverse_bd_addr(&packet[2], addr); // TODO: eval COD 8-10 link_type = packet[11]; log_info("Connection_incoming: %s, type %u", bd_addr_to_str(addr), link_type); addr_type = link_type == 1 ? BD_ADDR_TYPE_CLASSIC : BD_ADDR_TYPE_SCO; conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (!conn) { conn = create_connection_for_bd_addr_and_type(addr, addr_type); } if (!conn) { // CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D) hci_stack->decline_reason = 0x0d; bd_addr_copy(hci_stack->decline_addr, addr); break; } conn->role = HCI_ROLE_SLAVE; conn->state = RECEIVED_CONNECTION_REQUEST; // store info about eSCO if (link_type == 0x02){ conn->remote_supported_feature_eSCO = 1; } hci_run(); break; case HCI_EVENT_CONNECTION_COMPLETE: // Connection management reverse_bd_addr(&packet[5], addr); log_info("Connection_complete (status=%u) %s", packet[2], bd_addr_to_str(addr)); addr_type = BD_ADDR_TYPE_CLASSIC; conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (conn) { if (!packet[2]){ conn->state = OPEN; conn->con_handle = little_endian_read_16(packet, 3); conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES; // restart timer btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); btstack_run_loop_add_timer(&conn->timeout); log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); hci_emit_nr_connections_changed(); } else { int notify_dedicated_bonding_failed = conn->bonding_flags & BONDING_DEDICATED; uint8_t status = packet[2]; bd_addr_t bd_address; memcpy(&bd_address, conn->address, 6); // connection failed, remove entry btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); // notify client if dedicated bonding if (notify_dedicated_bonding_failed){ log_info("hci notify_dedicated_bonding_failed"); hci_emit_dedicated_bonding_result(bd_address, status); } // if authentication error, also delete link key if (packet[2] == 0x05) { gap_drop_link_key_for_bd_addr(addr); } } } break; case HCI_EVENT_SYNCHRONOUS_CONNECTION_COMPLETE: reverse_bd_addr(&packet[5], addr); log_info("Synchronous Connection Complete (status=%u) %s", packet[2], bd_addr_to_str(addr)); if (packet[2]){ // connection failed break; } conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO); if (!conn) { conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO); } if (!conn) { break; } conn->state = OPEN; conn->con_handle = little_endian_read_16(packet, 3); #ifdef ENABLE_SCO_OVER_HCI // update SCO if (conn->address_type == BD_ADDR_TYPE_SCO && hci_stack->hci_transport && hci_stack->hci_transport->set_sco_config){ hci_stack->hci_transport->set_sco_config(hci_stack->sco_voice_setting_active, hci_number_sco_connections()); } #endif break; case HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE: handle = little_endian_read_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; if (!packet[2]){ uint8_t * features = &packet[5]; if (features[6] & (1 << 3)){ conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP; } if (features[3] & (1<<7)){ conn->remote_supported_feature_eSCO = 1; } } conn->bonding_flags |= BONDING_RECEIVED_REMOTE_FEATURES; log_info("HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE, bonding flags %x, eSCO %u", conn->bonding_flags, conn->remote_supported_feature_eSCO); if (conn->bonding_flags & BONDING_DEDICATED){ conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; } break; case HCI_EVENT_LINK_KEY_REQUEST: log_info("HCI_EVENT_LINK_KEY_REQUEST"); hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_LINK_KEY_REQUEST); // non-bondable mode: link key negative reply will be sent by HANDLE_LINK_KEY_REQUEST if (hci_stack->bondable && !hci_stack->link_key_db) break; hci_add_connection_flags_for_flipped_bd_addr(&packet[2], HANDLE_LINK_KEY_REQUEST); hci_run(); // request handled by hci_run() as HANDLE_LINK_KEY_REQUEST gets set return; case HCI_EVENT_LINK_KEY_NOTIFICATION: { reverse_bd_addr(&packet[2], addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); if (!conn) break; conn->authentication_flags |= RECV_LINK_KEY_NOTIFICATION; link_key_type_t link_key_type = (link_key_type_t)packet[24]; // Change Connection Encryption keeps link key type if (link_key_type != CHANGED_COMBINATION_KEY){ conn->link_key_type = link_key_type; } gap_store_link_key_for_bd_addr(addr, &packet[8], conn->link_key_type); // still forward event to allow dismiss of pairing dialog break; } case HCI_EVENT_PIN_CODE_REQUEST: hci_add_connection_flags_for_flipped_bd_addr(&packet[2], LEGACY_PAIRING_ACTIVE); // non-bondable mode: pin code negative reply will be sent if (!hci_stack->bondable){ hci_add_connection_flags_for_flipped_bd_addr(&packet[2], DENY_PIN_CODE_REQUEST); hci_run(); return; } // PIN CODE REQUEST means the link key request didn't succee -> delete stored link key if (!hci_stack->link_key_db) break; hci_event_pin_code_request_get_bd_addr(packet, addr); hci_stack->link_key_db->delete_link_key(addr); break; case HCI_EVENT_IO_CAPABILITY_REQUEST: hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_IO_CAPABILITIES_REQUEST); hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_IO_CAPABILITIES_REPLY); break; case HCI_EVENT_USER_CONFIRMATION_REQUEST: hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); if (!hci_stack->ssp_auto_accept) break; hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_CONFIRM_REPLY); break; case HCI_EVENT_USER_PASSKEY_REQUEST: hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE); if (!hci_stack->ssp_auto_accept) break; hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_PASSKEY_REPLY); break; #endif case HCI_EVENT_ENCRYPTION_CHANGE: handle = little_endian_read_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; if (packet[2] == 0) { if (packet[5]){ conn->authentication_flags |= CONNECTION_ENCRYPTED; } else { conn->authentication_flags &= ~CONNECTION_ENCRYPTED; } } #ifdef ENABLE_CLASSIC hci_emit_security_level(handle, gap_security_level_for_connection(conn)); #endif break; #ifdef ENABLE_CLASSIC case HCI_EVENT_AUTHENTICATION_COMPLETE_EVENT: handle = little_endian_read_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; // dedicated bonding: send result and disconnect if (conn->bonding_flags & BONDING_DEDICATED){ conn->bonding_flags &= ~BONDING_DEDICATED; conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE; conn->bonding_status = packet[2]; break; } if (packet[2] == 0 && gap_security_level_for_link_key_type(conn->link_key_type) >= conn->requested_security_level){ // link key sufficient for requested security conn->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; break; } // not enough hci_emit_security_level(handle, gap_security_level_for_connection(conn)); break; #endif // HCI_EVENT_DISCONNECTION_COMPLETE // has been split, to first notify stack before shutting connection down // see end of function, too. case HCI_EVENT_DISCONNECTION_COMPLETE: if (packet[2]) break; // status != 0 handle = little_endian_read_16(packet, 3); // drop outgoing ACL fragments if it is for closed connection if (hci_stack->acl_fragmentation_total_size > 0) { if (handle == READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer)){ log_info("hci: drop fragmented ACL data for closed connection"); hci_stack->acl_fragmentation_total_size = 0; hci_stack->acl_fragmentation_pos = 0; } } // re-enable advertisements for le connections if active conn = hci_connection_for_handle(handle); if (!conn) break; conn->state = RECEIVED_DISCONNECTION_COMPLETE; #ifdef ENABLE_BLE #ifdef ENABLE_LE_PERIPHERAL if (hci_is_le_connection(conn)){ hci_reenable_advertisements_if_needed(); } #endif #endif break; case HCI_EVENT_HARDWARE_ERROR: log_error("Hardware Error: 0x%02x", packet[2]); if (hci_stack->hardware_error_callback){ (*hci_stack->hardware_error_callback)(packet[2]); } else { // if no special requests, just reboot stack hci_power_control_off(); hci_power_control_on(); } break; #ifdef ENABLE_CLASSIC case HCI_EVENT_ROLE_CHANGE: if (packet[2]) break; // status != 0 reverse_bd_addr(&packet[3], addr); addr_type = BD_ADDR_TYPE_CLASSIC; conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (!conn) break; conn->role = packet[9]; break; #endif case HCI_EVENT_TRANSPORT_PACKET_SENT: // release packet buffer only for asynchronous transport and if there are not further fragements if (hci_transport_synchronous()) { log_error("Synchronous HCI Transport shouldn't send HCI_EVENT_TRANSPORT_PACKET_SENT"); return; // instead of break: to avoid re-entering hci_run() } if (hci_stack->acl_fragmentation_total_size) break; hci_release_packet_buffer(); // L2CAP receives this event via the hci_emit_event below #ifdef ENABLE_CLASSIC // For SCO, we do the can_send_now_check here hci_notify_if_sco_can_send_now(); #endif break; #ifdef ENABLE_CLASSIC case HCI_EVENT_SCO_CAN_SEND_NOW: // For SCO, we do the can_send_now_check here hci_notify_if_sco_can_send_now(); return; // explode inquriy results for easier consumption case HCI_EVENT_INQUIRY_RESULT: case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI: case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE: gap_inquiry_explode(packet); break; #endif #ifdef ENABLE_BLE case HCI_EVENT_LE_META: switch (packet[2]){ #ifdef ENABLE_LE_CENTRAL case HCI_SUBEVENT_LE_ADVERTISING_REPORT: // log_info("advertising report received"); if (!hci_stack->le_scanning_enabled) break; le_handle_advertisement_report(packet, size); break; #endif case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: // Connection management reverse_bd_addr(&packet[8], addr); addr_type = (bd_addr_type_t)packet[7]; log_info("LE Connection_complete (status=%u) type %u, %s", packet[3], addr_type, bd_addr_to_str(addr)); conn = hci_connection_for_bd_addr_and_type(addr, addr_type); #ifdef ENABLE_LE_CENTRAL // if auto-connect, remove from whitelist in both roles if (hci_stack->le_connecting_state == LE_CONNECTING_WHITELIST){ hci_remove_from_whitelist(addr_type, addr); } // handle error: error is reported only to the initiator -> outgoing connection if (packet[3]){ // handle cancelled outgoing connection // "If the cancellation was successful then, after the Command Complete event for the LE_Create_Connection_Cancel command, // either