
VERSION 1.1
August 30, 2013

BTstack Getting Started
Using MSP430 Examples

Dr. sc. Milanka Ringwald
Dr. sc. Matthias Ringwald

contact@bluekitchen-gmbh.com

contact@bluekitchen-gmbh.com

1

Contents

1. Get started with BTstack and MSP-EXP430F5438 + CC256x 3
1.1. Hardware Setup 3
1.2. General Tools 3
1.3. Getting BTstack from SVN 4
1.4. CC256x Init Scripts 4
1.5. Compiling the Examples 4
1.6. Loading Firmware 4
1.7. Run the Example 5
2. BTstack Architecture 5
2.1. Single threaded design 5
2.2. No blocking anywhere 5
2.3. No artificially limited buffers/pools 6
2.4. Statically bounded memory 7
3. How to use BTstack 7
3.1. Protocols and services 8
3.2. Memory configuration 8
3.3. Run loop 9
3.4. BTstack initialization 9
3.5. Where to get data - packet handlers 11
3.6. RFCOMM flow control 12
4. Quick Recipes 12
4.1. Periodic time handler 12
4.2. Defining custom HCI command templates 12
4.3. Sending HCI command based on a template 14
4.4. Living with a single output buffer 15
4.5. Become discoverable 17
4.6. Discover remote devices 18
4.7. Pairing of devices 18
4.8. Access an L2CAP service on a remote device 20
4.9. Provide an L2CAP service 21
4.10. Access an RFCOMM service on a remote device 22
4.11. Provide an RFCOMM service 24
4.12. Slowing down RFCOMM data reception 24
4.13. Create SDP records 26
4.14. Query remote SDP service 26
5. Examples 28
5.1. led counter: UART and timer interrupt without Bluetooth 28
5.2. gap inquiry: GAP Inquiry Example 29
5.3. spp counter: SPP Server - Heartbeat Counter over RFCOMM 30
5.4. spp accel: SPP Server - Accelerator Values 33
5.5. spp flowcontrol: SPP Server - Flow Control 33
6. Porting to Other Platforms 34
6.1. Tick Hardware Abstraction Layer 34
6.2. Bluetooth Hardware Control API 34
6.3. HCI Transport Implementation 34

2

6.4. Persistent Storage API 35
7. Integrating with Existing Systems 36
7.1. Adapting BTstack for Single-Threaded Environments 36
7.2. Adapting BTstack for Multi-Threaded Environments 37
Appendix A. BTstack Protocol API 39
A.1. Host Controller Interface (HCI) API 39
A.2. L2CAP API 40
A.3. RFCOMM API 41
A.4. SDP API 43
A.5. SDP Client API 44
Appendix B. Events and Errors 46
Appendix C. Run Loop API 49
Appendix D. Revision History 50

3

Thanks for checking out BTstack! In this manual, we first provide the usual
’quick starter guide’ before highlighting BTstack’s main design choices and go-
ing into more details with a few examples. Finally, we outline the basic steps
when integrating BTstack into existing single-threaded or even multi-threaded
environments. The Revision History is shown in the Appendix D on page 50.

1. Get started with BTstack and MSP-EXP430F5438 + CC256x

1.1. Hardware Setup. We assume that a PAN1315, PAN1317, or PAN1323
module is plugged into RF1 and RF2 of the MSP-EXP430F5438 board and the
”RF3 Adapter board” is used or at least simulated. See User Guide1.

1.2. General Tools. The MSP430 port of BTstack is developed using the Long
Term Support (LTS) version of mspgcc. General information about it and in-
stallation instructions are provided on the MSPGCC Wiki2.

On Unix-based systems, Subversion, make, and Python are usually installed.
If not, use the system’s packet manager to install them.

On Windows, you need to install and configure Subversion, mspgcc, GNU
Make, and Python manually:

• Subversion3 for Windows.
• Optionally Tortoise SVN4: This is a GUI front-end for Subversion that

makes checkouts and other operations easier by integrating them into the
Windows Explorer. 1.2.1). For example, for one Python installation the
path is C:\Python27.
• mspgcc5 for Windows: Download and extract to C:\mspgcc. Add C:

\mspgcc\bin folder to the Windows Path in Environment variable as
explained in Section 1.2.1.
• GNU Make6 for Windows: Add its bin folder to the Windows Path in

Environment Variables. The bin folder is where make.exe resides, and
it’s usually located in C:\ProgramFiles\GnuWin32\bin.
• Python7 for Windows: Add Python installation folder to the Windows

Path in Environment Variables.

1.2.1. Adding paths to the Windows Path variable.

• Go to: Control Panel→System→Advanced tab→Environment Variables.
• The top part contains a list of User variables.
• Click on the Path variable and then click edit.
• Go to the end of the line, then append the path to the list., for example,
C:\mspgcc\bin for mspgcc.
• Ensure that there is a semicolon before and after C:\mspgcc\bin.

1http://processors.wiki.ti.com/index.php/PAN1315EMK User Guide#RF3 Connector
2http://sourceforge.net/apps/mediawiki/mspgcc/index.php?title=MSPGCC Wiki
3http://www.sliksvn.com/en/download
4http://tortoisesvn.net/downloads.html
5http://sourceforge.net/projects/mspgcc/files/Windows/mingw32/
6http://gnuwin32.sourceforge.net/packages/make.htm
7http://www.python.org/getit/

http://processors.wiki.ti.com/index.php/PAN1315EMK_User_Guide#RF3_Connector
http://sourceforge.net/apps/mediawiki/mspgcc/index.php?title=MSPGCC_Wiki
http://www.sliksvn.com/en/download
http://tortoisesvn.net/downloads.html
http://sourceforge.net/projects/mspgcc/files/Windows/mingw32/
http://gnuwin32.sourceforge.net/packages/make.htm
http://www.python.org/getit/

4

1.3. Getting BTstack from SVN. Use Subversion to check out the latest
version. There are two approaches:

• On Windows: Use Tortoise SVN to checkout using the URL:

http : // b t s t a c k . goog l ecode . com/svn/ trunk /

• Use Subversion in a shell: Navigate to a folder where you would like to
checkout BTstack, then type:

svn checkout http : // b t s t a c k . goog l ecode . com/svn/ trunk /

In both cases, Subversion will create the btstack folder and place the code there.

1.4. CC256x Init Scripts. In order to use the CC256x chipset on the PAN13xx
modules, an initialization script must be obtained. Due to licensing restrictions,
this initialization script must be obtained separately as follows:

• Download the BTS file8 for your PAN13xx module.
• Copy the included .bts file into btstack/chipset-cc256x

• In chipset-cc256x, run the Python script: ./convert bts init scripts.py

The common code for all CC256x chipsets is provided by bt control cc256x.c.
During the setup, bt control cc256x instance function is used to get a bt control t
instance and passed to hci init function.

Note: Depending on the PAN13xx module you’re using, you’ll need to update
bluetooth_init_cc25... in the Makefile to match the downloaded file.

1.5. Compiling the Examples. Go to btstack/MSP-EXP430F5438-CC256x/

example folder in command prompt and run make. If all the paths are correct,
it will generate several .hex files. These .hex files are the firmware for the MSP430
and can be loaded onto the device, as described in the next section.

1.6. Loading Firmware. To load firmware files onto the MSP430 MCU, you
need a programmer like the MSP430 MSP-FET430UIF debugger or something
similar. Now, you can use one of following software tools:

• MSP430Flasher software9 (windows-only):
– Use the following command, where you need to replace the BINARY_

FILE_NAME.hex with the name of your application:

MSP430Flasher . exe −n MSP430F5438A −w ”BINARY FILE NAME. hex” −v −
g −z [VCC]

• MSPDebug10: An example session with the MSP-FET430UIF connected
on OS X is given in following listing:

8http://processors.wiki.ti.com/index.php/CC256x Downloads
9http://processors.wiki.ti.com/index.php/MSP430 Flasher - Command Line Programmer
10http://mspdebug.sourceforge.net/

http://processors.wiki.ti.com/index.php/CC256x_Downloads
http://processors.wiki.ti.com/index.php/MSP430_Flasher_-_Command_Line_Programmer
http://mspdebug.sourceforge.net/

5

mspdebug −j −d /dev/ tty . FET430UIFfd130 u i f
. . .
prog b l i nk . hex
run

1.7. Run the Example. As a first test, we recommend the SPP Counter ex-
ample (see Section 5.3). During the startup, the LEDs flash rapidly while the
init script is transferred to the CC256x chipset. After that, the Experimenter
board is discoverable as ”BTstack SPP Counter” and provides a single virtual
serial port. When you connect to it, you’ll receive a counter value as text every
second. The SPP Counter doesn’t use the display to keep the memory footprint
small.

The HID demo has a fancier user interface - it uses a display to show the
discovery process and connection establishment with a Bluetooth keyboard, as
well as the text as you type.

After this quick intro, the main manual starts now.

2. BTstack Architecture

As well as any other communication stack, BTstack is a collection of state
machines that interact with each other. There is one or more state machines for
each protocol and service that it implements. The rest of the architecture follows
these fundamental design guidelines:

• Single threaded design - BTstack does not use or require multi-threading
to handle data sources and timers. Instead, it uses a single run loop.
• No blocking anywhere - If Bluetooth processing is required, its result will

be delivered as an event via registered packet handlers.
• No artificially limited buffers/pools - Incoming and outgoing data packets

are not queued.
• Statically bounded memory (optionally) - The number of maximum con-

nections/channels/services can be configured.

Figure 1 shows the general architecture of a BTstack-based application that
includes the BTstack run loop.

2.1. Single threaded design. BTstack does not use or require multi-threading.
It uses a single run loop to handle data sources and timers. Data sources represent
communication interfaces like an UART or an USB driver. Timers are used
by BTstack to implement various Bluetooth-related timeouts. For example, to
disconnect a Bluetooth baseband channel without an active L2CAP channel after
20 seconds. They can also be used to handle periodic events. During a run loop
cycle, the callback functions of all registered data sources are called. Then, the
callback functions of timers that are ready are executed.

For adapting BTstack to multi-threaded environments, see Section 7.2.

2.2. No blocking anywhere. Bluetooth logic is event-driven. Therefore, all
BTstack functions are non-blocking, i.e., all functions that cannot return im-
mediately implement an asynchronous pattern. If the arguments of a function
are valid, the necessary commands are sent to the Bluetooth chipset and the

6

BTstack	

Main	 Applica/on	

Communica/on	 Logic	 PH	

Run	 Loop	
Data	
Source	

Data	
Source	

Data	
Source	

Timeouts	

Bluetooth	 Single/Dual	 Mode	 Chipset	

add
data source

data source
ready

Bluetooth	 Stack	

HCI	

L2CAP	

SDP	 RFCOMM	 ATT	

LE	

H4	 UART	 eHCILL	 UART	 	 USB	 …

add timer timer ready

Figure 1. BTstack-based single-threaded application. The Main
Application contains the application logic, e.g., reading a sensor
value and providing it via the Communication Logic as a SPP
Server. The Communication Logic is often modeled as a finite
state machine with events and data coming from either the Main
Application or from BTstack via registered packet handlers (PH).
BTstack’s Run Loop is responsible for providing timers and pro-
cessing incoming data.

function returns with a success value. The actual result is delivered later as an
asynchronous event via registered packet handlers.

If a Bluetooth event triggers longer processing by the application, the process-
ing should be split into smaller chunks. The packet handler could then schedule
a timer that manages the sequential execution of the chunks.

2.3. No artificially limited buffers/pools. Incoming and outgoing data pack-
ets are not queued. BTstack delivers an incoming data packet to the application
before it receives the next one from the Bluetooth chipset. Therefore, it relies
on the link layer of the Bluetooth chipset to slow down the remote sender when
needed.

7

Similarly, the application has to adapt its packet generation to the remote
receiver for outgoing data. L2CAP relies on ACL flow control between sender and
receiver. If there are no free ACL buffers in the Bluetooth module, the application
cannot send. For RFCOMM, the mandatory credit-based flow-control limits the
data sending rate additionally. The application can only send an RFCOMM
packet if it has RFCOMM credits.

2.4. Statically bounded memory. BTstack has to keep track of services and
active connections on the various protocol layers. The number of maximum con-
nections/channels/services can be configured. In addition, the non-persistent
database for remote device names and link keys needs memory and can be be
configured, too. These numbers determine the amount of static memory alloca-
tion.

3. How to use BTstack

BTstack implements a set of basic Bluetooth protocols. To make use of these
to connect to other devices or to provide own services, BTstack has to be properly
configured during application startup.

