//***************************************************************************** // // spp_flowcontrol demo - it provides a SPP that use sincoming flow control // Processing of data is simulated by granting the next // credit only every second in the heartbeat handler // // it doesn't use the LCD to get down to a minimal memory footprint // //***************************************************************************** #include #include #include #include #include #include "bt_control_cc256x.h" #include "hal_board.h" #include "hal_compat.h" #include "hal_usb.h" #include #include #include #include "hci.h" #include "l2cap.h" #include "btstack_memory.h" #include "remote_device_db.h" #include "rfcomm.h" #include "sdp.h" #include "config.h" #define HEARTBEAT_PERIOD_MS 500 static uint8_t rfcomm_channel_nr = 1; static uint16_t rfcomm_channel_id; static uint8_t rfcomm_send_credit = 0; static uint8_t spp_service_buffer[150]; static timer_source_t heartbeat; enum STATE {INIT, W4_CONNECTION, W4_CHANNEL_COMPLETE, ACTIVE} ; enum STATE state = INIT; // Bluetooth logic static void packet_handler (void * connection, uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ bd_addr_t event_addr; uint8_t rfcomm_channel_nr; uint16_t mtu; uint8_t event = packet[0]; if (packet_type == RFCOMM_DATA_PACKET){ // hack: truncate data (we know that the packet is at least on byte bigger packet[size] = 0; puts( (const char *) packet); rfcomm_send_credit = 1; return; } // handle events, ignore data if (packet_type != HCI_EVENT_PACKET) return; switch(state){ case INIT: switch(event){ case BTSTACK_EVENT_STATE: // bt stack activated, get started - set local name if (packet[2] == HCI_STATE_WORKING) { hci_send_cmd(&hci_write_local_name, "BTstack SPP Flow Control"); } break; case HCI_EVENT_COMMAND_COMPLETE: if (COMMAND_COMPLETE_EVENT(packet, hci_read_bd_addr)){ bt_flip_addr(event_addr, &packet[6]); printf("BD-ADDR: %s\n\r", bd_addr_to_str(event_addr)); } break; default: break; } case W4_CONNECTION: switch(event){ case HCI_EVENT_PIN_CODE_REQUEST: // inform about pin code request printf("Pin code request - using '0000'\n\r"); bt_flip_addr(event_addr, &packet[2]); hci_send_cmd(&hci_pin_code_request_reply, &event_addr, 4, "0000"); break; case RFCOMM_EVENT_INCOMING_CONNECTION: // data: event (8), len(8), address(48), channel (8), rfcomm_cid (16) bt_flip_addr(event_addr, &packet[2]); rfcomm_channel_nr = packet[8]; rfcomm_channel_id = READ_BT_16(packet, 9); printf("RFCOMM channel %u requested for %s\n\r", rfcomm_channel_nr, bd_addr_to_str(event_addr)); rfcomm_accept_connection_internal(rfcomm_channel_id); state = W4_CHANNEL_COMPLETE; break; default: break; } case W4_CHANNEL_COMPLETE: if ( event != RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE ) break; // data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16) if (packet[2]) { printf("RFCOMM channel open failed, status %u\n\r", packet[2]); break; } rfcomm_channel_id = READ_BT_16(packet, 12); mtu = READ_BT_16(packet, 14); printf("\n\rRFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n\r", rfcomm_channel_id, mtu); state = ACTIVE; break; case ACTIVE: if (event != RFCOMM_EVENT_CHANNEL_CLOSED) break; rfcomm_channel_id = 0; state = W4_CONNECTION; break; default: break; } } static void run_loop_register_timer(timer_source_t *timer, uint16_t period){ run_loop_set_timer(timer, period); run_loop_add_timer(timer); } static void heartbeat_handler(struct timer *ts){ if (rfcomm_send_credit){ rfcomm_grant_credits(rfcomm_channel_id, 1); rfcomm_send_credit = 0; } run_loop_register_timer(ts, HEARTBEAT_PERIOD_MS); } static void timer_setup(){ // set one-shot timer heartbeat.process = &heartbeat_handler; run_loop_register_timer(&heartbeat, HEARTBEAT_PERIOD_MS); } static void hw_setup(){ // stop watchdog timer WDTCTL = WDTPW + WDTHOLD; //Initialize clock and peripherals halBoardInit(); halBoardStartXT1(); halBoardSetSystemClock(SYSCLK_16MHZ); // init debug UART halUsbInit(); // init LEDs LED_PORT_OUT |= LED_1 | LED_2; LED_PORT_DIR |= LED_1 | LED_2; } static void btstack_setup(){ /// GET STARTED with BTstack /// btstack_memory_init(); run_loop_init(RUN_LOOP_EMBEDDED); // init HCI hci_transport_t * transport = hci_transport_h4_dma_instance(); bt_control_t * control = bt_control_cc256x_instance(); hci_uart_config_t * config = hci_uart_config_cc256x_instance(); remote_device_db_t * remote_db = (remote_device_db_t *) &remote_device_db_memory; hci_init(transport, config, control, remote_db); // use eHCILL bt_control_cc256x_enable_ehcill(1); // init L2CAP l2cap_init(); l2cap_register_packet_handler(packet_handler); // init RFCOMM rfcomm_init(); rfcomm_register_packet_handler(packet_handler); rfcomm_register_service_with_initial_credits_internal(NULL, rfcomm_channel_nr, 100, 1); // reserved channel, mtu=100, 1 credit // init SDP, create record for SPP and register with SDP sdp_init(); memset(spp_service_buffer, 0, sizeof(spp_service_buffer)); service_record_item_t * service_record_item = (service_record_item_t *) spp_service_buffer; sdp_create_spp_service( (uint8_t*) &service_record_item->service_record, 1, "SPP Counter"); printf("SDP service buffer size: %u\n\r", (uint16_t) (sizeof(service_record_item_t) + de_get_len((uint8_t*) &service_record_item->service_record))); sdp_register_service_internal(NULL, service_record_item); } // main int main(void) { hw_setup(); btstack_setup(); timer_setup(); puts("SPP FlowControl Demo: simulates processing on received data...\n\r"); // ready - enable irq used in h4 task __enable_interrupt(); // turn on! hci_power_control(HCI_POWER_ON); // make discoverable hci_discoverable_control(1); // go! run_loop_execute(); // happy compiler! return 0; }