an LE Connection Complete or an LE Enhanced Connection Complete event shall be generated. // In either case, the event shall be sent with the error code Unknown Connection Identifier (0x02)." if (packet[3] == ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER){ conn = gap_get_outgoing_connection(); } // outgoing connection establishment is done hci_stack->le_connecting_state = LE_CONNECTING_IDLE; // remove entry if (conn){ btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); } break; } #endif // on success, both hosts receive connection complete event if (packet[6] == HCI_ROLE_MASTER){ #ifdef ENABLE_LE_CENTRAL // if we're master, it was an outgoing connection and we're done with it hci_stack->le_connecting_state = LE_CONNECTING_IDLE; #endif } else { #ifdef ENABLE_LE_PERIPHERAL // if we're slave, it was an incoming connection, advertisements have stopped hci_stack->le_advertisements_active = 0; #endif } // LE connections are auto-accepted, so just create a connection if there isn't one already if (!conn){ conn = create_connection_for_bd_addr_and_type(addr, addr_type); } // no memory, sorry. if (!conn){ break; } conn->state = OPEN; conn->role = packet[6]; conn->con_handle = little_endian_read_16(packet, 4); #ifdef ENABLE_LE_PERIPHERAL if (packet[6] == HCI_ROLE_SLAVE){ hci_reenable_advertisements_if_needed(); } #endif // TODO: store - role, peer address type, conn_interval, conn_latency, supervision timeout, master clock // restart timer // btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); // btstack_run_loop_add_timer(&conn->timeout); log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); hci_emit_nr_connections_changed(); break; // log_info("LE buffer size: %u, count %u", little_endian_read_16(packet,6), packet[8]); case HCI_SUBEVENT_LE_REMOTE_CONNECTION_PARAMETER_REQUEST: // connection handle = hci_subevent_le_remote_connection_parameter_request_get_connection_handle(packet); conn = hci_connection_for_handle(handle); if (conn) { // read arguments uint16_t le_conn_interval_min = hci_subevent_le_remote_connection_parameter_request_get_interval_min(packet); uint16_t le_conn_interval_max = hci_subevent_le_remote_connection_parameter_request_get_interval_max(packet); uint16_t le_conn_latency = hci_subevent_le_remote_connection_parameter_request_get_latency(packet); uint16_t le_supervision_timeout = hci_subevent_le_remote_connection_parameter_request_get_timeout(packet); // validate against current connection parameter range le_connection_parameter_range_t existing_range; gap_get_connection_parameter_range(&existing_range); int update_parameter = gap_connection_parameter_range_included(&existing_range, le_conn_interval_min, le_conn_interval_max, le_conn_latency, le_supervision_timeout); if (update_parameter){ conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_REPLY; conn->le_conn_interval_min = le_conn_interval_min; conn->le_conn_interval_max = le_conn_interval_max; conn->le_conn_latency = le_conn_latency; conn->le_supervision_timeout = le_supervision_timeout; } else { conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_DENY; } } break; default: break; } break; #endif case HCI_EVENT_VENDOR_SPECIFIC: // Vendor specific commands often create vendor specific event instead of num completed packets // To avoid getting stuck as num_cmds_packets is zero, reset it to 1 for controllers with this behaviour switch (hci_stack->manufacturer){ case BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO: hci_stack->num_cmd_packets = 1; break; default: break; } break; default: break; } // handle BT initialization if (hci_stack->state == HCI_STATE_INITIALIZING){ hci_initializing_event_handler(packet, size); } // help with BT sleep if (hci_stack->state == HCI_STATE_FALLING_ASLEEP && hci_stack->substate == HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE && HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_write_scan_enable)){ hci_initializing_next_state(); } // notify upper stack hci_emit_event(packet, size, 0); // don't dump, already happened in packet handler // moved here to give upper stack a chance to close down everything with hci_connection_t intact if (hci_event_packet_get_type(packet) == HCI_EVENT_DISCONNECTION_COMPLETE){ if (!packet[2]){ handle = little_endian_read_16(packet, 3); hci_connection_t * aConn = hci_connection_for_handle(handle); if (aConn) { uint8_t status = aConn->bonding_status; uint16_t flags = aConn->bonding_flags; bd_addr_t bd_address; memcpy(&bd_address, aConn->address, 6); hci_shutdown_connection(aConn); // connection struct is gone, don't access anymore if (flags & BONDING_EMIT_COMPLETE_ON_DISCONNECT){ hci_emit_dedicated_bonding_result(bd_address, status); } } } } // execute main loop hci_run(); } #ifdef ENABLE_CLASSIC static void sco_handler(uint8_t * packet, uint16_t size){ if (!hci_stack->sco_packet_handler) return; hci_stack->sco_packet_handler(HCI_SCO_DATA_PACKET, 0, packet, size); #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL hci_con_handle_t con_handle = READ_SCO_CONNECTION_HANDLE(packet); hci_connection_t *conn = hci_connection_for_handle(con_handle); if (conn){ conn->num_packets_completed++; hci_stack->host_completed_packets = 1; hci_run(); } #endif } #endif static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ hci_dump_packet(packet_type, 1, packet, size); switch (packet_type) { case HCI_EVENT_PACKET: event_handler(packet, size); break; case HCI_ACL_DATA_PACKET: acl_handler(packet, size); break; #ifdef ENABLE_CLASSIC case HCI_SCO_DATA_PACKET: sco_handler(packet, size); break; #endif default: break; } } /** * @brief Add event packet handler. */ void hci_add_event_handler(btstack_packet_callback_registration_t * callback_handler){ btstack_linked_list_add_tail(&hci_stack->event_handlers, (btstack_linked_item_t*) callback_handler); } /** Register HCI packet handlers */ void hci_register_acl_packet_handler(btstack_packet_handler_t handler){ hci_stack->acl_packet_handler = handler; } #ifdef ENABLE_CLASSIC /** * @brief Registers a packet handler for SCO data. Used for HSP and HFP profiles. */ void hci_register_sco_packet_handler(btstack_packet_handler_t handler){ hci_stack->sco_packet_handler = handler; } #endif static void hci_state_reset(void){ // no connections yet hci_stack->connections = NULL; // keep discoverable/connectable as this has been requested by the client(s) // hci_stack->discoverable = 0; // hci_stack->connectable = 0; // hci_stack->bondable = 1; // hci_stack->own_addr_type = 0; // buffer is free hci_stack->hci_packet_buffer_reserved = 0; // no pending cmds hci_stack->decline_reason = 0; hci_stack->new_scan_enable_value = 0xff; // LE #ifdef ENABLE_BLE memset(hci_stack->le_random_address, 0, 6); hci_stack->le_random_address_set = 0; #endif #ifdef ENABLE_LE_CENTRAL hci_stack->le_scanning_active = 0; hci_stack->le_scan_type = 0xff; hci_stack->le_connecting_state = LE_CONNECTING_IDLE; hci_stack->le_whitelist = 0; hci_stack->le_whitelist_capacity = 0; #endif } #ifdef ENABLE_CLASSIC /** * @brief Configure Bluetooth hardware control. Has to be called before power on. */ void hci_set_link_key_db(btstack_link_key_db_t const * link_key_db){ // store and open remote device db hci_stack->link_key_db = link_key_db; if (hci_stack->link_key_db) { hci_stack->link_key_db->open(); } } #endif void hci_init(const hci_transport_t *transport, const void *config){ #ifdef HAVE_MALLOC if (!hci_stack) { hci_stack = (hci_stack_t*) malloc(sizeof(hci_stack_t)); } #else hci_stack = &hci_stack_static; #endif memset(hci_stack, 0, sizeof(hci_stack_t)); // reference to use transport layer implementation hci_stack->hci_transport = transport; // reference to used config hci_stack->config = config; // setup pointer for outgoing packet buffer hci_stack->hci_packet_buffer = &hci_stack->hci_packet_buffer_data[HCI_OUTGOING_PRE_BUFFER_SIZE]; // max acl payload size defined in config.h hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; // register packet handlers with transport transport->register_packet_handler(&packet_handler); hci_stack->state = HCI_STATE_OFF; // class of device hci_stack->class_of_device = 0x007a020c; // Smartphone // bondable by default hci_stack->bondable = 1; #ifdef ENABLE_CLASSIC // classic name hci_stack->local_name = default_classic_name; // Master slave policy hci_stack->master_slave_policy = 1; #endif // Secure Simple Pairing default: enable, no I/O capabilities, general bonding, mitm not required, auto accept hci_stack->ssp_enable = 1; hci_stack->ssp_io_capability = SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT; hci_stack->ssp_authentication_requirement = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING; hci_stack->ssp_auto_accept = 1; // voice setting - signed 16 bit pcm data with CVSD over the air hci_stack->sco_voice_setting = 0x60; #ifdef ENABLE_LE_CENTRAL // connection parameter to use for outgoing connections hci_stack->le_connection_scan_interval = 0x0060; // 60ms hci_stack->le_connection_scan_window = 0x0030; // 30ms hci_stack->le_connection_interval_min = 0x0008; // 10 ms hci_stack->le_connection_interval_max = 0x0018; // 30 ms hci_stack->le_connection_latency = 4; // 4 hci_stack->le_supervision_timeout = 0x0048; // 720 ms hci_stack->le_minimum_ce_length = 2; // 1.25 ms hci_stack->le_maximum_ce_length = 0x0030; // 30 ms #endif #ifdef ENABLE_LE_PERIPHERAL hci_stack->le_max_number_peripheral_connections = 1; // only single connection as peripheral #endif // connection parameter range used to answer connection parameter update requests in l2cap hci_stack->le_connection_parameter_range.le_conn_interval_min = 6; hci_stack->le_connection_parameter_range.le_conn_interval_max = 3200; hci_stack->le_connection_parameter_range.le_conn_latency_min = 0; hci_stack->le_connection_parameter_range.le_conn_latency_max = 500; hci_stack->le_connection_parameter_range.le_supervision_timeout_min = 10; hci_stack->le_connection_parameter_range.le_supervision_timeout_max = 3200; hci_state_reset(); } /** * @brief Configure Bluetooth chipset driver. Has to be called before power on, or right after receiving the local version