In the following, we provide an overview of the provided protocols and services,
as well as of the memory management and the run loop, that are necessary to
setup BTstack. From the point when the run loop is executed, the application
runs as a finite state machine, which processes events received from BTstack.
BTstack groups events logically and provides them over packet handlers, of which
an overview is provided here. Finally, we describe the RFCOMM credit-based
flow-control, which may be necessary for resource-constraint devices. Complete
examples for the MSP430 platforms will be presented in Chapter 5.

HCI	

L2CAP	

SDP	 RFCOMM	 ATT	

LE	

H4	 UART	 eHCILL	 UART	 	 USB	 …

Bluetooth	 Single/Dual	 Mode	 Chipset	

Figure 2. BTstack Protocol Architecture

8

3.1. Protocols and services. Figure 2 depicts protocols that BTstack imple-
ments: HCI, L2CAP, L2CAP-LE, RFCOMM, SDP, and ATT. The Host Con-
troller Interface (HCI) provides a command interface to the Bluetooth chipset.
The Logical Link Control and Adaptation Protocol (L2CAP) supports higher
level protocol multiplexing and reassembly. The L2CAP Low Energy (LE) vari-
ant is optimized for connectionless data used by Bluetooth Low Energy devices.
It is the base for the Attribute Protocol (ATT) of Bluetooth LE, which provides
access to Services and Characteristics. The Radio frequency communication
(RFCOMM) protocol provides emulation of serial ports over the L2CAP proto-
col. The Service Discovery Protocol (SDP) allows to discover services provided
by a Bluetooth device. BTstack’s API for HCI, L2CAP, RFCOMM and SDP is
provided in Appendix A.

One important construct of BTstack is service. A service represents a server
side component that handles incoming connections. So far, BTstack provides
L2CAP and RFCOMM services. An L2CAP service handles incoming connec-
tions for an L2CAP channel and is registered with its protocol service multiplexer
ID (PSM). Similarly, an RFCOMM service handles incoming RFCOMM connec-
tions and is registered with the RFCOMM channel ID. Outgoing connections
require no special registration, they are created by the application when needed.

#define HCI ACL PAYLOAD SIZE 52
#define MAX SPP CONNECTIONS 1
#define MAX NO HCI CONNECTIONS MAX SPP CONNECTIONS
#define MAX NO L2CAP SERVICES 2
#define MAX NO L2CAP CHANNELS (1+MAX SPP CONNECTIONS)
#define MAX NO RFCOMM MULTIPLEXERS MAX SPP CONNECTIONS
#define MAX NO RFCOMM SERVICES 1
#define MAX NO RFCOMM CHANNELS MAX SPP CONNECTIONS
#define MAX NO DB MEM DEVICE NAMES 0
#define MAX NO DB MEM LINK KEYS 3
#define MAX NO DB MEM SERVICES 1

Listing 1. Memory configuration for an SPP service with a
minimal L2CAP MTU.

3.2. Memory configuration. The structs for services, active connections and
remote devices can be allocated in two different manners:

• statically from an individual memory pool, whose maximal number of
elements is defined in the config file. To initialize the static pools, you
need to call btstack memory init function. An example of memory con-
figuration for a single SPP service with a minimal L2CAP MTU is shown
in Listing 1.
• dynamically using the malloc/free functions, if HAVE MALLOC is de-

fined in config file.

If both HAVE MALLOC and maximal size of a pool are defined in the config
file, the statical allocation will take precedence. In case that both are omitted,
an error will be raised.

The memory is set up by calling btstack memory init function:

9

btstack memory in i t () ;

3.3. Run loop. BTstack uses a run loop to handle incoming data and to sched-
ule work. The run loop handles events from two different types of sources: data
sources and timers. Data sources represent communication interfaces like an
UART or an USB driver. Timers are used by BTstack to implement various
Bluetooth-related timeouts. They can also be used to handle periodic events.

Data sources and timers are represented by the structs data source t and
timer source t respectively. Each of these structs contain a link list node and a
pointer to a callback function. All active timers and data sources are kept in
link lists. While the list of data sources is unsorted, the timers are sorted by
expiration timeout for efficient processing.

The complete run loop cycle looks like this: first, the callback function of
all registered data sources are called in a round robin way. Then, the callback
functions of timers that are ready are executed. Finally, it will be checked if
another run loop iteration has been requested by an interrupt handler. If not,
the run loop will put the MCU into sleep mode.

Incoming data over the UART, USB, or timer ticks will generate an inter-
rupt and wake up the microcontroller. In order to avoid the situation where
a data source becomes ready just before the run loop enters sleep mode, an
interrupt-driven data source has to call the embedded trigger function. The call
to embedded trigger sets an internal flag that is checked in the critical section
just before entering sleep mode.

Timers are single shot: a timer will be removed from the timer list before
its event handler callback is executed. If you need a periodic timer, you can
re-register the same timer source in the callback function, see Section 4.1 for an
example. Note that BTstack expects to get called periodically to keep its time,
see Section 6.1 for more on the tick hardware abstraction.

The Run loop API is provided in Appendix C. To enable the use of timers,
make sure that you defined HAVE TICK in the config file.

In your code, you’ll have to configure the run loop before you start it as shown
in Listing 23. The application can register data sources as well as timers, e.g.,
periodical sampling of sensors, or communication over the UART.

The run loop is set up by calling run loop init function for embedded systems:

r u n l o o p i n i t (RUN LOOP EMBEDDED) ;

3.4. BTstack initialization. To initialize BTstack you need to initialize the
memory and the run loop as explained in Sections 3.2 and 3.3 respectively, then
setup HCI and all needed higher level protocols.

The HCI initialization has to adapt BTstack to the used platform and requires
four arguments. These are:

• Bluetooth hardware control : The Bluetooth hardware control API can
provide the HCI layer with a custom initialization script, a vendor-specific
baud rate change command, and system power notifications. It is also

10

used to control the power mode of the Bluetooth module, i.e., turning
it on/off and putting to sleep. In addition, it provides an error handler
hw error that is called when a Hardware Error is reported by the Blue-
tooth module. The callback allows for persistent logging or signaling of
this failure.

Overall, the struct bt control t encapsulates common functionality that
is not covered by the Bluetooth specification. As an example, the bt con-
trol cc256x in-stance function returns a pointer to a control struct suit-
able for the CC256x chipset.

b t c o n t r o l t ∗ c o n t r o l = b t c o n t r o l c c 2 5 6 x i n s t a n c e () ;

• HCI Transport implementation: On embedded systems, a Bluetooth mod-
ule can be connected via USB or an UART port. BTstack implements two
UART based protocols: HCI UART Transport Layer (H4) and H4 with
eHCILL support, a lightweight low-power variant by Texas Instruments.
These are accessed by linking the appropriate file (src/hci_transport_
h4_dma.c resp. src/hci_transport_h4_ehcill_dma.c) and then get-
ting a pointer to HCI Transport implementation. For more information
on adapting HCI Transport to different environments, see Section 6.3.

h c i t r a n s p o r t t ∗ t r anspor t = hc i t r an spo r t h4 dma in s tance () ;

• HCI Transport configuration: As the configuration of the UART used in
the H4 transport interface are not standardized, it has to be provided by
the main application to BTstack. In addition to the initial UART baud
rate, the main baud rate can be specified. The HCI layer of BTstack will
change the init baud rate to the main one after the basic setup of the
Bluetooth module. A baud rate change has to be done in a coordinated
way at both HCI and hardware level. First, the HCI command to change
the baud rate is sent, then it is necessary to wait for the confirmation
event from the Bluetooth module. Only now, can the UART baud rate
changed. As an example, the CC256x has to be initialized at 115200 and
can then be used at higher speeds.

h c i u a r t c o n f i g t ∗ c o n f i g = h c i u a r t c o n f i g c c 2 5 6 x i n s t a n c e () ;

• Persistent storage - specifies where to persist data like link keys or remote
device names. This commonly requires platform specific code to access
the MCU’s EEPROM of Flash storage. For the first steps, BTstack
provides a (non) persistent store in memory. For more see Section 6.4.

r emote dev i c e db t ∗ remote db = &remote device db memory ;

11

Table 1. Functions for registering packet handlers

Packet Handler Registering Function

HCI packet handler hci register packet handler
L2CAP packet handler l2cap register packet handler

L2CAP service packet handler l2cap register service internal
L2CAP channel packet handler l2cap create channel internal

RFCOMM packet handler rfcomm register packet handler

After these are ready, HCI is initialized like this:

h c i i n i t (t ransport , con f i g , cont ro l , remote db) ;

The higher layers only rely on BTstack and are initialized by calling the respec-
tive * init function. These init functions register themselves with the underlying
layer. In addition, the application can register packet handlers to get events and
data as explained in the following section.

3.5. Where to get data - packet handlers. After the hardware and BTstack
are set up, the run loop is entered. From now on everything is event driven. The
application calls BTstack functions, which in turn may send commands to the
Bluetooth module. The resulting events are delivered back to the application.
Instead of writing a single callback handler for each possible event (as it is done
in some other Bluetooth stacks), BTstack groups events logically and provides
them over a single generic interface. Appendix B summarizes the parameters
and event codes of L2CAP and RFCOMM events, as well as possible errors and
the corresponding error codes.

Here is summarized list of packet handlers that an application might use:

• HCI packet handler - handles HCI and general BTstack events if L2CAP
is not used (rare case).
• L2CAP packet handler - handles HCI and general BTstack events.
• L2CAP service packet handler - handles incoming L2CAP connections,

i.e., channels initiated by the remote.
• L2CAP channel packet handler - handles outgoing L2CAP connections,

i.e., channels initiated internally.
• RFCOMM packet handler - handles RFCOMM incoming/outgoing events

and data.

These handlers are registered with the functions listed in Table 1.
HCI and general BTstack events are delivered to the packet handler speci-

fied by l2cap register packet handler function, or hci register packet handler, if
L2CAP is not used. In L2CAP, BTstack discriminates incoming and outgoing
connections, i.e., event and data packets are delivered to different packet han-
dlers. Outgoing connections are used access remote services, incoming connec-
tions are used to provide services. For incoming connections, the packet handler
specified by l2cap register service is used. For outgoing connections, the handler

12

provided by l2cap create channel internal is used. Currently, RFCOMM pro-
vides only a single packet handler specified by rfcomm register packet handler
for all RFCOMM connections, but this will be fixed in the next API overhaul.

The application can register a single shared packet handler for all protocols
and services, or use separate packet handlers for each protocol layer and service.
A shared packet handler is often used for stack initialization and connection
management.

Separate packet handlers can be used for each L2CAP service and outgoing
connection. For example, to connect with a Bluetooth HID keyboard, your ap-
plication could use three packet handlers: one to handle HCI events during dis-
covery of a keyboard registered by l2cap register packet handler ; one that will be
registered to an outgoing L2CAP channel to connect to keyboard and to receive
keyboard data registered by l2cap create channel internal ; after that keyboard
can reconnect by itself. For this, you need to register L2CAP services for the
HID Control and HID Interrupt PSMs using l2cap register service internal. In
this call, you’ll also specify a packet handler to accept and receive keyboard data.

3.6. RFCOMM flow control. RFCOMM has a mandatory credit-based flow-
control. This means that two devices that established RFCOMM connection,
use credits to keep track of how many more RFCOMM data packets can be
sent to each. If a device has no (outgoing) credits left, it cannot send another
RFCOMM packet, the transmission must be paused. During the connection
establishment, initial credits are provided. BTstack tracks the number of credits
in both directions. If no outgoing credits are available, the RFCOMM send
function will return an error, and you can try later. For incoming data, BTstack
provides channels and services with and without automatic credit management
via different functions to create/register them respectively. If the management of
credits is automatic, the new credits are provided when needed relying on ACL
flow control - this is only useful if there is not much data transmitted and/or
only one physical connection is used. If the management of credits is manual,
credits are provided by the application such that it can manage its receive buffers
explicitly.

4. Quick Recipes

4.1. Periodic time handler. As timers in BTstack are single shot, a periodic
timer, e.g., to implement a counter or to periodically sample a sesor, is imple-
mented by re-registering the timer source in the timer handler callback function,
as shown in Listing 2.

4.2. Defining custom HCI command templates. Each HCI command is
assigned a 2 byte OpCode used to uniquely identify different types of commands.
The OpCode parameter is divided into two fields, called the OpCode Group Field
(OGF) and OpCode Command Field (OCF), see Bluetooth Specification11 - Core
Version 4.0, Volume 2, Part E, Chapter 5.4. In a HCI command, the OpCode is
followed by parameter total length, and the actual parameters.