information */ void hci_set_chipset(const btstack_chipset_t *chipset_driver){ hci_stack->chipset = chipset_driver; // reset chipset driver - init is also called on power_up if (hci_stack->chipset && hci_stack->chipset->init){ hci_stack->chipset->init(hci_stack->config); } } /** * @brief Configure Bluetooth hardware control. Has to be called after hci_init() but before power on. */ void hci_set_control(const btstack_control_t *hardware_control){ // references to used control implementation hci_stack->control = hardware_control; // init with transport config hardware_control->init(hci_stack->config); } void hci_close(void){ // close remote device db if (hci_stack->link_key_db) { hci_stack->link_key_db->close(); } btstack_linked_list_iterator_t lit; btstack_linked_list_iterator_init(&lit, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&lit)){ // cancel all l2cap connections by emitting dicsconnection complete before shutdown (free) connection hci_connection_t * connection = (hci_connection_t*) btstack_linked_list_iterator_next(&lit); hci_emit_disconnection_complete(connection->con_handle, 0x16); // terminated by local host hci_shutdown_connection(connection); } hci_power_control(HCI_POWER_OFF); #ifdef HAVE_MALLOC free(hci_stack); #endif hci_stack = NULL; } #ifdef ENABLE_CLASSIC void gap_set_class_of_device(uint32_t class_of_device){ hci_stack->class_of_device = class_of_device; } void hci_disable_l2cap_timeout_check(void){ disable_l2cap_timeouts = 1; } #endif #if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API) // Set Public BD ADDR - passed on to Bluetooth chipset if supported in bt_control_h void hci_set_bd_addr(bd_addr_t addr){ memcpy(hci_stack->custom_bd_addr, addr, 6); hci_stack->custom_bd_addr_set = 1; } #endif // State-Module-Driver overview // state module low-level // HCI_STATE_OFF off close // HCI_STATE_INITIALIZING, on open // HCI_STATE_WORKING, on open // HCI_STATE_HALTING, on open // HCI_STATE_SLEEPING, off/sleep close // HCI_STATE_FALLING_ASLEEP on open static int hci_power_control_on(void){ // power on int err = 0; if (hci_stack->control && hci_stack->control->on){ err = (*hci_stack->control->on)(); } if (err){ log_error( "POWER_ON failed"); hci_emit_hci_open_failed(); return err; } // int chipset driver if (hci_stack->chipset && hci_stack->chipset->init){ hci_stack->chipset->init(hci_stack->config); } // init transport if (hci_stack->hci_transport->init){ hci_stack->hci_transport->init(hci_stack->config); } // open transport err = hci_stack->hci_transport->open(); if (err){ log_error( "HCI_INIT failed, turning Bluetooth off again"); if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(); } hci_emit_hci_open_failed(); return err; } return 0; } static void hci_power_control_off(void){ log_info("hci_power_control_off"); // close low-level device hci_stack->hci_transport->close(); log_info("hci_power_control_off - hci_transport closed"); // power off if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(); } log_info("hci_power_control_off - control closed"); hci_stack->state = HCI_STATE_OFF; } static void hci_power_control_sleep(void){ log_info("hci_power_control_sleep"); #if 0 // don't close serial port during sleep // close low-level device hci_stack->hci_transport->close(hci_stack->config); #endif // sleep mode if (hci_stack->control && hci_stack->control->sleep){ (*hci_stack->control->sleep)(); } hci_stack->state = HCI_STATE_SLEEPING; } static int hci_power_control_wake(void){ log_info("hci_power_control_wake"); // wake on if (hci_stack->control && hci_stack->control->wake){ (*hci_stack->control->wake)(); } #if 0 // open low-level device int err = hci_stack->hci_transport->open(hci_stack->config); if (err){ log_error( "HCI_INIT failed, turning Bluetooth off again"); if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(); } hci_emit_hci_open_failed(); return err; } #endif return 0; } static void hci_power_transition_to_initializing(void){ // set up state machine hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent hci_stack->hci_packet_buffer_reserved = 0; hci_stack->state = HCI_STATE_INITIALIZING; hci_stack->substate = HCI_INIT_SEND_RESET; } int hci_power_control(HCI_POWER_MODE power_mode){ log_info("hci_power_control: %d, current mode %u", power_mode, hci_stack->state); int err = 0; switch (hci_stack->state){ case HCI_STATE_OFF: switch (power_mode){ case HCI_POWER_ON: err = hci_power_control_on(); if (err) { log_error("hci_power_control_on() error %d", err); return err; } hci_power_transition_to_initializing(); break; case HCI_POWER_OFF: // do nothing break; case HCI_POWER_SLEEP: // do nothing (with SLEEP == OFF) break; } break; case HCI_STATE_INITIALIZING: switch (power_mode){ case HCI_POWER_ON: // do nothing break; case HCI_POWER_OFF: // no connections yet, just turn it off hci_power_control_off(); break; case HCI_POWER_SLEEP: // no connections yet, just turn it off hci_power_control_sleep(); break; } break; case HCI_STATE_WORKING: switch (power_mode){ case HCI_POWER_ON: // do nothing break; case HCI_POWER_OFF: // see hci_run hci_stack->state = HCI_STATE_HALTING; break; case HCI_POWER_SLEEP: // see hci_run hci_stack->state = HCI_STATE_FALLING_ASLEEP; hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT; break; } break; case HCI_STATE_HALTING: switch (power_mode){ case HCI_POWER_ON: hci_power_transition_to_initializing(); break; case HCI_POWER_OFF: // do nothing break; case HCI_POWER_SLEEP: // see hci_run hci_stack->state = HCI_STATE_FALLING_ASLEEP; hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT; break; } break; case HCI_STATE_FALLING_ASLEEP: switch (power_mode){ case HCI_POWER_ON: #ifdef HAVE_PLATFORM_IPHONE_OS // nothing to do, if H4 supports power management if (btstack_control_iphone_power_management_enabled()){ hci_stack->state = HCI_STATE_INITIALIZING; hci_stack->substate = HCI_INIT_WRITE_SCAN_ENABLE; // init after sleep break; } #endif hci_power_transition_to_initializing(); break; case HCI_POWER_OFF: // see hci_run hci_stack->state = HCI_STATE_HALTING; break; case HCI_POWER_SLEEP: // do nothing break; } break; case HCI_STATE_SLEEPING: switch (power_mode){ case HCI_POWER_ON: #ifdef HAVE_PLATFORM_IPHONE_OS // nothing to do, if H4 supports power management if (btstack_control_iphone_power_management_enabled()){ hci_stack->state = HCI_STATE_INITIALIZING; hci_stack->substate = HCI_INIT_AFTER_SLEEP; hci_update_scan_enable(); break; } #endif err = hci_power_control_wake(); if (err) return err; hci_power_transition_to_initializing(); break; case HCI_POWER_OFF: hci_stack->state = HCI_STATE_HALTING; break; case HCI_POWER_SLEEP: // do nothing break; } break; } // create internal event hci_emit_state(); // trigger next/first action hci_run(); return 0; } #ifdef ENABLE_CLASSIC static void hci_update_scan_enable(void){ // 2 = page scan, 1 = inq scan hci_stack->new_scan_enable_value = hci_stack->connectable << 1 | hci_stack->discoverable; hci_run(); } void gap_discoverable_control(uint8_t enable){ if (enable) enable = 1; // normalize argument if (hci_stack->discoverable == enable){ hci_emit_discoverable_enabled(hci_stack->discoverable); return; } hci_stack->discoverable = enable; hci_update_scan_enable(); } void gap_connectable_control(uint8_t enable){ if (enable) enable = 1; // normalize argument // don't emit event if (hci_stack->connectable == enable) return; hci_stack->connectable = enable; hci_update_scan_enable(); } #endif void gap_local_bd_addr(bd_addr_t address_buffer){ memcpy(address_buffer, hci_stack->local_bd_addr, 6); } #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL static void hci_host_num_completed_packets(void){ // create packet manually as arrays are not supported and num_commands should not get reduced hci_reserve_packet_buffer(); uint8_t * packet = hci_get_outgoing_packet_buffer(); uint16_t size = 0; uint16_t num_handles = 0; packet[size++] = 0x35; packet[size++] = 0x0c; size++; // skip param len size++; // skip num handles // add { handle, packets } entries btstack_linked_item_t * it; for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; if (connection->num_packets_completed){ little_endian_store_16(packet, size, connection->con_handle); size += 2; little_endian_store_16(packet, size, connection->num_packets_completed); size += 2; // num_handles++; connection->num_packets_completed = 0; } } packet[2] = size - 3; packet[3] = num_handles; hci_stack->host_completed_packets = 0; hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size); hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); // release packet buffer for synchronous transport implementations if (hci_transport_synchronous()){ hci_stack->hci_packet_buffer_reserved = 0; } } #endif static void hci_run(void){ // log_info("hci_run: entered"); btstack_linked_item_t * it; // send continuation fragments first, as they block the prepared packet buffer if (hci_stack->acl_fragmentation_total_size > 0) { hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer); hci_connection_t *connection = hci_connection_for_handle(con_handle); if (connection) { if (hci_can_send_prepared_acl_packet_now(con_handle)){ hci_send_acl_packet_fragments(connection); return; } } else { // connection gone -> discard further fragments log_info("hci_run: fragmented ACL packet no connection -> discard fragment"); hci_stack->acl_fragmentation_total_size = 0; hci_stack->acl_fragmentation_pos = 0; } } #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL // send host num completed packets next as they don't require num_cmd_packets > 0 if (!hci_can_send_comand_packet_transport()) return; if (hci_stack->host_completed_packets){ hci_host_num_completed_packets(); return; } #endif if (!hci_can_send_command_packet_now()) return; // global/non-connection oriented commands #ifdef ENABLE_CLASSIC // decline incoming connections if (hci_stack->decline_reason){ uint8_t reason = hci_stack->decline_reason; hci_stack->decline_reason = 0; hci_send_cmd(&hci_reject_connection_request, hci_stack->decline_addr, reason); return; } // send scan enable if (hci_stack->state == HCI_STATE_WORKING && hci_stack->new_scan_enable_value != 0xff && hci_classic_supported()){ hci_send_cmd(&hci_write_scan_enable, hci_stack->new_scan_enable_value); hci_stack->new_scan_enable_value = 0xff; return; } // start/stop inquiry if (hci_stack->inquiry_state >= GAP_INQUIRY_DURATION_MIN && hci_stack->inquiry_state <= GAP_INQUIRY_DURATION_MAX){ uint8_t duration = hci_stack->inquiry_state; hci_stack->inquiry_state = GAP_INQUIRY_STATE_ACTIVE; hci_send_cmd(&hci_inquiry, HCI_INQUIRY_LAP, duration, 0); return; } if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W2_CANCEL){ hci_stack->inquiry_state = GAP_INQUIRY_STATE_W4_CANCELLED; hci_send_cmd(&hci_inquiry_cancel); return; } // remote name request if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W2_SEND){ hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_W4_COMPLETE; hci_send_cmd(&hci_remote_name_request, hci_stack->remote_name_addr, hci_stack->remote_name_page_scan_repetition_mode, 0, hci_stack->remote_name_clock_offset); return; } // pairing if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE){ uint8_t state = hci_stack->gap_pairing_state; hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE; switch (state){ case GAP_PAIRING_STATE_SEND_PIN: hci_send_cmd(&hci_pin_code_request_reply, hci_stack->gap_pairing_addr, strlen(hci_stack->gap_pairing_pin), hci_stack->gap_pairing_pin); break; case GAP_PAIRING_STATE_SEND_PIN_NEGATIVE: hci_send_cmd(&hci_pin_code_request_negative_reply, hci_stack->gap_pairing_addr); break; case GAP_PAIRING_STATE_SEND_PASSKEY: hci_send_cmd(&hci_user_passkey_request_reply, hci_stack->gap_pairing_addr, hci_stack->gap_pairing_passkey); break; case GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE: hci_send_cmd(&hci_user_passkey_request_negative_reply, hci_stack->gap_pairing_addr); break; case GAP_PAIRING_STATE_SEND_CONFIRMATION: hci_send_cmd(&hci_user_confirmation_request_reply, hci_stack->gap_pairing_addr); break; case GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE: hci_send_cmd(&hci_user_confirmation_request_negative_reply, hci_stack->gap_pairing_addr); break; default: break; } return; } #endif #ifdef ENABLE_BLE // advertisements, active scanning, and creating connections requires randaom address to be set if using private address if ((hci_stack->state == HCI_STATE_WORKING) && (hci_stack->le_own_addr_type == BD_ADDR_TYPE_LE_PUBLIC || hci_stack->le_random_address_set)){ #ifdef ENABLE_LE_CENTRAL // handle le scan if ((hci_stack->le_scanning_enabled != hci_stack->le_scanning_active)){ hci_stack->le_scanning_active = hci_stack->le_scanning_enabled; hci_send_cmd(&hci_le_set_scan_enable, hci_stack->le_scanning_enabled, 0); return; } if (hci_stack->le_scan_type != 0xff){ // defaults: active scanning, accept all advertisement packets int scan_type = hci_stack->le_scan_type; hci_stack->le_scan_type = 0xff; hci_send_cmd(&hci_le_set_scan_parameters, scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window, hci_stack->le_own_addr_type, 0); return; } #endif #ifdef ENABLE_LE_PERIPHERAL // le advertisement control if (hci_stack->le_advertisements_todo){ log_info("hci_run: gap_le: adv todo: %x", hci_stack->le_advertisements_todo ); } if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_DISABLE){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_DISABLE; hci_send_cmd(&hci_le_set_advertise_enable, 0); return; } if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_PARAMS){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_PARAMS; hci_send_cmd(&hci_le_set_advertising_parameters, hci_stack->le_advertisements_interval_min, hci_stack->le_advertisements_interval_max, hci_stack->le_advertisements_type, hci_stack->le_own_addr_type, hci_stack->le_advertisements_direct_address_type, hci_stack->le_advertisements_direct_address, hci_stack->le_advertisements_channel_map, hci_stack->le_advertisements_filter_policy); return; } if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_ADV_DATA){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_ADV_DATA; uint8_t adv_data_clean[31]; memset(adv_data_clean, 0, sizeof(adv_data_clean)); memcpy(adv_data_clean, hci_stack->le_advertisements_data, hci_stack->le_advertisements_data_len); hci_replace_bd_addr_placeholder(adv_data_clean, hci_stack->le_advertisements_data_len); hci_send_cmd(&hci_le_set_advertising_data, hci_stack->le_advertisements_data_len, adv_data_clean); return; } if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA; uint8_t scan_data_clean[31]; memset(scan_data_clean, 0, sizeof(scan_data_clean)); memcpy(scan_data_clean, hci_stack->le_scan_response_data, hci_stack->le_scan_response_data_len); hci_replace_bd_addr_placeholder(scan_data_clean, hci_stack->le_scan_response_data_len); hci_send_cmd(&hci_le_set_scan_response_data, hci_stack->le_scan_response_data_len, hci_stack->le_scan_response_data); return; } if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_ENABLE){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_ENABLE; hci_send_cmd(&hci_le_set_advertise_enable, 1); return; } #endif #ifdef ENABLE_LE_CENTRAL // // LE Whitelist Management // // check if whitelist needs modification btstack_linked_list_iterator_t lit; int modification_pending = 0; btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&lit)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit); if (entry->state & (LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER)){ modification_pending = 1; break; } } if (modification_pending){ // stop connnecting if modification pending if (hci_stack->le_connecting_state != LE_CONNECTING_IDLE){ hci_send_cmd(&hci_le_create_connection_cancel); return; } // add/remove entries btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&lit)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit); if (entry->state & LE_WHITELIST_ADD_TO_CONTROLLER){ entry->state = LE_WHITELIST_ON_CONTROLLER; hci_send_cmd(&hci_le_add_device_to_white_list, entry->address_type, entry->address); return; } if (entry->state & LE_WHITELIST_REMOVE_FROM_CONTROLLER){ bd_addr_t address; bd_addr_type_t address_type = entry->address_type; memcpy(address, entry->address, 6); btstack_linked_list_remove(&hci_stack->le_whitelist, (btstack_linked_item_t *) entry); btstack_memory_whitelist_entry_free(entry); hci_send_cmd(&hci_le_remove_device_from_white_list, address_type, address); return; } } } // start connecting if ( hci_stack->le_connecting_state == LE_CONNECTING_IDLE && !btstack_linked_list_empty(&hci_stack->le_whitelist)){ bd_addr_t null_addr; memset(null_addr, 0, 6); hci_send_cmd(&hci_le_create_connection, hci_stack->le_connection_scan_interval, // scan interval: 60 ms hci_stack->le_connection_scan_window, // scan interval: 30 ms 1, // use whitelist 0, // peer address type null_addr, // peer bd addr hci_stack->le_own_addr_type, // our addr type: hci_stack->le_connection_interval_min, // conn interval min hci_stack->le_connection_interval_max, // conn interval max hci_stack->le_connection_latency, // conn latency hci_stack->le_supervision_timeout, // conn latency hci_stack->le_minimum_ce_length, // min ce length hci_stack->le_maximum_ce_length // max ce length ); return; } #endif } #endif // send pending HCI commands for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; switch(connection->state){ case SEND_CREATE_CONNECTION: switch(connection->address_type){ #ifdef ENABLE_CLASSIC case BD_ADDR_TYPE_CLASSIC: log_info("sending hci_create_connection"); hci_send_cmd(&hci_create_connection, connection->address, hci_usable_acl_packet_types(), 0, 0, 0, 1); break; #endif default: #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL log_info("sending hci_le_create_connection"); hci_send_cmd(&hci_le_create_connection, hci_stack->le_connection_scan_interval, // conn scan interval hci_stack->le_connection_scan_window, // conn scan windows 0, // don't use whitelist connection->address_type, // peer address type connection->address, // peer bd addr hci_stack->le_own_addr_type, // our addr type: hci_stack->le_connection_interval_min, // conn interval min hci_stack->le_connection_interval_max, // conn interval max hci_stack->le_connection_latency, // conn latency hci_stack->le_supervision_timeout, // conn latency hci_stack->le_minimum_ce_length, // min ce length hci_stack->le_maximum_ce_length // max ce length ); connection->state = SENT_CREATE_CONNECTION; #endif #endif break; } return; #ifdef ENABLE_CLASSIC case RECEIVED_CONNECTION_REQUEST: connection->role = HCI_ROLE_SLAVE; if (connection->address_type == BD_ADDR_TYPE_CLASSIC){ log_info("sending hci_accept_connection_request, remote eSCO %u", connection->remote_supported_feature_eSCO); connection->state = ACCEPTED_CONNECTION_REQUEST; hci_send_cmd(&hci_accept_connection_request, connection->address, hci_stack->master_slave_policy); } return; #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL case SEND_CANCEL_CONNECTION: connection->state = SENT_CANCEL_CONNECTION; hci_send_cmd(&hci_le_create_connection_cancel); return; #endif #endif case SEND_DISCONNECT: connection->state = SENT_DISCONNECT; hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection return; default: break; } #ifdef ENABLE_CLASSIC if (connection->authentication_flags & HANDLE_LINK_KEY_REQUEST){ log_info("responding to link key request"); connectionClearAuthenticationFlags(connection, HANDLE_LINK_KEY_REQUEST); link_key_t link_key; link_key_type_t link_key_type; if ( hci_stack->link_key_db && hci_stack->link_key_db->get_link_key(connection->address, link_key, &link_key_type) && gap_security_level_for_link_key_type(link_key_type) >= connection->requested_security_level){ connection->link_key_type = link_key_type; hci_send_cmd(&hci_link_key_request_reply, connection->address, &link_key); } else { hci_send_cmd(&hci_link_key_request_negative_reply, connection->address); } return; } if (connection->authentication_flags & DENY_PIN_CODE_REQUEST){ log_info("denying to pin request"); connectionClearAuthenticationFlags(connection, DENY_PIN_CODE_REQUEST); hci_send_cmd(&hci_pin_code_request_negative_reply, connection->address); return; } if (connection->authentication_flags & SEND_IO_CAPABILITIES_REPLY){ connectionClearAuthenticationFlags(connection, SEND_IO_CAPABILITIES_REPLY); log_info("IO Capability Request received, stack bondable %u, io cap %u", hci_stack->bondable, hci_stack->ssp_io_capability); if (hci_stack->bondable && (hci_stack->ssp_io_capability != SSP_IO_CAPABILITY_UNKNOWN)){ // tweak authentication requirements uint8_t authreq = hci_stack->ssp_authentication_requirement; if (connection->bonding_flags & BONDING_DEDICATED){ authreq = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING; } if (gap_mitm_protection_required_for_security_level(connection->requested_security_level)){ authreq |= 1; } hci_send_cmd(&hci_io_capability_request_reply, &connection->address, hci_stack->ssp_io_capability, NULL, authreq); } else { hci_send_cmd(&hci_io_capability_request_negative_reply, &connection->address, ERROR_CODE_PAIRING_NOT_ALLOWED); } return; } if (connection->authentication_flags & SEND_USER_CONFIRM_REPLY){ connectionClearAuthenticationFlags(connection, SEND_USER_CONFIRM_REPLY); hci_send_cmd(&hci_user_confirmation_request_reply, &connection->address); return; } if (connection->authentication_flags & SEND_USER_PASSKEY_REPLY){ connectionClearAuthenticationFlags(connection, SEND_USER_PASSKEY_REPLY); hci_send_cmd(&hci_user_passkey_request_reply, &connection->address, 000000); return; } if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES){ connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES; hci_send_cmd(&hci_read_remote_supported_features_command, connection->con_handle); return; } if (connection->bonding_flags & BONDING_DISCONNECT_DEDICATED_DONE){ connection->bonding_flags &= ~BONDING_DISCONNECT_DEDICATED_DONE; connection->bonding_flags |= BONDING_EMIT_COMPLETE_ON_DISCONNECT; hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // authentication done return; } if (connection->bonding_flags & BONDING_SEND_AUTHENTICATE_REQUEST){ connection->bonding_flags &= ~BONDING_SEND_AUTHENTICATE_REQUEST; hci_send_cmd(&hci_authentication_requested, connection->con_handle); return; } if (connection->bonding_flags & BONDING_SEND_ENCRYPTION_REQUEST){ connection->bonding_flags &= ~BONDING_SEND_ENCRYPTION_REQUEST; hci_send_cmd(&hci_set_connection_encryption, connection->con_handle, 1); return; } #endif if (connection->bonding_flags & BONDING_DISCONNECT_SECURITY_BLOCK){ connection->bonding_flags &= ~BONDING_DISCONNECT_SECURITY_BLOCK; hci_send_cmd(&hci_disconnect, connection->con_handle, 0x0005); // authentication failure return; } #ifdef ENABLE_BLE switch (connection->le_con_parameter_update_state){ // response to L2CAP CON PARAMETER UPDATE REQUEST case CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS: connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; hci_send_cmd(&hci_le_connection_update, connection->con_handle, connection->le_conn_interval_min, connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout, 0x0000, 0xffff); break; case CON_PARAMETER_UPDATE_REPLY: connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; hci_send_cmd(&hci_le_remote_connection_parameter_request_reply, connection->con_handle, connection->le_conn_interval_min, connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout, 0x0000, 0xffff); break; case CON_PARAMETER_UPDATE_NEGATIVE_REPLY: connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; hci_send_cmd(&hci_le_remote_connection_parameter_request_negative_reply, ERROR_CODE_UNSUPPORTED_LMP_PARAMETER_VALUE_UNSUPPORTED_LL_PARAMETER_VALUE); break; default: break; } #endif } hci_connection_t * connection; switch (hci_stack->state){ case HCI_STATE_INITIALIZING: hci_initializing_run(); break; case HCI_STATE_HALTING: log_info("HCI_STATE_HALTING"); // free whitelist entries #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL { btstack_linked_list_iterator_t lit; btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&lit)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit); btstack_linked_list_remove(&hci_stack->le_whitelist, (btstack_linked_item_t *) entry); btstack_memory_whitelist_entry_free(entry); } } #endif #endif // close all open connections connection = (hci_connection_t *) hci_stack->connections; if (connection){ hci_con_handle_t con_handle = (uint16_t) connection->con_handle; if (!hci_can_send_command_packet_now()) return; // check state if (connection->state == SENT_DISCONNECT) return; connection->state = SENT_DISCONNECT; log_info("HCI_STATE_HALTING, connection %p, handle %u", connection, con_handle); // cancel all l2cap connections right away instead of waiting for disconnection complete event ... hci_emit_disconnection_complete(con_handle, 0x16); // terminated by local host // ... which would be ignored anyway as we shutdown (free) the connection now hci_shutdown_connection(connection); // finally, send the disconnect command hci_send_cmd(&hci_disconnect, con_handle, 0x13); // remote closed connection return; } log_info("HCI_STATE_HALTING, calling off"); // switch mode hci_power_control_off(); log_info("HCI_STATE_HALTING, emitting state"); hci_emit_state(); log_info("HCI_STATE_HALTING, done"); break; case HCI_STATE_FALLING_ASLEEP: switch(hci_stack->substate) { case HCI_FALLING_ASLEEP_DISCONNECT: log_info("HCI_STATE_FALLING_ASLEEP"); // close all open connections connection = (hci_connection_t *) hci_stack->connections; #ifdef HAVE_PLATFORM_IPHONE_OS // don't close connections, if H4 supports power management if (btstack_control_iphone_power_management_enabled()){ connection = NULL; } #endif if (connection){ // send disconnect if (!hci_can_send_command_packet_now()) return; log_info("HCI_STATE_FALLING_ASLEEP, connection %p, handle %u", connection, (uint16_t)connection->con_handle); hci_send_cmd(&hci_disconnect, connection->con_handle, 0x13); // remote closed connection // send disconnected event right away - causes higher layer connections to get closed, too. hci_shutdown_connection(connection); return; } if (hci_classic_supported()){ // disable page and inquiry scan if (!hci_can_send_command_packet_now()) return; log_info("HCI_STATE_HALTING, disabling inq scans"); hci_send_cmd(&hci_write_scan_enable, hci_stack->connectable << 1); // drop inquiry scan but keep page scan // continue in next sub state hci_stack->substate = HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE; break; } // no break - fall through for ble-only chips case HCI_FALLING_ASLEEP_COMPLETE: log_info("HCI_STATE_HALTING, calling sleep"); #ifdef HAVE_PLATFORM_IPHONE_OS // don't actually go to sleep, if H4 supports power management if (btstack_control_iphone_power_management_enabled()){ // SLEEP MODE reached hci_stack->state = HCI_STATE_SLEEPING; hci_emit_state(); break; } #endif // switch mode hci_power_control_sleep(); // changes hci_stack->state to SLEEP hci_emit_state(); break; default: break; } break; default: break; } } int hci_send_cmd_packet(uint8_t *packet, int size){ // house-keeping if (IS_COMMAND(packet, hci_write_loopback_mode)){ hci_stack->loopback_mode = packet[3]; } #ifdef ENABLE_CLASSIC bd_addr_t addr; hci_connection_t * conn; // create_connection? if (IS_COMMAND(packet, hci_create_connection)){ reverse_bd_addr(&packet[3], addr); log_info("Create_connection to %s", bd_addr_to_str(addr)); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); if (!conn){ conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); if (!conn){ // notify client that alloc failed hci_emit_connection_complete(addr, 0, BTSTACK_MEMORY_ALLOC_FAILED); return 0; // don't sent packet to controller } conn->state = SEND_CREATE_CONNECTION; } log_info("conn state %u", conn->state); switch (conn->state){ // if connection active exists case OPEN: // and OPEN, emit connection complete command, don't send to controller hci_emit_connection_complete(addr, conn->con_handle, 0); return 0; case SEND_CREATE_CONNECTION: // connection created by hci, e.g. dedicated bonding break; default: // otherwise, just ignore as it is already in the open process return 0; } conn->state = SENT_CREATE_CONNECTION; } if (IS_COMMAND(packet, hci_link_key_request_reply)){ hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_REPLY); } if (IS_COMMAND(packet, hci_link_key_request_negative_reply)){ hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_NEGATIVE_REQUEST); } if (IS_COMMAND(packet, hci_delete_stored_link_key)){ if (hci_stack->link_key_db){ reverse_bd_addr(&packet[3], addr); hci_stack->link_key_db->delete_link_key(addr); } } if (IS_COMMAND(packet, hci_pin_code_request_negative_reply) || IS_COMMAND(packet, hci_pin_code_request_reply)){ reverse_bd_addr(&packet[3], addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); if (conn){ connectionClearAuthenticationFlags(conn, LEGACY_PAIRING_ACTIVE); } } if (IS_COMMAND(packet, hci_user_confirmation_request_negative_reply) || IS_COMMAND(packet, hci_user_confirmation_request_reply) || IS_COMMAND(packet, hci_user_passkey_request_negative_reply) || IS_COMMAND(packet, hci_user_passkey_request_reply)) { reverse_bd_addr(&packet[3], addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_CLASSIC); if (conn){ connectionClearAuthenticationFlags(conn, SSP_PAIRING_ACTIVE); } } #ifdef ENABLE_SCO_OVER_HCI // setup_synchronous_connection? Voice setting at offset 22 if (IS_COMMAND(packet, hci_setup_synchronous_connection)){ // TODO: compare to current setting if sco connection already active hci_stack->sco_voice_setting_active = little_endian_read_16(packet, 15); } // accept_synchronus_connection? Voice setting at offset 18 if (IS_COMMAND(packet, hci_accept_synchronous_connection)){ // TODO: compare to current setting if sco connection already active hci_stack->sco_voice_setting_active = little_endian_read_16(packet, 19); } #endif #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_PERIPHERAL if (IS_COMMAND(packet, hci_le_set_random_address)){ hci_stack->le_random_address_set = 1; reverse_bd_addr(&packet[3], hci_stack->le_random_address); } if (IS_COMMAND(packet, hci_le_set_advertise_enable)){ hci_stack->le_advertisements_active = packet[3]; } #endif #ifdef ENABLE_LE_CENTRAL if (IS_COMMAND(packet, hci_le_create_connection)){ // white list used? uint8_t initiator_filter_policy = packet[7]; switch (initiator_filter_policy){ case 0: // whitelist not used hci_stack->le_connecting_state = LE_CONNECTING_DIRECT; break; case 1: hci_stack->le_connecting_state = LE_CONNECTING_WHITELIST; break; default: log_error("Invalid initiator_filter_policy in LE Create Connection %u", initiator_filter_policy); break; } } if (IS_COMMAND(packet, hci_le_create_connection_cancel)){ hci_stack->le_connecting_state = LE_CONNECTING_IDLE; } #endif #endif hci_stack->num_cmd_packets--; hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size); int err = hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); // release packet buffer for synchronous transport implementations if (hci_transport_synchronous() && (packet == hci_stack->hci_packet_buffer)){ hci_stack->hci_packet_buffer_reserved = 0; } return err; } // disconnect because of security block void hci_disconnect_security_block(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return; connection->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK; } // Configure Secure Simple Pairing #ifdef ENABLE_CLASSIC // enable will enable SSP during init void gap_ssp_set_enable(int enable){ hci_stack->ssp_enable = enable; } static int hci_local_ssp_activated(void){ return gap_ssp_supported() && hci_stack->ssp_enable; } // if set, BTstack will respond to io capability request using authentication requirement void gap_ssp_set_io_capability(int io_capability){ hci_stack->ssp_io_capability = io_capability; } void gap_ssp_set_authentication_requirement(int authentication_requirement){ hci_stack->ssp_authentication_requirement = authentication_requirement; } // if set, BTstack will confirm a numberic comparion and enter '000000' if requested void gap_ssp_set_auto_accept(int auto_accept){ hci_stack->ssp_auto_accept = auto_accept; } #endif // va_list part of hci_send_cmd int hci_send_cmd_va_arg(const hci_cmd_t *cmd, va_list argptr){ if (!hci_can_send_command_packet_now()){ log_error("hci_send_cmd called but cannot send packet now"); return 0; } // for HCI INITIALIZATION // log_info("hci_send_cmd: opcode %04x", cmd->opcode); hci_stack->last_cmd_opcode = cmd->opcode; hci_reserve_packet_buffer(); uint8_t * packet = hci_stack->hci_packet_buffer; uint16_t size = hci_cmd_create_from_template(packet, cmd, argptr); return hci_send_cmd_packet(packet, size); } /** * pre: numcmds >= 0 - it's allowed to send a command to the controller */ int hci_send_cmd(const hci_cmd_t *cmd, ...){ va_list argptr; va_start(argptr, cmd); int res = hci_send_cmd_va_arg(cmd, argptr); va_end(argptr); return res; } // Create various non-HCI events. // TODO: generalize, use table similar to hci_create_command static void hci_emit_event(uint8_t * event, uint16_t size, int dump){ // dump packet if (dump) { hci_dump_packet( HCI_EVENT_PACKET, 0, event, size); } // dispatch to all event handlers btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->event_handlers); while (btstack_linked_list_iterator_has_next(&it)){ btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it); entry->callback(HCI_EVENT_PACKET, 0, event, size); } } static void hci_emit_acl_packet(uint8_t * packet, uint16_t size){ if (!hci_stack->acl_packet_handler) return; hci_stack->acl_packet_handler(HCI_ACL_DATA_PACKET, 0, packet, size); } #ifdef ENABLE_CLASSIC static void hci_notify_if_sco_can_send_now(void){ // notify SCO sender if waiting if (!hci_stack->sco_waiting_for_can_send_now) return; if (hci_can_send_sco_packet_now()){ hci_stack->sco_waiting_for_can_send_now = 0; uint8_t event[2] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0 }; hci_dump_packet(HCI_EVENT_PACKET, 1, event, sizeof(event)); hci_stack->sco_packet_handler(HCI_EVENT_PACKET, 0, event, sizeof(event)); } } // parsing end emitting has been merged to reduce code size static void gap_inquiry_explode(uint8_t * packet){ uint8_t event[19+GAP_INQUIRY_MAX_NAME_LEN]; uint8_t * eir_data; ad_context_t context; const uint8_t * name; uint8_t name_len; int event_type = hci_event_packet_get_type(packet); int num_reserved_fields = event_type == HCI_EVENT_INQUIRY_RESULT ? 2 : 1; // 2 for old event, 1 otherwise int num_responses = hci_event_inquiry_result_get_num_responses(packet); // event[1] is set at the end int i; for (i=0; istate); uint8_t event[3]; event[0] = BTSTACK_EVENT_STATE; event[1] = sizeof(event) - 2; event[2] = hci_stack->state; hci_emit_event(event, sizeof(event), 1); } #ifdef ENABLE_CLASSIC static void hci_emit_connection_complete(bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){ uint8_t event[13]; event[0] = HCI_EVENT_CONNECTION_COMPLETE; event[1] = sizeof(event) - 2; event[2] = status; little_endian_store_16(event, 3, con_handle); reverse_bd_addr(address, &event[5]); event[11] = 1; // ACL connection event[12] = 0; // encryption disabled hci_emit_event(event, sizeof(event), 1); } static void hci_emit_l2cap_check_timeout(hci_connection_t *conn){ if (disable_l2cap_timeouts) return; log_info("L2CAP_EVENT_TIMEOUT_CHECK"); uint8_t event[4]; event[0] = L2CAP_EVENT_TIMEOUT_CHECK; event[1] = sizeof(event) - 2; little_endian_store_16(event, 2, conn->con_handle); hci_emit_event(event, sizeof(event), 1); } #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL static void hci_emit_le_connection_complete(uint8_t address_type, bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){ uint8_t event[21]; event[0] = HCI_EVENT_LE_META; event[1] = sizeof(event) - 2; event[2] = HCI_SUBEVENT_LE_CONNECTION_COMPLETE; event[3] = status; little_endian_store_16(event, 4, con_handle); event[6] = 0; // TODO: role event[7] = address_type; reverse_bd_addr(address, &event[8]); little_endian_store_16(event, 14, 0); // interval little_endian_store_16(event, 16, 0); // latency little_endian_store_16(event, 18, 0); // supervision timeout event[20] = 0; // master clock accuracy hci_emit_event(event, sizeof(event), 1); } #endif #endif static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason){ uint8_t event[6]; event[0] = HCI_EVENT_DISCONNECTION_COMPLETE; event[1] = sizeof(event) - 2; event[2] = 0; // status = OK little_endian_store_16(event, 3, con_handle); event[5] = reason; hci_emit_event(event, sizeof(event), 1); } static void hci_emit_nr_connections_changed(void){ log_info("BTSTACK_EVENT_NR_CONNECTIONS_CHANGED %u", nr_hci_connections()); uint8_t event[3]; event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED; event[1] = sizeof(event) - 2; event[2] = nr_hci_connections(); hci_emit_event(event, sizeof(event), 1); } static void hci_emit_hci_open_failed(void){ log_info("BTSTACK_EVENT_POWERON_FAILED"); uint8_t event[2]; event[0] = BTSTACK_EVENT_POWERON_FAILED; event[1] = sizeof(event) - 2; hci_emit_event(event, sizeof(event), 1); } static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status){ log_info("hci_emit_dedicated_bonding_result %u ", status); uint8_t event[9]; int pos = 0; event[pos++] = GAP_EVENT_DEDICATED_BONDING_COMPLETED; event[pos++] = sizeof(event) - 2; event[pos++] = status; reverse_bd_addr(address, &event[pos]); hci_emit_event(event, sizeof(event), 1); } #ifdef ENABLE_CLASSIC static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level){ log_info("hci_emit_security_level %u for handle %x", level, con_handle); uint8_t event[5]; int pos = 0; event[pos++] = GAP_EVENT_SECURITY_LEVEL; event[pos++] = sizeof(event) - 2; little_endian_store_16(event, 2, con_handle); pos += 2; event[pos++] = level; hci_emit_event(event, sizeof(event), 1); } static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection){ if (!connection) return LEVEL_0; if ((connection->authentication_flags & CONNECTION_ENCRYPTED) == 0) return LEVEL_0; return gap_security_level_for_link_key_type(connection->link_key_type); } static void hci_emit_discoverable_enabled(uint8_t enabled){ log_info("BTSTACK_EVENT_DISCOVERABLE_ENABLED %u", enabled); uint8_t event[3]; event[0] = BTSTACK_EVENT_DISCOVERABLE_ENABLED; event[1] = sizeof(event) - 2; event[2] = enabled; hci_emit_event(event, sizeof(event), 1); } #ifdef ENABLE_CLASSIC // query if remote side supports eSCO int hci_remote_esco_supported(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return 0; return connection->remote_supported_feature_eSCO; } // query if remote side supports SSP int hci_remote_ssp_supported(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return 0; return (connection->bonding_flags & BONDING_REMOTE_SUPPORTS_SSP) ? 1 : 0; } int gap_ssp_supported_on_both_sides(hci_con_handle_t handle){ return hci_local_ssp_activated() && hci_remote_ssp_supported(handle); } #endif // GAP API /** * @bbrief enable/disable bonding. default is enabled * @praram enabled */ void gap_set_bondable_mode(int enable){ hci_stack->bondable = enable ? 