11https://www.bluetooth.org/Technical/Specifications/adopted.htm

https://www.bluetooth.org/Technical/Specifications/adopted.htm

13

BTstack provides the hci cmd t struct as a compact format to define HCI
command packets, see Listing 3, and include/btstack/hci_cmds.h file in the
source code. The OpCode of a command can be calculated using the OPCODE
macro.

#define TIMER PERIOD MS 1000
t i m e r s o u r c e t p e r i o d i c t i m e r ;

void r e g i s t e r t i m e r (t i m e r s o u r c e t ∗ timer , u i n t 1 6 t per iod) {
r u n l o o p s e t t i m e r (timer , per iod) ;
run loop add t imer (t imer) ;

}

void t imer hand l e r (t i m e r s o u r c e t ∗ t s) {
// do something ,
. . . e . g . , i n c r e a s e counter ,

// then re−r e g i s t e r t imer
r e g i s t e r t i m e r (ts , TIMER PERIOD MS) ;

}

void t imer se tup () {
// s e t one−sho t t imer
r u n l o o p s e t t i m e r h a n d l e r (& p e r i o d i c t i m e r , &t imer hand l e r) ;
r e g i s t e r t i m e r (& p e r i o d i c t i m e r , TIMER PERIOD MS) ;

}

Listing 2. Periodic counter

// Ca l cu l a t e combined og f / oc f va lue .
#define OPCODE(ogf , o c f) (o c f | og f << 10)

// Compact HCI Command packe t d e s c r i p t i o n .
typedef struct {

u i n t 1 6 t opcode ;
const char ∗ format ;

} hc i cmd t ;

extern const hc i cmd t h c i w r i t e l o c a l n a m e ;
. . .

Listing 3. hci cmds.h defines HCI command template.

#define OGF LINK CONTROL 0x01
#define OGF LINK POLICY 0x02
#define OGF CONTROLLER BASEBAND 0x03
#define OGF INFORMATIONAL PARAMETERS 0x04
#define OGF LE CONTROLLER 0x08
#define OGF BTSTACK 0x3d
#define OGF VENDOR 0 x3f

Listing 4. hci.h defines possible OGFs used for creation of a HCI command.

14

Table 2. Supported Format Specifiers of HCI Command Parameter

Format Specifier Description

”1” 8 bit value
”2” 16 bit value
”H” HCI handle
”3” 24 bit value
”4” 32 bit value
”B” Bluetooth address
”D” 8 byte data block
”E” Extended Inquiry Information 240 octets
”N” UTF8 string, null terminated
”P” 16 byte PIN code or link key
”A” 31 bytes advertising data
”S” Service Record (Data Element Sequence)

Listing 4 shows the OGFs provided by BTstack in src/hci.h file. For all
existing Bluetooth commands and their OCFs see Bluetooth Specification - Core
Version 4.0, Volume 2, Part E, Chapter 7.

Listing 5 illustrates the hci write local name HCI command template from
BTstack library. It uses OGF CONTROLLER BASEBAND as OGF, 0x13 as
OCF, and has one parameter with format ”N” indicating a null terminated UTF-
8 string. Table 2 lists the format specifiers supported by BTstack. Check src/

hci_cmds.c for other predefined HCI commands and info on their parameters.

// Se t s l o c a l B lue too th name
const hc i cmd t h c i w r i t e l o c a l n a m e = {

OPCODE(OGF CONTROLLER BASEBAND, 0x13) , ”N”
// Local name (UTF−8, Nu l l Terminated , max 248 o c t e t s)

} ;

Listing 5. Example of HCI command template.

4.3. Sending HCI command based on a template. You can use the hci send-
cmd function to send HCI command based on a template and a list of parame-

ters. However, it is necessary to check that the outgoing packet buffer is empty
and that the Bluetooth module is ready to receive the next command - most
modern Bluetooth modules only allow to send a single HCI command. This can
be done by calling hci can send packet now(HCI COMMAND DATA PACKET)
function, which returns true, if it is ok to send. Note: we’ll integrate that check
into hci send cmd.

Listing 6 illustrates how to set the device name with the HCI Write Local
Name command.

Please note, that an application rarely has to send HCI commands on its own.
All higher level functions in BTstack for the L2CAP and RFCOMM APIs manage
this automatically. The main use of HCI commands in application is during the

https://www.bluetooth.org/Technical/Specifications/adopted.htm

15

startup phase. At this time, no L2CAP or higher level data is sent, and the setup
is usually done in the packet handler where the reception of the last command
complete event triggers sending of the next command, hereby asserting that the
Bluetooth module is ready and the outgoing buffer is free as shown in Listing 7
taken from MSP-EXP430F5438-CC256x/example-ble/ble_server.c.

i f (hc i can send packet now (HCI COMMAND DATA PACKET)) {
hci send cmd(& h c i w r i t e l o c a l n a m e , ”BTstack Demo”) ;

}

Listing 6. Send hci write local name command that takes a
string as a parameter.

void packet hand le r (u i n t 8 t packet type , u i n t 1 6 t channel , u i n t 8 t
∗packet , u i n t 1 6 t s i z e) {

. . .
switch (event) {

. .
case HCI EVENT COMMAND COMPLETE:

. . .
i f (COMMAND COMPLETE EVENT(packet ,

h c i r e a d l o c a l s u p p o r t e d f e a t u r e s)) {
hci send cmd(& hc i s e t event mask , 0 x f f f f f f f f , 0

x 2 0 0 0 1 f f f) ;
break ;

}
i f (COMMAND COMPLETE EVENT(packet , h c i s e t even t mask)) {

hci send cmd(& h c i w r i t e l e h o s t s u p p o r t e d , 1 , 1) ;
break ;

}
i f (COMMAND COMPLETE EVENT(packet ,

h c i w r i t e l e h o s t s u p p o r t e d)) {
hci send cmd(& h c i l e s e t e v e n t m a s k , 0 x f f f f f f f f , 0

x f f f f f f f f) ;
break ;

}
i f (COMMAND COMPLETE EVENT(packet , h c i l e s e t e v e n t m a s k

)) {
hci send cmd(& h c i l e r e a d b u f f e r s i z e) ;
break ;

}
. . .
break ;

. . .
}

}

Listing 7. Example of sending a sequence of HCI Commands

4.4. Living with a single output buffer. Outgoing packets, both commands
and data, are not queued in BTstack. This section explains the consequences of
this design decision for sending data and why it is not as bad as it sounds.

16

void prepareData (void) {
. . .

}

void tryToSend (void) {
i f (! dataLen) return ;
i f (! r fcomm channel id) return ;

int e r r = r fcomm send inte rna l (r fcomm channel id , dataBuf fer ,
dataLen) ;

switch (e r r) {
case 0 :

// packe t i s sen t prepare next one
prepareData () ;
break ;

case RFCOMM NO OUTGOING CREDITS:
case BTSTACK ACL BUFFERS FULL:

break ;
default :

p r i n t f (” r f comm send inte rna l () −> e r r %d\n\ r ” , e r r) ;
break ;

}
}

Listing 8. Preparing and sending data.

void packet hand le r (u i n t 8 t packet type , u i n t 1 6 t channel , u i n t 8 t
∗packet , u i n t 1 6 t s i z e) {

. . .
switch (event) {

case RFCOMM EVENT OPEN CHANNEL COMPLETE:
i f (s t a t u s) {

p r i n t f (”RFCOMM channel open f a i l e d . ”) ;
} else {

r fcomm channel id = READ BT 16(packet , 12) ;
rfcomm mtu = READ BT 16(packet , 14) ;
p r i n t f (”RFCOMM channel opened , mtu = %u . ” ,

rfcomm mtu) ;
}
break ;

case RFCOMM EVENT CREDITS:
case DAEMON EVENT HCI PACKET SENT:

tryToSend () ;
break ;

case RFCOMM EVENT CHANNEL CLOSED:
rfcomm channel id = 0 ;
break ;

. . .
}

}

Listing 9. Managing the speed of RFCOMM packet generation.

17

Independent from the number of output buffers, packet generation has to be
adapted to the remote receiver and/or maximal link speed. Therefore, a packet
can only be generated when it can get sent. With this assumption, the single
output buffer design does not impose additional restrictions. In the following,
we show how this is used for adapting the RFCOMM send rate.

BTstack returns BTSTACK ACL BUFFERS FULL, if the outgoing buffer is
full and RFCOMM NO OUTGOING CREDITS, if no outgoing credits are avail-
able. In Listing 8, we show how to resend data packets when credits or outgoing
buffers become available.

int main (void) {
. . .
// make d i s c o v e r a b l e
h c i d i s c o v e r a b l e c o n t r o l (1) ;
run l oop execu t e () ;
return 0 ;

}
void packet hand le r (u i n t 8 t packet type , u i n t 8 t ∗packet , u i n t 1 6 t

s i z e) {
. . .
switch (s t a t e) {

case INIT :
i f (packet [2] == HCI STATE WORKING) {

hci send cmd(& h c i w r i t e l o c a l n a m e , ”BTstack SPP
Counter”) ;

s t a t e = W4 CONNECTION;
}

break ;
case W4 CHANNEL COMPLETE:

// i f connect ion i s s u c c e s s f u l , make dev i c e
und i s cov e rab l e

h c i d i s c o v e r a b l e c o n t r o l (0) ;
. . .

}
}

Listing 10. Setting device as discoverable. OFF by default.

RFCOMM’s mandatory credit-based flow-control imposes an additional con-
straint on sending a data packet - at least one new RFCOMM credit must be
available. BTstack signals the availability of a credit by sending an RFCOMM
credit (RFCOMM EVENT CREDITS) event.

These two events represent two orthogonal mechanisms that deal with flow
control. Taking these mechanisms in account, the application should try to
send data packets when one of these two events is received, see Listing 9 for a
RFCOMM example.

4.5. Become discoverable. A remote unconnected Bluetooth device must be
set as ”discoverable” in order to be seen by a device performing the inquiry scan.
To become discoverable, an application can call hci discoverable control with
input parameter 1. If you want to provide a helpful name for your device, the

18

application can set its local name by sending the hci write local name command.
To save energy, you may set the device as undiscoverable again, once a connection
is established. See Listing 10 for an example.

4.6. Discover remote devices. To scan for remote devices, the hci inquiry
command is used. After that, the Bluetooth devices actively scans for other de-
vices and reports these as part of HCI EVENT INQUIRY RESULT, HCI EVENT-
INQUIRY RESULT WITH RSSI, or HCI EVENT EXTENDED INQUIRY RE-

SPONSE events. Each response contains at least the Bluetooth address, the class
of device, the page scan repetition mode, and the clock offset of found device.
The latter events add information about the received signal strength or provide
the Extended Inquiry Result (EIR). A code snippet is shown in Listing 11.

By default, neither RSSI values nor EIR are reported. If the Bluetooth de-
vice implements Bluetooth Specification 2.1 or higher, the hci write inquiry mode
command enables reporting of this advanced features (0 for standard results, 1
for RSSI, 2 for RSSI and EIR).

A complete GAP inquiry example is provided in Section 5.2.

void packet hand le r (u i n t 8 t packet type , u i n t 8 t ∗packet , u i n t 1 6 t
s i z e) {
. . .
switch (event) {

case HCI EVENT PIN CODE REQUEST:
// inform about pin code r e que s t
p r i n t f (”Pin code reque s t − us ing ’0000 ’\n\ r ”) ;
b t f l i p a d d r (bd addr , &packet [2]) ;

// baseband address , pin l eng th , PIN : c−s t r i n g
hci send cmd(& h c i p i n c o d e r e q u e s t r e p l y , &bd addr , 4 , ”

0000”) ;
break ;

. . .
}

}

Listing 12. Answering authentication request with PIN 0000.

4.7. Pairing of devices. By default, Bluetooth communication is not authen-
ticated, and any device can talk to any other device. A Bluetooth device (for
example, cellular phone) may choose to require authentication to provide a par-
ticular service (for example, a Dial-Up service). Bluetooth authentication is
normally done with PIN codes. A PIN code is an ASCII string up to 16 char-
acters in length. User is required to enter the same PIN code on both devices.
The described above procedure is called pairing. See Listing 12 for providing a
PIN.

Once the user has entered the PIN code, both devices will generate a link
key. The link key can be stored either in the Bluetooth module themself or
in a persistent storage, see Section 6.4. The next time, both devices will use

19

void p r i n t i n q u i r y r e s u l t s (u i n t 8 t ∗packet) {
int event = packet [0] ;
int numResponses = packet [2] ;
u i n t 1 6 t c las sOfDev ice , c l o c k O f f s e t ;
u i n t 8 t r s s i , pageScanRepetitionMode ;
for (i =0; i<numResponses ; i++){

b t f l i p a d d r (addr , &packet [3+ i ∗6]) ;
pageScanRepetitionMode = packet [3 + numResponses∗6 + i] ;
i f (event == HCI EVENT INQUIRY RESULT) {

c la s sOfDev i ce = READ BT 24(packet , 3 + numResponses
∗(6+1+1+1) + i ∗3) ;

c l o c k O f f s e t = READ BT 16(packet , 3 + numResponses
∗(6+1+1+1+3) + i ∗2) & 0 x 7 f f f ;

r s s i = 0 ;
} else {

c la s sOfDev i ce = READ BT 24(packet , 3 + numResponses
∗(6+1+1) + i ∗3) ;

c l o c k O f f s e t = READ BT 16(packet , 3 + numResponses
∗(6+1+1+3) + i ∗2) & 0 x 7 f f f ;

r s s i = packet [3 + numResponses∗(6+1+1+3+2) + i ∗ 1] ;
}
p r i n t f (” Device found : %s with COD: 0x%06x , pageScan %u ,

c l o ck o f f s e t 0x%04x , r s s i 0x%02x\n” , b d a d d r t o s t r (addr
) , c lassOfDevice , pageScanRepetitionMode , c l o ckOf f s e t ,
r s s i) ;

}
}

void packet hand le r (u i n t 8 t packet type , u i n t 8 t ∗packet , u i n t 1 6 t
s i z e) {
. . .
switch (event) {

case HCI STATE WORKING:
hci send cmd(& hc i wr i t e inqu i ry mode , 0x01) ; // wi th

RSSI
break ;

case HCI EVENT COMMAND COMPLETE:
i f (COMMAND COMPLETE EVENT(packet ,

h c i wr i t e i nqu i ry mode)) {
s t a r t s c a n () ;

}
case HCI EVENT COMMAND STATUS:

i f (COMMAND STATUS EVENT(packet , h c i wr i t e i nqu i ry mode)
) {
p r i n t f (” Ignor ing e r r o r (0 x%x) from

hc i wr i t e i nqu i ry mode .\n” , packet [2]) ;
hc i send cmd(& h c i i n q u i r y , HCI INQUIRY LAP ,

INQUIRY INTERVAL, 0) ;
}
break ;

case HCI EVENT INQUIRY RESULT:
case HCI EVENT INQUIRY RESULT WITH RSSI :

p r i n t i n q u i r y r e s u l t s (packet) ;
break ;

. . .
}

}

Listing 11. Discovering remote Bluetooth devices.

20

previously generated link key. Please note that the pairing must be repeated if
the link key is lost by one device.

4.8. Access an L2CAP service on a remote device. L2CAP is based around
the concept of channels. A channel is a logical connection on top of a baseband
connection. Each channel is bound to a single protocol in a many-to-one fashion.
Multiple channels can be bound to the same protocol, but a channel cannot be
bound to multiple protocols. Multiple channels can share the same baseband
connection.

b t s t a c k p a c k e t h a n d l e r t l 2 cap packe t hand l e r ;

void bt s ta ck s e tup () {
. . .
l 2 c a p i n i t () ;

}

void c r e a t e o u t g o i n g l 2 c a p c h a n n e l (bd addr t address , u i n t 1 6 t psm ,
u i n t 1 6 t mtu) {

l 2 c a p c r e a t e c h a n n e l i n t e r n a l (NULL, l2cap packe t hand l e r ,
remote bd addr , psm , mtu) ;

}

void l 2 cap packe t hand l e r (u i n t 8 t packet type , u i n t 1 6 t channel ,
u i n t 8 t ∗packet , u i n t 1 6 t s i z e) {
i f (packet type == HCI EVENT PACKET &&

packet [0] == L2CAP EVENT CHANNEL OPENED) {
i f (packet [2]) {

p r i n t f (” Connection f a i l e d \n\ r ”) ;
return ;

}
p r i n t f (”Connected\n\ r ”) ;

}
i f (packet type == L2CAP DATA PACKET) {

// handle L2CAP data packe t
return ;

}
}

Listing 13. L2CAP handler for outgoing L2CAP channel.

To communicate with an L2CAP service on a remote device, the application on
a local Bluetooth device initiates the L2CAP layer using the l2cap init function,
and then creates an outgoing L2CAP channel to the PSM of a remote device using
the l2cap create channel internal function. The l2cap -create channel internal
function will initiate a new baseband connection if it does not already exist. The
packet handler that is given as an input parameter of the L2CAP create channel
function will be assigned to the new outgoing L2CAP channel. This handler re-
ceives the L2CAP EVENT CHANNEL OPENED and L2CAP EVENT CHAN-
NEL CLOSED events and L2CAP data packets, as shown in Listing 13.

21

4.9. Provide an L2CAP service. To provide an L2CAP service, the applica-
tion on a local Bluetooth device must init the L2CAP layer and register the ser-
vice with l2cap register service internal. From there on, it can wait for incoming
L2CAP connections. The application can accept or deny an incoming connection
by calling the l2cap accept connection internal and l2cap deny connection internal
functions respectively. If a connection is accepted and the incoming L2CAP chan-
nel gets successfully opened, the L2CAP service can send L2CAP data packets
to the connected device with l2cap send internal.

void bt s ta ck s e tup () {
. . .
l 2 c a p i n i t () ;
l 2 c a p r e g i s t e r s e r v i c e i n t e r n a l (NULL, packet handler , 0x11 , 1 0 0) ;

}

void packet hand le r (u i n t 8 t packet type , u i n t 1 6 t channel , u i n t 8 t
∗packet , u i n t 1 6 t s i z e) {

. . .
i f (packet type == L2CAP DATA PACKET) {

// handle L2CAP data packe t
return ;

}
switch (event) {

. . .
case L2CAP EVENT INCOMING CONNECTION:

b t f l i p a d d r (event addr , &packet [2]) ;
handle = READ BT 16(packet , 8) ;
psm = READ BT 16(packet , 10) ;
l o c a l c i d = READ BT 16(packet , 12) ;
p r i n t f (”L2CAP incoming connect ion reques ted . ”) ;
l 2 c a p a c c e p t c o n n e c t i o n i n t e r n a l (l o c a l c i d) ;
break ;

case L2CAP EVENT CHANNEL OPENED:
b t f l i p a d d r (event addr , &packet [3]) ;
psm = READ BT 16(packet , 11) ;
l o c a l c i d = READ BT 16(packet , 13) ;
handle = READ BT 16(packet , 9) ;
i f (packet [2] == 0) {

p r i n t f (”Channel s u c c e s s f u l l y opened . ”) ;
} else {

p r i n t f (”L2CAP connect ion f a i l e d . s t a t u s code . ”) ;
}
break ;

case L2CAP EVENT CREDITS:
case DAEMON EVENT HCI PACKET SENT:

tryToSend () ;
break ;

case L2CAP EVENT CHANNEL CLOSED:
break ;

}
}

Listing 14. Providing an L2CAP service.

22

void in i t r f comm () {
. . .
r f comm init () ;
r f c omm reg i s t e r packe t hand l e r (packet hand le r) ;

}

void create r fcomm channe l (u i n t 8 t packet type , u i n t 8 t ∗packet ,
u i n t 1 6 t s i z e) {
r f c omm crea t e channe l i n t e rna l (connect ion , &addr , rfcomm channel

) ;
}

void r fcomm packet handler (u i n t 8 t packet type , u i n t 1 6 t channel ,
u i n t 8 t ∗packet , u i n t 1 6 t s i z e) {
i f (packet type == HCI EVENT PACKET && packet [0] ==

RFCOMM EVENT OPEN CHANNEL COMPLETE) {
i f (packet [2]) {

p r i n t f (” Connection f a i l e d \n\ r ”) ;
return ;

}
p r i n t f (”Connected\n\ r ”) ;

}

i f (packet type == RFCOMM DATA PACKET) {
// handle RFCOMM data packe t s
return ;

}
}

Listing 15. RFCOMM handler for outgoing RFCOMM channel.

Sending of L2CAP data packets may fail due to a full internal BTstack out-
going packet buffer, or if the ACL buffers in the Bluetooth module become full,
i.e., if the application is sending faster than the packets can be transferred over
the air. In such case, the application can try sending again upon reception of
DAEMON EVENT HCI PACKET SENT or L2CAP EVENT CREDITS event.
The first event signals that the internal BTstack outgoing buffer became free
again, the second one signals the same for ACL buffers in the Bluetooth chipset.
Listing 14 provides L2CAP service example code.

4.10. Access an RFCOMM service on a remote device. To communi-
cate with an RFCOMM service on a remote device, the application on a lo-
cal Bluetooth device initiates the RFCOMM layer using the rfcomm init func-
tion, and then creates an outgoing RFCOMM channel to a given server chan-
nel on a remote device using the rfcomm create channel internal function. The

23

void bt s ta ck s e tup () {
. . .
r f comm init () ;
r f c o m m r e g i s t e r s e r v i c e i n t e r n a l (NULL, rfcomm channel nr , mtu) ;

}

void packet hand le r (u i n t 8 t packet type , u i n t 8 t ∗packet , u i n t 1 6 t
s i z e) {
i f (packet type == RFCOMM DATA PACKET) {

// handle RFCOMM data packe t s
return ;

}
. . .
switch (event) {

. . .
case RFCOMM EVENT INCOMING CONNECTION:

// data : event (8) , l en (8) , address (48) , channel (8) ,
rfcomm cid (16)

b t f l i p a d d r (event addr , &packet [2]) ;
r fcomm channel nr = packet [8] ;
r fcomm channel id = READ BT 16(packet , 9) ;
r f c omm accep t connec t i on in t e rna l (r fcomm channel id) ;
break ;

case RFCOMM EVENT OPEN CHANNEL COMPLETE:
// data : event (8) , l en (8) , s t a t u s (8) , address (48) ,

handle (16) , s e r v e r channel (8) , rfcomm cid (16) , max
frame s i z e (16)

i f (packet [2]) {
p r i n t f (”RFCOMM channel open f a i l e d . ”) ;
break ;

}
// data : event (8) , l en (8) , s t a t u s (8) , address (48) ,

handle (16) , s e r v e r channel (8) , rfcomm cid (16) , max
frame s i z e (16)

r fcomm channel id = READ BT 16(packet , 12) ;
mtu = READ BT 16(packet , 14) ;
p r i n t f (”RFCOMM channel open succeeded .) ;
break ;

case RFCOMM EVENT CREDITS:
case DAEMON EVENT HCI PACKET SENT:

tryToSend () ;
break ;

case RFCOMM EVENT CHANNEL CLOSED:
p r i n t f (”Channel c l o s e d . ”) ;
r fcomm channel id = 0 ;

break ;
}

}

Listing 16. Providing RFCOMM service.

24

rfcomm create channel intern-al function will initiate a new L2CAP connec-
tion for the RFCOMM multiplexer, if it does not already exist. The chan-
nel will automatically provide enough credits to the remote side. To provide
credits manually, you have to create the RFCOMM connection by calling rf-
comm create channel with initial credits internal - see Section 4.12.

The packet handler that is given as an input parameter of the RFCOMM create
channel function will be assigned to the new outgoing RFCOMM channel. This
handler receives the RFCOMM EVENT OPEN CHAN-NEL COMPLETE and
RFCOMM EVENT CHANNEL CLOSED events, and RFCOMM data packets,
as shown in Listing 15.

4.11. Provide an RFCOMM service. To provide an RFCOMM service, the
application on a local Bluetooth device must first init the L2CAP and RFCOMM
layers and then register the service with rfcomm register service internal. From
there on, it can wait for incoming RFCOMM connections. The application can
accept or deny an incoming connection by calling the rfcomm accept connection-
internal and rfcomm deny connection internal functions respectively. If a con-

nection is accepted and the incoming RFCOMM channel gets successfully opened,
the RFCOMM service can send RFCOMM data packets to the connected device
with rfcomm send internal and receive data packets by the packet handler pro-
vided by the rfcomm register service internal call.

Sending of RFCOMM data packets may fail due to a full internal BTstack
outgoing packet buffer, or if the ACL buffers in the Bluetooth module become
full, i.e., if the application is sending faster than the packets can be transferred
over the air. In such case, the application can try sending again upon reception
of DAEMON EVENT HCI PACKET SENT or RFCOMM EVENT CREDITS
event. The first event signals that the internal BTstack outgoing buffer became
free again, the second one signals that the remote side allowed to send another
packet. Listing 16 provides the RFCOMM service example code.