1 : 0; } /** * @brief Get bondable mode. * @return 1 if bondable */ int gap_get_bondable_mode(void){ return hci_stack->bondable; } /** * @brief map link keys to security levels */ gap_security_level_t gap_security_level_for_link_key_type(link_key_type_t link_key_type){ switch (link_key_type){ case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: return LEVEL_4; case COMBINATION_KEY: case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192: return LEVEL_3; default: return LEVEL_2; } } int gap_mitm_protection_required_for_security_level(gap_security_level_t level){ log_info("gap_mitm_protection_required_for_security_level %u", level); return level > LEVEL_2; } /** * @brief get current security level */ gap_security_level_t gap_security_level(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return LEVEL_0; return gap_security_level_for_connection(connection); } /** * @brief request connection to device to * @result GAP_AUTHENTICATION_RESULT */ void gap_request_security_level(hci_con_handle_t con_handle, gap_security_level_t requested_level){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection){ hci_emit_security_level(con_handle, LEVEL_0); return; } gap_security_level_t current_level = gap_security_level(con_handle); log_info("gap_request_security_level %u, current level %u", requested_level, current_level); if (current_level >= requested_level){ hci_emit_security_level(con_handle, current_level); return; } connection->requested_security_level = requested_level; #if 0 // sending encryption request without a link key results in an error. // TODO: figure out how to use it properly // would enabling ecnryption suffice (>= LEVEL_2)? if (hci_stack->link_key_db){ link_key_type_t link_key_type; link_key_t link_key; if (hci_stack->link_key_db->get_link_key( &connection->address, &link_key, &link_key_type)){ if (gap_security_level_for_link_key_type(link_key_type) >= requested_level){ connection->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; return; } } } #endif // try to authenticate connection connection->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; hci_run(); } /** * @brief start dedicated bonding with device. disconnect after bonding * @param device * @param request MITM protection * @result GAP_DEDICATED_BONDING_COMPLETE */ int gap_dedicated_bonding(bd_addr_t device, int mitm_protection_required){ // create connection state machine hci_connection_t * connection = create_connection_for_bd_addr_and_type(device, BD_ADDR_TYPE_CLASSIC); if (!connection){ return BTSTACK_MEMORY_ALLOC_FAILED; } // delete linkn key gap_drop_link_key_for_bd_addr(device); // configure LEVEL_2/3, dedicated bonding connection->state = SEND_CREATE_CONNECTION; connection->requested_security_level = mitm_protection_required ? LEVEL_3 : LEVEL_2; log_info("gap_dedicated_bonding, mitm %d -> level %u", mitm_protection_required, connection->requested_security_level); connection->bonding_flags = BONDING_DEDICATED; // wait for GAP Security Result and send GAP Dedicated Bonding complete // handle: connnection failure (connection complete != ok) // handle: authentication failure // handle: disconnect on done hci_run(); return 0; } #endif void gap_set_local_name(const char * local_name){ hci_stack->local_name = local_name; } #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL void gap_start_scan(void){ hci_stack->le_scanning_enabled = 1; hci_run(); } void gap_stop_scan(void){ hci_stack->le_scanning_enabled = 0; hci_run(); } void gap_set_scan_parameters(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window){ hci_stack->le_scan_type = scan_type; hci_stack->le_scan_interval = scan_interval; hci_stack->le_scan_window = scan_window; hci_run(); } uint8_t gap_connect(bd_addr_t addr, bd_addr_type_t addr_type){ hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (!conn){ log_info("gap_connect: no connection exists yet, creating context"); conn = create_connection_for_bd_addr_and_type(addr, addr_type); if (!conn){ // notify client that alloc failed hci_emit_le_connection_complete(addr_type, addr, 0, BTSTACK_MEMORY_ALLOC_FAILED); log_info("gap_connect: failed to alloc hci_connection_t"); return GATT_CLIENT_NOT_CONNECTED; // don't sent packet to controller } conn->state = SEND_CREATE_CONNECTION; log_info("gap_connect: send create connection next"); hci_run(); return 0; } if (!hci_is_le_connection(conn) || conn->state == SEND_CREATE_CONNECTION || conn->state == SENT_CREATE_CONNECTION) { hci_emit_le_connection_complete(conn->address_type, conn->address, 0, ERROR_CODE_COMMAND_DISALLOWED); log_error("gap_connect: classic connection or connect is already being created"); return GATT_CLIENT_IN_WRONG_STATE; } log_info("gap_connect: context exists with state %u", conn->state); hci_emit_le_connection_complete(conn->address_type, conn->address, conn->con_handle, 0); hci_run(); return 0; } // @assumption: only a single outgoing LE Connection exists static hci_connection_t * gap_get_outgoing_connection(void){ btstack_linked_item_t *it; for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * conn = (hci_connection_t *) it; if (!hci_is_le_connection(conn)) continue; switch (conn->state){ case SEND_CREATE_CONNECTION: case SENT_CREATE_CONNECTION: case SENT_CANCEL_CONNECTION: return conn; default: break; }; } return NULL; } uint8_t gap_connect_cancel(void){ hci_connection_t * conn = gap_get_outgoing_connection(); if (!conn) return 0; switch (conn->state){ case SEND_CREATE_CONNECTION: // skip sending create connection and emit event instead hci_emit_le_connection_complete(conn->address_type, conn->address, 0, ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER); btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); break; case SENT_CREATE_CONNECTION: // request to send cancel connection conn->state = SEND_CANCEL_CONNECTION; hci_run(); break; default: break; } return 0; } #endif #ifdef ENABLE_LE_CENTRAL /** * @brief Set connection parameters for outgoing connections * @param conn_scan_interval (unit: 0.625 msec), default: 60 ms * @param conn_scan_window (unit: 0.625 msec), default: 30 ms * @param conn_interval_min (unit: 1.25ms), default: 10 ms * @param conn_interval_max (unit: 1.25ms), default: 30 ms * @param conn_latency, default: 4 * @param supervision_timeout (unit: 10ms), default: 720 ms * @param min_ce_length (unit: 0.625ms), default: 10 ms * @param max_ce_length (unit: 0.625ms), default: 30 ms */ void gap_set_connection_parameters(uint16_t conn_scan_interval, uint16_t conn_scan_window, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout, uint16_t min_ce_length, uint16_t max_ce_length){ hci_stack->le_connection_scan_interval = conn_scan_interval; hci_stack->le_connection_scan_window = conn_scan_window; hci_stack->le_connection_interval_min = conn_interval_min; hci_stack->le_connection_interval_max = conn_interval_max; hci_stack->le_connection_latency = conn_latency; hci_stack->le_supervision_timeout = supervision_timeout; hci_stack->le_minimum_ce_length = min_ce_length; hci_stack->le_maximum_ce_length = max_ce_length; } #endif /** * @brief Updates the connection parameters for a given LE connection * @param handle * @param conn_interval_min (unit: 1.25ms) * @param conn_interval_max (unit: 1.25ms) * @param conn_latency * @param supervision_timeout (unit: 10ms) * @returns 0 if ok */ int gap_update_connection_parameters(hci_con_handle_t con_handle, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; connection->le_conn_interval_min = conn_interval_min; connection->le_conn_interval_max = conn_interval_max; connection->le_conn_latency = conn_latency; connection->le_supervision_timeout = supervision_timeout; connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS; hci_run(); return 0; } /** * @brief Request an update of the connection parameter for a given LE connection * @param handle * @param conn_interval_min (unit: 1.25ms) * @param conn_interval_max (unit: 1.25ms) * @param conn_latency * @param supervision_timeout (unit: 10ms) * @returns 0 if ok */ int gap_request_connection_parameter_update(hci_con_handle_t con_handle, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; connection->le_conn_interval_min = conn_interval_min; connection->le_conn_interval_max = conn_interval_max; connection->le_conn_latency = conn_latency; connection->le_supervision_timeout = supervision_timeout; connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_SEND_REQUEST; hci_run(); return 0; } #ifdef ENABLE_LE_PERIPHERAL static void gap_advertisments_changed(void){ // disable advertisements before updating adv, scan data, or adv params if (hci_stack->le_advertisements_active){ hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_DISABLE | LE_ADVERTISEMENT_TASKS_ENABLE; } hci_run(); } /** * @brief Set Advertisement Data * @param advertising_data_length * @param advertising_data (max 31 octets) * @note data is not copied, pointer has to stay valid */ void gap_advertisements_set_data(uint8_t advertising_data_length, uint8_t * advertising_data){ hci_stack->le_advertisements_data_len = advertising_data_length; hci_stack->le_advertisements_data = advertising_data; hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADV_DATA; gap_advertisments_changed(); } /** * @brief Set Scan Response Data * @param advertising_data_length * @param advertising_data (max 31 octets) * @note data is not copied, pointer has to stay valid */ void gap_scan_response_set_data(uint8_t scan_response_data_length, uint8_t * scan_response_data){ hci_stack->le_scan_response_data_len = scan_response_data_length; hci_stack->le_scan_response_data = scan_response_data; hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA; gap_advertisments_changed(); } /** * @brief Set Advertisement Parameters * @param adv_int_min * @param adv_int_max * @param adv_type * @param direct_address_type * @param direct_address * @param channel_map * @param filter_policy * * @note internal use. use gap_advertisements_set_params from gap_le.h instead. */ void hci_le_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type, uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy) { hci_stack->le_advertisements_interval_min = adv_int_min; hci_stack->le_advertisements_interval_max = adv_int_max; hci_stack->le_advertisements_type = adv_type; hci_stack->le_advertisements_direct_address_type = direct_address_typ; hci_stack->le_advertisements_channel_map = channel_map; hci_stack->le_advertisements_filter_policy = filter_policy; memcpy(hci_stack->le_advertisements_direct_address, direct_address, 6); hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; gap_advertisments_changed(); } /** * @brief Enable/Disable Advertisements * @param enabled */ void gap_advertisements_enable(int enabled){ hci_stack->le_advertisements_enabled = enabled; if (enabled && !hci_stack->le_advertisements_active){ hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_ENABLE; } if (!enabled && hci_stack->le_advertisements_active){ hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_DISABLE; } hci_run(); } #endif void hci_le_set_own_address_type(uint8_t own_address_type){ log_info("hci_le_set_own_address_type: old %u, new %u", hci_stack->le_own_addr_type, own_address_type); if (own_address_type == hci_stack->le_own_addr_type) return; hci_stack->le_own_addr_type = own_address_type; #ifdef ENABLE_LE_PERIPHERAL // update advertisement parameters, too hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; gap_advertisments_changed(); #endif #ifdef ENABLE_LE_CENTRAL // note: we don't update scan parameters or modify ongoing