4.12. Slowing down RFCOMM data reception. RFCOMM has a manda-
tory credit-based flow-control that can be used to adapt, i.e., slow down the
RFCOMM data to your processing speed. For incoming data, BTstack provides
channels and services with and without automatic credit management. If the
management of credits is automatic, see Listing 17, new credits are provided
when needed relying on ACL flow control. This is only useful if there is not
much data transmitted and/or only one physical connection is used

void bt s ta ck s e tup (void) {
. . .
// i n i t RFCOMM
r f comm init () ;
r f c omm reg i s t e r packe t hand l e r (packet hand le r) ;
r f c o m m r e g i s t e r s e r v i c e i n t e r n a l (NULL, rfcomm channel nr , 100) ;

}

Listing 17. RFCOMM service with automatic credit management.

25

void bt s ta ck s e tup (void) {
. . .
// i n i t RFCOMM
r f comm init () ;
r f c omm reg i s t e r packe t hand l e r (packet hand le r) ;
// re se rved channel , mtu=100, 1 c r e d i t
r f c o m m r e g i s t e r s e r v i c e w i t h i n i t i a l c r e d i t s i n t e r n a l (NULL,

rfcomm channel nr , 100 , 1) ;
}

Listing 18. RFCOMM service with manual credit management.

void p r o c e s s i n g () {
// proces s incoming data packe t
. . .
// prov ide new c r e d i t
r f comm grant c r ed i t s (r fcomm channel id , 1) ;

}

Listing 19. Providing new credits

u i n t 8 t d e s b u f f e r [2 0 0] ;
u i n t 8 t ∗ a t t r i b u t e ;
d e c r e a t e s e q u e n c e (s e r v i c e) ;

// 0x0000 ” Serv i c e Record Handle”
de add number (d e s b u f f e r , DE UINT, DE SIZE 16 ,

SDP ServiceRecordHandle) ;
de add number (d e s b u f f e r , DE UINT, DE SIZE 32 , 0x10001) ;

// 0x0001 ” Serv i c e Class ID L i s t ”
de add number (d e s b u f f e r , DE UINT, DE SIZE 16 ,

SDP Serv iceClass IDList) ;
a t t r i b u t e = de push sequence (d e s b u f f e r) ;
{

de add number (a t t r i bu t e , DE UUID, DE SIZE 16 , 0x1101) ;
}
de pop sequence (d e s b u f f e r , a t t r i b u t e) ;

Listing 20. Creating record with the data element (de *) functions.

If the management of credits is manual, credits are provided by the application
such that it can manage its receive buffers explicitly, see Listing 18.

Manual credit management is recommended when received RFCOMM data
cannot be processed immediately. In the SPP flow control example in Section
5.5, delayed processing of received data is simulated with the help of a peri-
odic timer. To provide new credits, you call the rfcomm grant credits function
with the RFCOMM channel ID and the number of credits as shown in Listing
19. Please note that providing single credits effectively reduces the credit-based
(sliding window) flow control to a stop-and-wait flow-control that limits the data

26

throughput substantially. On the plus side, it allows for a minimal memory foot-
print. If possible, multiple RFCOMM buffers should be used to avoid pauses
while the sender has to wait for a new credit.

4.13. Create SDP records. BTstack contains a complete SDP server and al-
lows to register SDP records. An SDP record is a list of SDP Attribute {ID,
Value} pairs that are stored in a Data Element Sequence (DES). The Attribute
ID is a 16-bit number, the value can be of other simple types like integers or
strings or can itselff contain other DES.

To create an SDP record for an SPP service, you can call sdp create spp service
from src/sdp_util.c with a pointer to a buffer to store the record, the RFCOMM
server channel number, and a record name.

For other types of records, you can use the other functions in src/sdp_util.c,
using the data element de * functions. Listing 20 shows how an SDP record
containing two SDP attributes can be created. First, a DES is created and then
the Service Record Handle and Service Class ID List attributes are added to
it. The Service Record Handle attribute is added by calling the de add number
function twice: the first time to add 0x0000 as attribute ID, and the second time
to add the actual record handle (here 0x1000) as attribute value. The Service
Class ID List attribute has ID 0x0001, and it requires a list of UUIDs as attribute
value. To create the list, de push sequence is called, which ”opens” a sub-DES.
The returned pointer is used to add elements to this sub-DES. After adding all
UUIDs, the sub-DES is ”closed” with de pop sequence.

4.14. Query remote SDP service. BTstack provides an SDP client to query
SDP services of a remote device. The SDP Client API is shown in Appendix A.5.
The sdp client query function initiates an L2CAP connection to the remote SDP
server. Upon connect, a Service Search Attribute request with a Service Search
Pattern and a Attribute ID List is sent. The result of the Service Search Attribute
query contains a list of Service Records, and each of them contains the requested
attributes. These records are handled by the SDP parser. The parser delivers
SDP PARSER ATTRIBUTE VALUE and SDP PARSER COMPLETE events
via a registered callback. The SDP PARSER ATTRIBUTE VALUE event de-
livers the attribute value byte by byte.

On top of this, you can implement specific SDP queries. For example, BT-
stack provides a query for RFCOMM service name and channel number. This
information is needed, e.g., if you want to connect to a remote SPP service.
The query delivers all matching RFCOMM services, including its name and the
channel number, as well as a query complete event via a registered callback, as
shown in Listing 21.

bd addr t remote = {0x04 , 0 x0C , 0xCE, 0 xE4 , 0 x85 , 0 xD3} ;

void packet hand le r (void ∗ connect ion , u i n t 8 t packet type ,
u i n t 1 6 t channel , u i n t 8 t ∗packet , u i n t 1 6 t s i z e) {
i f (packet type != HCI EVENT PACKET) return ;

u i n t 8 t event = packet [0] ;

27

switch (event) {
case BTSTACK EVENT STATE:

// b t s t a c k ac t i v a t ed , g e t s t a r t e d
i f (packet [2] == HCI STATE WORKING) {

sdp query r fcomm channe l and name for uuid (remote , 0
x0003) ;

}
break ;

default :
break ;

}
}

stat ic void bt s ta ck s e tup () {
. . .
// i n i t L2CAP
l 2 c a p i n i t () ;
l 2 c a p r e g i s t e r p a c k e t h a n d l e r (packet hand le r) ;

}

void handle query r fcomm event (sdp que ry event t ∗ event , void ∗
context) {
sdp que ry r f comm se rv i c e even t t ∗ ve ;

switch (event−>type) {
case SDP QUERY RFCOMM SERVICE:

ve = (sdp que ry r f comm se rv i c e even t t ∗) event ;
p r i n t f (” S e r v i c e name : ’%s ’ , RFCOMM port %u\n” , ve−>

serv ice name , ve−>channe l nr) ;
break ;

case SDP QUERY COMPLETE:
r e p o r t f o u n d s e r v i c e s () ;
p r i n t f (” C l i en t query response done with s t a t u s %d . \n” ,

ce−>s t a t u s) ;
break ;

}
}

int main (void) {
hw setup () ;
b t s t a ck s e tup () ;

// r e g i s t e r c a l l b a c k to r e c e i v e matching RFCOMM Serv i c e s and
// query complete event
s d p q u e r y r f c o m m r e g i s t e r c a l l b a c k (handle query rfcomm event ,

NULL) ;

// turn on !
h c i p o w e r c o n t r o l (HCI POWER ON) ;
// go !
run l oop execu t e () ;
return 0 ;

}

Listing 21. Searching RFCOMM services on a remote device.

28

5. Examples

The MSP-EXP430F5438-CC256x folder in BTstack repository currently includes
the following examples for the MSP430F5438 Experimenter Board:

• UART example:
– led counter : provides UART and timer interrupt without Bluetooth.

• GAP example:
– gap inquiry : uses GAP to discover surrounding Bluetooth devices

and then requests their remote name.
• SPP Server examples :

– spp counter : provides a virtual serial port via SPP and a periodic
timer over RFCOMM.

– spp accel : provides a virtual serial port via SPP. On connect, it sends
the current accelerometer values as fast as possible.

– spp flowcontrol : provides a virtual serial port via SPP with manual
RFCOMM credit management. Delayed processing of received data
is simulated with the help of a periodic timer.

• HID Host example:
– hid demo: on start, the device does a device discovery and connects

to the first Bluetooth keyboard it finds, pairs, and allows to type on
the little LCD screen.

• Low Energy example:
– ble server : provides a ready-to-run example for a test Peripheral

device. It assumes that a PAN1323 or 1326 module with a CC2564
chipset is used.

In all examples the debug UART port is configured at 57600 bps speed.

5.1. led counter: UART and timer interrupt without Bluetooth. The
example demonstrates how to setup hardware, initialize BTstack without Blue-
tooth, provide a periodic timer to toggle an LED and print number of toggles as
a minimal BTstack test.

5.1.1. Periodic Timer Setup.

void hear tbea t hand l e r (t i m e r s o u r c e t ∗ t s) {
// increment counter
char l i n e B u f f e r [3 0] ;
s p r i n t f (l i n e B u f f e r , ”BTstack counter %04u\n\ r ” , ++counter) ;
p r i n t f (l i n e B u f f e r) ;

// t o g g l e LED
LED PORT OUT = LED PORT OUT ˆ LED 2 ;

// re−r e g i s t e r t imer
r u n l o o p r e g i s t e r t i m e r (ts , HEARTBEAT PERIOD MS) ;

}

Listing 22. Periodic counter

29

void t imer se tup () {
// s e t one−sho t t imer
heartbeat . p roc e s s = &t imer hand l e r ;
r u n l o o p r e g i s t e r t i m e r (&heartbeat , HEARTBEAT PERIOD MS) ;

}

int main (void) {
hw setup () ;
b t s t a ck s e tup () ;
t imer se tup () ;

// go !
run l oop execu t e () ;

// happy compi ler !
return 0 ;

}

Listing 23. Run loop execution.

As timers in BTstack are single shot, the periodic counter is implemented by
re-registering the timer source in the heartbeat handler callback function. The
general setup is explained in Section 4.1. Listing 22 shows heartbeat handler
adapted to periodically toggle an LED and print number of toggles.

5.1.2. Turn On and Go. Listing 23 shows how to setup and start the run loop.
For hardware and BTstack setup, please check the source code.

5.2. gap inquiry: GAP Inquiry Example. The Generic Access Profile (GAP)
defines how Bluetooth devices discover and establish a connection with each
other. In this example, the application discovers surrounding Bluetooth devices
and collects their Class of Device (CoD), page scan mode, clock offset, and RSSI.
After that, the remote name of each device is requested. In the following section
we outline the Bluetooth logic part, i.e., how the packet handler handles the
asynchronous events and data packets.

5.2.1. Bluetooth Logic. The Bluetooth logic is implemented as a state machine
within the packet handler. In this example, the following states are passed
sequentially: INIT, W4 INQUIRY MODE COMPLETE, and ACTIVE.

In INIT, the application enables the extended inquiry mode, which includes
RSSI values, and transits to W4 INQUIRY MODE COMPLETE state.

In W4 INQUIRY MODE COMPLETE, after the inquiry mode was set, an
inquiry scan is started, and the application transits to ACTIVE state.

IN ACTIVE, the following events are processed:

30

• Inquiry result event: the list of discovered devices is processed and the
Class of Device (CoD), page scan mode, clock offset, and RSSI are stored
in a table.
• Inquiry complete event: the remote name is requested for devices with-

out a fetched name. The state of a remote name can be one of the fol-
lowing: REMOTE NAME REQUEST, REMOTE NAME INQUIRED,
or REMOTE NAME FETCHED.
• Remote name cached event: prints cached remote names provided by

BTstack - if persistent storage is provided.
• Remote name request complete event: the remote name is stored in the

table and the state is updated to REMOTE NAME FETCHED. The
query of remote names is continued.

For more details please check Section 4.6 and the source code.

void bt s ta ck s e tup (void) {
btstack memory in i t () ;
r u n l o o p i n i t (RUN LOOP EMBEDDED) ;

// i n i t HCI
h c i t r a n s p o r t t ∗ t r anspor t = hc i t r an spo r t h4 dma in s tance () ;
b t c o n t r o l t ∗ c o n t r o l = b t c o n t r o l c c 2 5 6 x i n s t a n c e () ;
h c i u a r t c o n f i g t ∗ c o n f i g = h c i u a r t c o n f i g c c 2 5 6 x i n s t a n c e () ;
r emote dev i c e db t ∗ remote db = (remote dev i c e db t ∗) &

remote device db memory ;
h c i i n i t (t ransport , con f i g , cont ro l , remote db) ;
h c i r e g i s t e r p a c k e t h a n d l e r (packet hand le r) ;

// i n i t L2CAP
l 2 c a p i n i t () ;
l 2 c a p r e g i s t e r p a c k e t h a n d l e r (packet hand le r) ;

// i n i t RFCOMM
r f comm init () ;
r f c omm reg i s t e r packe t hand l e r (packet hand le r) ;
r f c o m m r e g i s t e r s e r v i c e i n t e r n a l (NULL, rfcomm channel nr , 100) ;

// i n i t SDP, c r ea t e record f o r SPP and r e g i s t e r wi th SDP
s d p i n i t () ;
memset (s p p s e r v i c e b u f f e r , 0 , s izeof (s p p s e r v i c e b u f f e r)) ;
s e r v i c e r e c o r d i t e m t ∗ s e r v i c e r e c o r d i t e m = (

s e r v i c e r e c o r d i t e m t ∗) s p p s e r v i c e b u f f e r ;
s d p c r e a t e s p p s e r v i c e ((u i n t 8 t ∗) &s e r v i c e r e c o r d i t e m−>

s e r v i c e r e c o r d , 1 , ”SPP Counter”) ;
s d p r e g i s t e r s e r v i c e i n t e r n a l (NULL, s e r v i c e r e c o r d i t e m) ;

}

Listing 24. SPP service setup

5.3. spp counter: SPP Server - Heartbeat Counter over RFCOMM.
The Serial port profile (SPP) is widely used as it provides a serial port over

31

Bluetooth. The SPP counter example demonstrates how to setup an SPP service,
and provide a periodic timer over RFCOMM.

5.3.1. SPP Service Setup. SPP is based on RFCOMM, a Bluetooth protocol that
emulates RS-232 serial ports. To access an RFCOMM serial port on a remote
device, a client has to query its Service Discovery Protocol (SDP) server. The
SDP response for an SPP service contains the RFCOMM channel number. To
provide an SPP service, you need to initialize memory (Section 3.2) and the
run loop (Section 3.3), setup HCI (Section 3.4) and L2CAP, then register an
RFCOMM service and provide its RFCOMM channel number as part of the
Protocol List attribute of the SDP record . Example code for SPP service setup
is provided in Listing 24. The SDP record created by sdp create spp service
consists of a basic SPP definition that uses provided RFCOMM channel ID and
service name. For more details, please have a look at it in include/btstack/

sdp_util.c. The SDP record is created on the fly in RAM and is deterministic.
To preserve valuable RAM, the result can be stored as constant data inside the
ROM.

5.3.2. Periodic Timer Setup. The heartbeat handler increases the real counter
every second, as shown in Listing 25. The general setup is explained in Section
4.1.

#define HEARTBEAT PERIOD MS 1000

void thea r tbea t hand l e r (t i m e r s o u r c e t ∗ t s) {
r e a l c o u n t e r ++;
// re−r e g i s t e r t imer
r u n l o o p r e g i s t e r t i m e r (ts , HEARTBEAT PERIOD MS) ;

}

Listing 25. Periodic counter

5.3.3. Bluetooth logic. The Bluetooth logic is implemented as a state machine
within the packet handler, see Listing 26. In this example, the following states are
passed sequentially: INIT, W4 CONNECTION, W4 CHANNEL COMPLETE,
and ACTIVE.

In INIT, upon successful startup of BTstack, the local Bluetooth name is set,
and the state machine transits to W4 CONNECTION.

The W4 CONNECTION state handles authentication and accepts incoming
RFCOMM connections. It uses a fixed PIN code ”0000” for authentication. An
incoming RFCOMM connection is accepted, and the state machine progresses to
W4 CHANNEL COMPLETE. More logic is need, if you want to handle connec-
tions from multiple clients. The incoming RFCOMM connection event contains
the RFCOMM channel number used during the SPP setup phase and the newly
assigned RFCOMM channel ID that is used by all BTstack commands and events.

In W4 CHANNEL COMPLETE state, an error in the channel establishment
fails (rare case, e.g., client crashes), the application returns to the W4 CONNE-
CTION state. On successful connection, the RFCOMM channel ID and MTU for

32

void prepareData (void) {
counte r to s end++;

}

void tryToSend (void) {
// see Quick Recipe 5 .4 , L i s t i n g 8

}

void packet hand le r (u i n t 8 t packet type , u i n t 8 t ∗packet , u i n t 1 6 t
s i z e) {
. . .
switch (s t a t e) {

case INIT :
i f (packet [2] == HCI STATE WORKING) {

hci send cmd(& h c i w r i t e l o c a l n a m e , ”BTstack Demo”) ;
s t a t e = W4 CONNECTION;

}
break ;

case W4 CONNECTION:
switch (event) {

case HCI EVENT PIN CODE REQUEST:
// see Quick Recipe 5.7
break ;

case RFCOMM EVENT INCOMING CONNECTION:
// see Quick Recipe 5.11
s t a t e = W4 CHANNEL COMPLETE;
break ;

}

case W4 CHANNEL COMPLETE:
i f (event != RFCOMM EVENT OPEN CHANNEL COMPLETE) break ;
// see Quick Recipe 5.11
// s t a t e : W4 CONNECTION on f a i l u r e , o the rw i s e ACTIVE
break ;

case ACTIVE:
// see Quick Recipe 5 .4 , L i s t i n g 9
// s t a t e : W4 CONNECTION on channel c l o s ed
break ;

. . .
}

}

Listing 26. SPP Server - Heartbeat Counter over RFCOMM.

33

this channel are made available to the heartbeat counter and the state machine
transits to ACTIVE.

While in the ACTIVE state, the communication between client and the ap-
plication takes place. In this example, the timer handler increases the real
counter every second. The packet handler tries to send this information when an
RFCOMM credit (RFCOMM EVENT CREDITS) or an HCI packet sent event
(DAEMON EVENT HCI PACKET SENT) are received. These two events rep-
resent two orthogonal mechanisms that deal with flow control. A packet can only
be sent when an RFCOMM credit is available and the internal BTstack outgoing
packet buffer is free.

5.4. spp accel: SPP Server - Accelerator Values. In this example, the
server tries to send the current accelerometer values. It does not use a periodic
timer, instead, it sends the data as fast as possible.

5.5. spp flowcontrol: SPP Server - Flow Control. This example adds ex-
plicit flow control for incoming RFCOMM data to the SPP heartbeat counter
example. We will highlight the changes compared to the SPP counter example.

5.5.1. SPP Service Setup. Listing 18 shows how to provide one initial credit
during RFCOMM service initialization. Please note that providing a single credit
effectively reduces the credit-based (sliding window) flow control to a stop-and-
wait flow control that limits the data throughput substantially.

void hear tbea t hand l e r (struct t imer ∗ t s) {
i f (r f comm send cred i t) {

r f comm grant c r ed i t s (r fcomm channel id , 1) ;
r f comm send cred i t = 0 ;

}
r u n l o o p r e g i s t e r t i m e r (ts , HEARTBEAT PERIOD MS) ;

}

Listing 27. Heartbeat handler with manual credit management.

void packet hand le r (void ∗ connect ion , u i n t 8 t packet type ,
u i n t 1 6 t channel , u i n t 8 t ∗packet , u i n t 1 6 t s i z e) {
. . .
i f (packet type == RFCOMM DATA PACKET) {

packet [s i z e] = 0 ;
puts ((const char ∗) packet) ;
r f comm send cred i t = 1 ;
return ;

}
. . .

}

Listing 28. Packet handler with manual credit management.

34

5.5.2. Periodic Timer Setup. Explicit credit management is recommended when
received RFCOMM data cannot be processed immediately. In this example,
delayed processing of received data is simulated with the help of a periodic timer
as follows. When the packet handler receives a data packet, it does not provide
a new credit, it sets a flag instead. If the flag is set, a new credit will be granted
by the heartbeat handler, introducing a delay of up to 1 second. The heartbeat
handler code is shown in Listing 27. The general setup is explained in Section
4.1.

5.5.3. Bluetooth logic. The packet handler now additionally handles RFCOMM
data packets and sets a flag for granting a new credit, see Listing 28.

6. Porting to Other Platforms

In this chapter, we highlight the BTstack components that need to be adjusted
for different hardware platforms.

6.1. Tick Hardware Abstraction Layer. BTstack requires a way to learn
about passing time. In an embedded configuration, the following functions have
to be provided. The hal tick init and the hal tick set handler functions will be
called during the initialization of the run loop.

void h a l t i c k i n i t (void) ;
void h a l t i c k s e t h a n d l e r (void (∗ t i c k h a n d l e r) (void)) ;
int h a l t i c k g e t t i c k p e r i o d i n m s (void) ;

6.2. Bluetooth Hardware Control API. The Bluetooth hardware control
API can provide the HCI layer with a custom initialization script, a vendor-
specific baud rate change command, and system power notifications. It is also
used to control the power mode of the Bluetooth module, i.e., turning it on/off
and putting to sleep. In addition, it provides an error handler hw error that is
called when a Hardware Error is reported by the Bluetooth module. The callback
allows for persistent logging or signaling of this failure.

Overall, the struct bt control t encapsulates common functionality that is not
covered by the Bluetooth specification. As an example, the bt control cc256x in-
stance function returns a pointer to a control struct suitable for the CC256x
chipset.

6.3. HCI Transport Implementation. On embedded systems, a Bluetooth
module can be connected via USB or an UART port. BTstack implements two
UART based protocols for carrying HCI commands, events and data between a
host and a Bluetooth module: HCI UART Transport Layer (H4) and H4 with
eHCILL support, a lightweight low-power variant by Texas Instruments.

6.3.1. HCI UART Transport Layer (H4). Most embedded UART interfaces oper-
ate on the byte level and generate a processor interrupt when a byte was received.
In the interrupt handler, common UART drivers then place the received data in
a ring buffer and set a flag for further processing or notify the higher-level code,
i.e., in our case the Bluetooth stack.

35

Bluetooth communication is packet-based and a single packet may contain up
to 1021 bytes. Calling a data received handler of the Bluetooth stack for every
byte creates an unnecessary overhead. To avoid that, a Bluetooth packet can be
read as multiple blocks where the amount of bytes to read is known in advance.
Even better would be the use of on-chip DMA modules for these block reads, if
available.

The BTstack UART Hardware Abstraction Layer API reflects this design ap-
proach and the underlying UART driver has to implement the following API:

void h a l u a r t d m a i n i t (void) ;
void h a l u a r t d m a s e t b l o c k r e c e i v e d (void (∗ b lock hand l e r) (void)) ;
void h a l u a r t d m a s e t b l o c k s e n t (void (∗ b lock hand l e r) (void)) ;
int ha l uart dma set baud (u i n t 3 2 t baud) ;
void ha l uar t dma send b lock (const u i n t 8 t ∗ bu f f e r , u i n t 1 6 t l en) ;
void h a l u a r t d m a r e c e i v e b l o c k (u i n t 8 t ∗ bu f f e r , u i n t 1 6 t l en) ;

The main HCI H4 implementations for embedded system is hci h4 transport-
dma function. This function calls the following sequence: hal uart dma init,

hal uart dma set block received and hal uart dma set block sent functions. After
this sequence, the HCI layer will start packet processing by calling hal uart-
dma receive block function. The HAL implementation is responsible for reading

the requested amount of bytes, stopping incoming data via the RTS line when
the requested amount of data was received and has to call the handler. By this,
the HAL implementation can stay generic, while requiring only three callbacks
per HCI packet.

6.3.2. H4 with eHCILL support. With the standard H4 protocol interface, it is
not possible for either the host nor the baseband controller to enter a sleep mode.
Besides the official H5 protocol, various chip vendors came up with proprietary
solutions to this. The eHCILL support by Texas Instruments allows both the
host and the baseband controller to independently enter sleep mode without
loosing their synchronization with the HCI H4 Transport Layer. In addition
to the IRQ-driven block-wise RX and TX, eHCILL requires a callback for CTS
interrupts.

void h a l u a r t d m a s e t c t s i r q h a n d l e r (void (∗ c t s i r q h a n d l e r) (void)) ;
void h a l u a r t d m a s e t s l e e p (u i n t 8 t s l e e p) ;

6.4. Persistent Storage API. On embedded systems there is no generic way
to persist data like link keys or remote device names, as every type of a device
has its own capabilities, particularities and limitations. The persistent storage
API provides an interface to implement concrete drivers for a particular system.
As an example and for testing purposes, BTstack provides the memory-only im-
plementation remote device db memory. An implementation has to conform to
the interface in Listing 29.