connection attempts #endif } #endif uint8_t gap_disconnect(hci_con_handle_t handle){ hci_connection_t * conn = hci_connection_for_handle(handle); if (!conn){ hci_emit_disconnection_complete(handle, 0); return 0; } // ignore if already disconnected if (conn->state == RECEIVED_DISCONNECTION_COMPLETE){ return 0; } conn->state = SEND_DISCONNECT; hci_run(); return 0; } /** * @brief Get connection type * @param con_handle * @result connection_type */ gap_connection_type_t gap_get_connection_type(hci_con_handle_t connection_handle){ hci_connection_t * conn = hci_connection_for_handle(connection_handle); if (!conn) return GAP_CONNECTION_INVALID; switch (conn->address_type){ case BD_ADDR_TYPE_LE_PUBLIC: case BD_ADDR_TYPE_LE_RANDOM: return GAP_CONNECTION_LE; case BD_ADDR_TYPE_SCO: return GAP_CONNECTION_SCO; case BD_ADDR_TYPE_CLASSIC: return GAP_CONNECTION_ACL; default: return GAP_CONNECTION_INVALID; } } #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL /** * @brief Auto Connection Establishment - Start Connecting to device * @param address_typ * @param address * @returns 0 if ok */ int gap_auto_connection_start(bd_addr_type_t address_type, bd_addr_t address){ // check capacity int num_entries = btstack_linked_list_count(&hci_stack->le_whitelist); if (num_entries >= hci_stack->le_whitelist_capacity) return ERROR_CODE_MEMORY_CAPACITY_EXCEEDED; whitelist_entry_t * entry = btstack_memory_whitelist_entry_get(); if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED; entry->address_type = address_type; memcpy(entry->address, address, 6); entry->state = LE_WHITELIST_ADD_TO_CONTROLLER; btstack_linked_list_add(&hci_stack->le_whitelist, (btstack_linked_item_t*) entry); hci_run(); return 0; } static void hci_remove_from_whitelist(bd_addr_type_t address_type, bd_addr_t address){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&it)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it); if (entry->address_type != address_type) continue; if (memcmp(entry->address, address, 6) != 0) continue; if (entry->state & LE_WHITELIST_ON_CONTROLLER){ // remove from controller if already present entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER; continue; } // direclty remove entry from whitelist btstack_linked_list_iterator_remove(&it); btstack_memory_whitelist_entry_free(entry); } } /** * @brief Auto Connection Establishment - Stop Connecting to device * @param address_typ * @param address * @returns 0 if ok */ int gap_auto_connection_stop(bd_addr_type_t address_type, bd_addr_t address){ hci_remove_from_whitelist(address_type, address); hci_run(); return 0; } /** * @brief Auto Connection Establishment - Stop everything * @note Convenience function to stop all active auto connection attempts */ void gap_auto_connection_stop_all(void){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&it)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it); if (entry->state & LE_WHITELIST_ON_CONTROLLER){ // remove from controller if already present entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER; continue; } // directly remove entry from whitelist btstack_linked_list_iterator_remove(&it); btstack_memory_whitelist_entry_free(entry); } hci_run(); } #endif #endif #ifdef ENABLE_CLASSIC /** * @brief Set Extended Inquiry Response data * @param eir_data size 240 bytes, is not copied make sure memory is accessible during stack startup * @note has to be done before stack starts up */ void gap_set_extended_inquiry_response(const uint8_t * data){ hci_stack->eir_data = data; } /** * @brief Start GAP Classic Inquiry * @param duration in 1.28s units * @return 0 if ok * @events: GAP_EVENT_INQUIRY_RESULT, GAP_EVENT_INQUIRY_COMPLETE */ int gap_inquiry_start(uint8_t duration_in_1280ms_units){ if (hci_stack->inquiry_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; if (duration_in_1280ms_units < GAP_INQUIRY_DURATION_MIN || duration_in_1280ms_units > GAP_INQUIRY_DURATION_MAX){ return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; } hci_stack->inquiry_state = duration_in_1280ms_units; hci_run(); return 0; } /** * @brief Stop GAP Classic Inquiry * @returns 0 if ok */ int gap_inquiry_stop(void){ if (hci_stack->inquiry_state >= GAP_INQUIRY_DURATION_MIN || hci_stack->inquiry_state <= GAP_INQUIRY_DURATION_MAX) { // emit inquiry complete event, before it even started uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0}; hci_emit_event(event, sizeof(event), 1); return 0; } if (hci_stack->inquiry_state != GAP_INQUIRY_STATE_ACTIVE) return ERROR_CODE_COMMAND_DISALLOWED; hci_stack->inquiry_state = GAP_INQUIRY_STATE_W2_CANCEL; hci_run(); return 0; } /** * @brief Remote Name Request * @param addr * @param page_scan_repetition_mode * @param clock_offset only used when bit 15 is set * @events: HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE */ int gap_remote_name_request(bd_addr_t addr, uint8_t page_scan_repetition_mode, uint16_t clock_offset){ if (hci_stack->remote_name_state != GAP_REMOTE_NAME_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; memcpy(hci_stack->remote_name_addr, addr, 6); hci_stack->remote_name_page_scan_repetition_mode = page_scan_repetition_mode; hci_stack->remote_name_clock_offset = clock_offset; hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_W2_SEND; hci_run(); return 0; } static int gap_pairing_set_state_and_run(bd_addr_t addr, uint8_t state){ hci_stack->gap_pairing_state = state; memcpy(hci_stack->gap_pairing_addr, addr, 6); hci_run(); return 0; } /** * @brief Legacy Pairing Pin Code Response * @param addr * @param pin * @return 0 if ok */ int gap_pin_code_response(bd_addr_t addr, const char * pin){ if (hci_stack->gap_pairing_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; hci_stack->gap_pairing_pin = pin; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PIN); } /** * @brief Abort Legacy Pairing * @param addr * @param pin * @return 0 if ok */ int gap_pin_code_negative(bd_addr_t addr){ if (hci_stack->gap_pairing_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PIN_NEGATIVE); } /** * @brief SSP Passkey Response * @param addr * @param passkey * @return 0 if ok */ int gap_ssp_passkey_response(bd_addr_t addr, uint32_t passkey){ if (hci_stack->gap_pairing_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; hci_stack->gap_pairing_passkey = passkey; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PASSKEY); } /** * @brief Abort SSP Passkey Entry/Pairing * @param addr * @param pin * @return 0 if ok */ int gap_ssp_passkey_negative(bd_addr_t addr){ if (hci_stack->gap_pairing_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE); } /** * @brief Accept SSP Numeric Comparison * @param addr * @param passkey * @return 0 if ok */ int gap_ssp_confirmation_response(bd_addr_t addr){ if (hci_stack->gap_pairing_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_CONFIRMATION); } /** * @brief Abort SSP Numeric Comparison/Pairing * @param addr * @param pin * @return 0 if ok */ int gap_ssp_confirmation_negative(bd_addr_t addr){ if (hci_stack->gap_pairing_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE); } /** * @brief Set inquiry mode: standard, with RSSI, with RSSI + Extended Inquiry Results. Has to be called before power on. * @param inquiry_mode see bluetooth_defines.h */ void hci_set_inquiry_mode(inquiry_mode_t mode){ hci_stack->inquiry_mode = mode; } /** * @brief Configure Voice Setting for use with SCO data in HSP/HFP */ void hci_set_sco_voice_setting(uint16_t voice_setting){ hci_stack->sco_voice_setting = voice_setting; } /** * @brief Get SCO Voice Setting * @return current voice setting */ uint16_t hci_get_sco_voice_setting(void){ return hci_stack->sco_voice_setting; } /** @brief Get SCO packet length for current SCO Voice setting * @note Using SCO packets of the exact length is required for USB transfer * @return Length of SCO packets in bytes (not audio frames) */ int hci_get_sco_packet_length(void){ // see Core Spec for H2 USB Transfer. if (hci_stack->sco_voice_setting & 0x0020) return 51; return 27; } /** * @brief Sets the master/slave policy * @param policy (0: attempt to become master, 1: let connecting device decide) */ void hci_set_master_slave_policy(uint8_t policy){ hci_stack->master_slave_policy = policy; } #endif HCI_STATE hci_get_state(void){ return hci_stack->state; } /** * @brief Set callback for Bluetooth Hardware Error */ void hci_set_hardware_error_callback(void (*fn)(uint8_t error)){ hci_stack->hardware_error_callback = fn; } void hci_disconnect_all(void){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it); if (con->state == SENT_DISCONNECT) continue; con->state = SEND_DISCONNECT; } hci_run(); } uint16_t hci_get_manufacturer(void){ return hci_stack->manufacturer; } static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){ hci_connection_t * hci_con = hci_connection_for_handle(con_handle); if (!hci_con) return NULL; return &hci_con->sm_connection; } #ifdef ENABLE_BLE // extracted from sm.c to allow enabling of l2cap le data channels without adding sm.c to the build // without sm.c default values from create_connection_for_bd_addr_and_type() resulg in non-encrypted, not-authenticated int gap_encryption_key_size(hci_con_handle_t con_handle){ sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); if (!sm_conn) return 0; // wrong connection if (!sm_conn->sm_connection_encrypted) return 0; return sm_conn->sm_actual_encryption_key_size; } int gap_authenticated(hci_con_handle_t con_handle){ sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); if (!sm_conn) return 0; // wrong connection if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated return sm_conn->sm_connection_authenticated; } authorization_state_t gap_authorization_state(hci_con_handle_t con_handle){ sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); if (!sm_conn) return AUTHORIZATION_UNKNOWN; // wrong connection if (!sm_conn->sm_connection_encrypted) return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized if (!sm_conn->sm_connection_authenticated) return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized return sm_conn->sm_connection_authorization_state; } #endif