36

typedef struct {
// management
void (∗ open) () ;
void (∗ c l o s e) () ;

// l i n k key
int (∗ g e t l i n k k e y) (bd addr t ∗bd addr , l i n k k e y t ∗ l i n k k e y) ;
void (∗ p u t l i n k k e y) (bd addr t ∗bd addr , l i n k k e y t ∗key) ;
void (∗ d e l e t e l i n k k e y) (bd addr t ∗bd addr) ;

// remote name
int (∗ get name) (bd addr t ∗bd addr , dev ice name t ∗device name) ;
void (∗ put name) (bd addr t ∗bd addr , dev ice name t ∗device name) ;
void (∗ delete name) (bd addr t ∗bd addr) ;

} r emote dev i c e db t ;

Listing 29. Persistent Storage Interface.

7. Integrating with Existing Systems

While the run loop provided by BTstack is sufficient for new designs, BTstack
is often used with or added to existing projects. In this case, the run loop, data
sources, and timers may need to be adapted. The following two sections provides
a guideline for single and multi-threaded environments.

To simplify the discussion, we’ll consider an application split into ”Main
Application”, ”Communication Logic”, and ”BTstack”. The Communication
Logic contains the packet handler (PH) that handles all asynchronous events
and data packets from BTstack. The Main Application makes use of the Com-
munication Logic for its Bluetooth communication.

7.1. Adapting BTstack for Single-Threaded Environments. In a single-
threaded environment, all application components run on the same (single)
thread and use direct function calls as shown in Figure 3.

Main	 Applica*on	

Communica*on.	
Logic	 	

BTstack	

PH	

Figure 3. BTstack in single-threaded environment.

BTstack provides a basic run loop that supports the concept of data sources
and timers, which can be registered centrally. This works well when working with
a small MCU and without an operating system. To adapt to a basic operating

37

system or a different scheduler, BTstack’s run loop can be implemented based
on the functions and mechanism of the existing system.

Currently, we have two examples for this:

• run loop cocoa.c is an implementation for the CoreFoundation Framework
used in OS X and iOS. All run loop functions are implemented in terms of
CoreFoundation calls, data sources and timers are modeled as CFSockets
and CFRunLoopTimer respectively.
• run loop posix.c is an implementation for POSIX compliant systems. The

data sources are modeled as file descriptors and managed in a linked list.
Then, theselect function is used to wait for the next file descriptor to
become ready or timer to expire.

7.2. Adapting BTstack for Multi-Threaded Environments. The basic ex-
ecution model of BTstack is a general while loop. Aside from interrupt-driven
UART and timers, everything happens in sequence. When using BTstack in a
multi-threaded environment, this assumption has to stay valid - at least with
respect to BTstack. For this, there are two common options:

Communica)on	
Logic	

IPC	

BTstack	

Main	
Applica)on	

IPC	 application custom
commands

PH	

Figure 4. BTstack in multi-threaded environment - monolithic solution.

Daemon	

IPC	

BTstack	

Bluetooth
commands and

events

Main	
Applica6on	

PH	

Communica6on	
Logic	

IPC	 PH	

PH	

Figure 5. BTstack in multi-threaded environment - solution with daemon.

• The Communication Logic is implemented on a dedicated BTstack thread,
and the Main Application communicates with the BTstack thread via
application-specific messages over an Interprocess Communication (IPC)

38

as depicted in Figure 4. This option results in less code and quick adap-
tion.
• BTstack must be extended to run standalone, i.e, as a Daemon, on a dedi-

cated thread and the Main Application controls this daemon via BTstack
extended HCI command over IPC - this is used for the non-embedded ver-
sion of BTstack e.g., on the iPhone and it is depicted in Figure 5. This
option requires more code but provides more flexibility.

39

Appendix A. BTstack Protocol API

A.1. Host Controller Interface (HCI) API.

// Set up HCI .
void h c i i n i t (h c i t r a n s p o r t t ∗ t ransport , void ∗ con f i g , b t c o n t r o l t

∗ contro l , r emote dev i c e db t const∗ remote dev ice db) ;

// Used i f L2CAP i s not used (r a r e l y) .
void h c i r e g i s t e r p a c k e t h a n d l e r (void (∗ handler) (u i n t 8 t packet type

, u i n t 8 t ∗packet , u i n t 1 6 t s i z e)) ;

// Requests the change o f BTstack power mode .
int h c i p o w e r c o n t r o l (HCI POWER MODE mode) ;

// Al lows to con t r o l i f d e v i c e i s d i c o v e r a b l e . OFF by d e f a u l t .
void h c i d i s c o v e r a b l e c o n t r o l (u i n t 8 t enable) ;

// Creates and sends HCI command packe t s based on a temp la te and
// a l i s t o f parameters . Wi l l re turn error i f ou tgo ing data b u f f e r
// i s occupied .
int hci send cmd (const hc i cmd t ∗cmd , . . .) ;

// De l e t e s l i n k key f o r remote dev i c e wi th baseband address .
void h c i d r o p l i n k k e y f o r b d a d d r (bd addr t ∗addr) ;

40

A.2. L2CAP API.

// Set up L2CAP and r e g i s t e r L2CAP with HCI l a y e r .
void l 2 c a p i n i t (void) ;

// Reg i s t e r s a packe t hand ler t ha t hand les HCI and genera l BTstack
// even t s .
void l 2 c a p r e g i s t e r p a c k e t h a n d l e r (void (∗ handler) (void ∗ connect ion

, u i n t 8 t packet type , u i n t 1 6 t channel , u i n t 8 t ∗packet ,
u i n t 1 6 t s i z e)) ;

// Creates L2CAP channel to the PSM of a remote dev i c e wi th baseband
// address . A new baseband connect ion w i l l be i n i t i a t e d i f needed .
void l 2 c a p c r e a t e c h a n n e l i n t e r n a l (void ∗ connect ion ,

b t s t a c k p a c k e t h a n d l e r t packet handler , bd addr t address ,
u i n t 1 6 t psm , u i n t 1 6 t mtu) ;

// Disconencts L2CAP channel wi th g iven i d e n t i f i e r .
void l 2 c a p d i s c o n n e c t i n t e r n a l (u i n t 1 6 t l o c a l c i d , u i n t 8 t reason) ;

// Queries the maximal t r a n s f e r un i t (MTU) fo r L2CAP channel wi th
// g iven i d e n t i f i e r .
u i n t 1 6 t l 2 c a p g e t r e m o t e m t u f o r l o c a l c i d (u i n t 1 6 t l o c a l c i d) ;

// Sends L2CAP data packe t to the channel wi th g iven i d e n t i f i e r .
int l 2 c a p s e n d i n t e r n a l (u i n t 1 6 t l o c a l c i d , u i n t 8 t ∗data , u i n t 1 6 t

l en) ;

// Reg i s t e r s L2CAP s e r v i c e wi th g iven PSM and MTU, and a s s i gn s a
// packe t hand ler . On embedded systems , use NULL fo r connect ion
// parameter .
void l 2 c a p r e g i s t e r s e r v i c e i n t e r n a l (void ∗ connect ion ,

b t s t a c k p a c k e t h a n d l e r t packet handler , u i n t 1 6 t psm , u i n t 1 6 t
mtu) ;

// Unreg i s t e r s L2CAP s e r v i c e wi th g i ven PSM. On embedded systems ,
// use NULL fo r connect ion parameter .
void l 2 c a p u n r e g i s t e r s e r v i c e i n t e r n a l (void ∗ connect ion , u i n t 1 6 t

psm) ;

// Accepts /Deny incoming L2CAP connect ion .
void l 2 c a p a c c e p t c o n n e c t i o n i n t e r n a l (u i n t 1 6 t l o c a l c i d) ;
void l 2 c a p d e c l i n e c o n n e c t i o n i n t e r n a l (u i n t 1 6 t l o c a l c i d , u i n t 8 t

reason) ;

41

A.3. RFCOMM API.

// Set up RFCOMM.
void r f comm init (void) ;

// Reg i s t e r packe t hand ler .
void r f c omm reg i s t e r packe t hand l e r (void (∗ handler) (void ∗ connect ion

, u i n t 8 t packet type , u i n t 1 6 t channel , u i n t 8 t ∗packet ,
u i n t 1 6 t s i z e)) ;

// Creates RFCOMM connect ion (channel) to a g iven s e r v e r channel on
// a remote dev i c e wi th baseband address . A new baseband connect ion
// w i l l be i n i t i a t e d i f necessary .
// This connect ion i s an RFCOMM channel . The channel w i l l
// au t oma t i c a l l y prov ide enough c r e d i t s to the remote s i d e .
void r f c omm crea t e channe l i n t e rna l (void ∗ connect ion , bd addr t ∗

addr , u i n t 8 t channel) ;

// Creates RFCOMM connect ion (channel) to a g iven s e r v e r channel on
// a remote dev i c e wi th baseband address . A new baseband connect ion
// w i l l be i n i t i a t e d i f necessary .
// This channel w i l l use e x p l i c i t c r e d i t management . During channel
// e s tab l i shment , an i n i t i a l amount o f c r e d i t s i s prov ided .
void r f c o m m c r e a t e c h a n n e l w i t h i n i t i a l c r e d i t s i n t e r n a l (void ∗

connect ion , bd addr t ∗addr , u i n t 8 t s e rve r channe l , u i n t 8 t
i n i t i a l c r e d i t s) ;

// Disconencts RFCOMM channel wi th g i ven i d e n t i f i e r .
void r f comm di s connec t in t e rna l (u i n t 1 6 t rfcomm cid) ;

// Reg i s t e r s RFCOMM se r v i c e f o r a s e r v e r channel and a maximum frame
// s i z e , and a s s i gn s a packe t hand ler . On embedded systems , use NULL
// fo r connect ion parameter . This channel w i l l a u t oma t i c a l l y prov ide
// enough c r e d i t s to the remote s i d e .
void r f c o m m r e g i s t e r s e r v i c e i n t e r n a l (void ∗ connect ion , u i n t 8 t

channel , u i n t 1 6 t max frame s ize) ;

// Reg i s t e r s RFCOMM se r v i c e f o r a s e r v e r channel and a maximum frame
// s i z e , and a s s i gn s a packe t hand ler . On embedded systems , use NULL
// fo r connect ion parameter . This channel w i l l use e x p l i c i t c r e d i t
// management . During channel e s tab l i shment , an i n i t i a l amount o f
// c r e d i t s i s prov ided .
void r f c o m m r e g i s t e r s e r v i c e w i t h i n i t i a l c r e d i t s i n t e r n a l (void ∗

connect ion , u i n t 8 t channel , u i n t 1 6 t max frame size , u i n t 8 t
i n i t i a l c r e d i t s) ;

// Unreg i s t e r RFCOMM se r v i c e .
void r f c o m m u n r e g i s t e r s e r v i c e i n t e r n a l (u i n t 8 t s e r v i c e c h a n n e l) ;

// Accepts /Deny incoming RFCOMM connect ion .
void r f c omm accep t connec t i on in t e rna l (u i n t 1 6 t rfcomm cid) ;
void r f c o m m d e c l i n e c o n n e c t i o n i n t e r n a l (u i n t 1 6 t rfcomm cid) ;

42

// Grant more incoming c r e d i t s to the remote s i d e f o r the g iven
// RFCOMM channel i d e n t i f i e r .
void r f comm grant c r ed i t s (u i n t 1 6 t rfcomm cid , u i n t 8 t c r e d i t s) ;

// Sends RFCOMM data packe t to the RFCOMM channel wi th g iven
// i d e n t i f i e r .
int r f comm send inte rna l (u i n t 1 6 t rfcomm cid , u i n t 8 t ∗data ,

u i n t 1 6 t l en) ;

43

A.4. SDP API.

// Set up SDP.
void s d p i n i t (void) ;

// Reg i s t e r s e r v i c e record i n t e r n a l l y − t h i s v e r s i on does not copy
// the record t h e r e f o r e i t must be f o r e v e r a c c e s s i b l e .
// Precond i t ions :
// − At t r i bu t e IDs are in ascending order ;
// − ServiceRecordHandle i s f i r s t a t t r i b u t e and v a l i d .
// @returns ServiceRecordHandle or 0 i f r e g i s t r a t i o n f a i l e d .
u i n t 3 2 t s d p r e g i s t e r s e r v i c e i n t e r n a l (void ∗ connect ion ,

s e r v i c e r e c o r d i t e m t ∗ r e co rd i t em) ;

// Unreg i s t e r s e r v i c e record i n t e r n a l l y .
void s d p u n r e g i s t e r s e r v i c e i n t e r n a l (void ∗ connect ion , u i n t 3 2 t

s e r v i c e r e c o r d h a n d l e) ;

44

A.5. SDP Client API.

/∗ SDP Cl i en t ∗/

// Queries the SDP s e r v i c e o f the remote dev i c e g iven a s e r v i c e
// search pa t t e rn and a l i s t o f a t t r i b u t e IDs . The remote data i s
// handled by the SDP parser . The SDP parser d e l i v e r s a t t r i b u t e
// va l u e s and done event v ia a r e g i s t e r e d c a l l b a c k .
void s d p c l i e n t q u e r y (bd addr t remote , u i n t 8 t ∗

des s e rv i c eSea r chPat t e rn , u i n t 8 t ∗ d e s a t t r i b u t e I D L i s t) ;

/∗ SDP Parser ∗/

// Basic SDP Parser event type .
typedef enum s d p p a r s e r e v e n t t y p e {

SDP PARSER ATTRIBUTE VALUE = 1 ,
SDP PARSER COMPLETE,

} s d p p a r s e r e v e n t t y p e t ;

typedef struct sdp pa r s e r even t {
u i n t 8 t type ;

} s d p p a r s e r e v e n t t ;

// SDP Parser event to d e l i v e r an a t t r i b u t e va lue by t e by by t e .
typedef struct s d p p a r s e r a t t r i b u t e v a l u e e v e n t {

u i n t 8 t type ;
int r e c o r d i d ;
u i n t 1 6 t a t t r i b u t e i d ;
u i n t 3 2 t a t t r i b u t e l e n g t h ;
int d a t a o f f s e t ;
u i n t 8 t data ;

} s d p p a r s e r a t t r i b u t e v a l u e e v e n t t ;

// SDP Parser event to i n d i c a t e t ha t pars ing i s complete .
typedef struct sdp par s e r comp l e t e event {

u i n t 8 t type ;
u i n t 8 t s t a t u s ; // 0 == OK

} s d p p a r s e r c o m p l e t e e v e n t t ;

// Reg i s t e r s a c a l l b a c k to r e c e i v e a t t r i b u t e va lue data and parse
// complete event .
void s d p p a r s e r r e g i s t e r c a l l b a c k (void (∗ s d p c a l l b a c k) (

s d p p a r s e r e v e n t t ∗ event)) ;

45

/∗ SDP Queries ∗/

// Basic SDP Query event type .
typedef struct sdp query event {

u i n t 8 t type ;
} sdp que ry event t ;

// SDP Query event to i n d i c a t e t ha t query i s complete .
typedef struct sdp query complete event {

u i n t 8 t type ;
u i n t 8 t s t a t u s ; // 0 == OK

} sdp query comple t e event t ;

/∗ SDP Query f o r RFCOMM ∗/

// SDP Query RFCOMM event to d e l i v e r channel number and s e r v i c e
// name by t e by by t e .
typedef struct sdp query r f comm serv i c e event {

u i n t 8 t type ;
u i n t 8 t channe l nr ;
u i n t 8 t ∗ serv ice name ;

} sdp que ry r f comm se rv i c e even t t ;

// Searches SDP records on a remote dev i c e f o r RFCOMM se r v i c e s wi th
// a g iven UUID.
void sdp query r fcomm channe l and name for uuid (bd addr t remote ,

u i n t 1 6 t uuid) ;

// Searches SDP records on a remote dev i c e f o r RFCOMM se r v i c e s wi th
// a g iven s e r v i c e search pa t t e rn .
void sdp query r f comm channe l and name for search patte rn (bd addr t

remote , u i n t 8 t ∗ d e s s e r v i c e S e a r c h P a t t e r n) ;

// Reg i s t e r s a c a l l b a c k to r e c e i v e RFCOMM se r v i c e and query complete
// event .
void s d p q u e r y r f c o m m r e g i s t e r c a l l b a c k (void (∗ sdp app ca l lback) (

sdp que ry event t ∗ event , void ∗ context) , void ∗ context) ;

46

Appendix B. Events and Errors

L2CAP events and data packets are delivered to the packet handler specified
by l2cap register service resp. l2cap create channel internal. Data packets have
the L2CAP DATA PACKET packet type. L2CAP provides the following events:

• L2CAP EVENT CHANNEL OPENED - sent if channel establishment is
done. Status not equal zero indicates an error. Possible errors: out of
memory; connection terminated by local host, when the connection to
remote device fails.
• L2CAP EVENT CHANNEL CLOSED - emitted when channel is closed.

No status information is provided.
• L2CAP EVENT INCOMING CONNECTION - received when the con-

nection is requested by remote. Connection accept and decline are per-
formed with l2cap accept connection internal and l2cap decline connecti-
on internal respectively.
• L2CAP EVENT CREDITS - emitted when there is a chance to send a

new L2CAP packet. BTstack does not buffer packets. Instead, it requires
the application to retry sending if BTstack cannot deliver a packet to the
Bluetooth module. In this case, the l2cap send internal will return an
error.
• L2CAP EVENT SERVICE REGISTERED - Status not equal zero indi-

cates an error. Possible errors: service is already registered; MAX NO-
L2CAP SERVICES (defined in config.h) already registered.

Table 3. L2CAP Events

Event / Event Parameters (size in bits) Event Code

L2CAP EVENT CHANNEL OPENED 0x70
event(8), len(8), status(8), address(48), handle(16)
psm(16), local cid(16), remote cid(16), local mtu(16),
remote mtu(16)

L2CAP EVENT CHANNEL CLOSED 0x71
event (8), len(8), channel(16)

L2CAP EVENT INCOMING CONNECTION 0x72
event(8), len(8), address(48), handle(16), psm (16),
local cid(16), remote cid (16)

L2CAP EVENT CREDITS 0x74
event(8), len(8), local cid(16), credits(8)

L2CAP EVENT SERVICE REGISTERED 0x75
event(8), len(8), status(8), psm(16)

47

All RFCOMM events and data packets are currently delivered to the packet
handler specified by rfcomm register packet handler. Data packets have the
RFCOMM DATA PACKET packet type. Here is the list of events provided
by RFCOMM:

• RFCOMM EVENT INCOMING CONNECTION - received when the con-
nection is requested by remote. Connection accept and decline are per-
formed with rfcomm accept connection internal and rfcomm decline con-
nection internal respectively.
• RFCOMM EVENT CHANNEL CLOSED - emitted when channel is closed.

No status information is provided.
• RFCOMM EVENT OPEN CHANNEL COMPLETE - sent if channel es-

tablishment is done. Status not equal zero indicates an error. Possible
errors: an L2CAP error, out of memory.
• RFCOMM EVENT CREDITS - The application can resume sending when

this even is received. See Section 3.6 for more on RFCOMM credit-based
flow-control.
• RFCOMM EVENT SERVICE REGISTERED - Status not equal zero in-

dicates an error. Possible errors: service is already registered; MAX-
NO RFCOMM SERVICES (defined in config.h) already registered.

Table 4. RFCOMM Events

Event / Event Parameters (size in bits) Event Code

RFCOMM EVENT OPEN CHANNEL COMPLETE 0x80
event(8), len(8), status(8), address(48), handle(16),
server channel(8), rfcomm cid(16), max frame size(16)

RFCOMM EVENT CHANNEL CLOSED 0x81
event(8), len(8), rfcomm cid(16)

RFCOMM EVENT INCOMING CONNECTION 0x82
event(8), len(8), address(48), channel (8),
rfcomm cid(16)

RFCOMM EVENT CREDITS 0x84
event(8), len(8), rfcomm cid(16), credits(8)

RFCOMM EVENT SERVICE REGISTERED 0x85
event(8), len(8), status(8), rfcomm server channel id(8)

48

Table 5. Errors

Error Error Code

BTSTACK MEMORY ALLOC FAILED 0x56

BTSTACK ACL BUFFERS FULL 0x57

L2CAP COMMAND REJECT REASON COMMAND NOT UNDERSTOOD 0x60

L2CAP COMMAND REJECT REASON SIGNALING MTU EXCEEDED 0x61

L2CAP COMMAND REJECT REASON INVALID CID IN REQUEST 0x62

L2CAP CONNECTION RESPONSE RESULT SUCCESSFUL 0x63

L2CAP CONNECTION RESPONSE RESULT PENDING 0x64

L2CAP CONNECTION RESPONSE RESULT REFUSED PSM 0x65

L2CAP CONNECTION RESPONSE RESULT REFUSED SECURITY 0x66

L2CAP CONNECTION RESPONSE RESULT REFUSED RESOURCES 0x65

L2CAP CONFIG RESPONSE RESULT SUCCESSFUL 0x66

L2CAP CONFIG RESPONSE RESULT UNACCEPTABLE PARAMS 0x67

L2CAP CONFIG RESPONSE RESULT REJECTED 0x68

L2CAP CONFIG RESPONSE RESULT UNKNOWN OPTIONS 0x69

L2CAP SERVICE ALREADY REGISTERED 0x6a

RFCOMM MULTIPLEXER STOPPED 0x70

RFCOMM CHANNEL ALREADY REGISTERED 0x71

RFCOMM NO OUTGOING CREDITS 0x72

SDP HANDLE ALREADY REGISTERED 0x80

49

Appendix C. Run Loop API

// Set t imer based on current time in m i l l i s e c ond s .
void r u n l o o p s e t t i m e r (t i m e r s o u r c e t ∗a , u i n t 3 2 t t imeout in ms) ;

// Set c a l l b a c k t ha t w i l l be executed when timer e xp i r e s .
void r u n l o o p s e t t i m e r h a n d l e r (t i m e r s o u r c e t ∗ ts , void (∗ proce s s) (

t i m e r s o u r c e t ∗ t s)) ;

// Add/Remove t imer source .
void run loop add t imer (t i m e r s o u r c e t ∗ t imer) ;
int run loop remove t imer (t i m e r s o u r c e t ∗ t imer) ;

// I n i t must be c a l l e d b e f o r e any o ther run loop c a l l .
// Use RUN LOOPEMBEDDED fo r embedded de v i c e s .
void r u n l o o p i n i t (RUN LOOP TYPE type) ;

// Set data source c a l l b a c k .
void r u n l o o p s e t d a t a s o u r c e h a n d l e r (d a t a s o u r c e t ∗ds , int (∗

proce s s) (d a t a s o u r c e t ∗ ds)) ;

// Add/Remove data source .
void run loop add data sourc e (d a t a s o u r c e t ∗dataSource) ;
int run loop remove data source (d a t a s o u r c e t ∗dataSource) ;

// Execute con f i gured run loop . This f unc t i on does not re turn .
void run l oop execu t e (void) ;

// Se t s how many m i l l i s e c ond s has one t i c k .
u i n t 3 2 t embedded t i cks for ms (u i n t 3 2 t t ime in ms) ;

// Queries the current time in t i c k s .
u i n t 3 2 t embedded get t i cks (void) ;

// Se t s an i n t e r n a l f l a g t ha t i s checked in the c r i t i c a l s e c t i on
// j u s t b e f o r e en t e r ing s l e e p mode . Has to be c a l l e d by the

i n t e r r u p t
// hand ler o f a data source to s i g n a l the run loop t ha t a new data
// i s a v a i l a b l e .
void embedded tr igger (void) ;

Listing 30. Run Loop API.

50

Appendix D. Revision History

Rev Date Comments

1.1 August 30, 2013 Introduced SDP client. Updated Quick Recipe
on ”Query remote SDP service”.

	1. Get started with BTstack and MSP-EXP430F5438 + CC256x
	1.1. Hardware Setup
	1.2. General Tools
	1.3. Getting BTstack from SVN
	1.4. CC256x Init Scripts
	1.5. Compiling the Examples
	1.6. Loading Firmware
	1.7. Run the Example

	2. BTstack Architecture
	2.1. Single threaded design
	2.2. No blocking anywhere
	2.3. No artificially limited buffers/pools
	2.4. Statically bounded memory

	3. How to use BTstack
	3.1. Protocols and services
	3.2. Memory configuration
	3.3. Run loop
	3.4. BTstack initialization
	3.5. Where to get data - packet handlers
	3.6. RFCOMM flow control

	4. Quick Recipes
	4.1. Periodic time handler
	4.2. Defining custom HCI command templates
	4.3. Sending HCI command based on a template
	4.4. Living with a single output buffer
	4.5. Become discoverable
	4.6. Discover remote devices
	4.7. Pairing of devices
	4.8. Access an L2CAP service on a remote device
	4.9. Provide an L2CAP service
	4.10. Access an RFCOMM service on a remote device
	4.11. Provide an RFCOMM service
	4.12. Slowing down RFCOMM data reception
	4.13. Create SDP records
	4.14. Query remote SDP service

	5. Examples
	5.1. led_counter: UART and timer interrupt without Bluetooth
	5.2. gap_inquiry: GAP Inquiry Example
	5.3. spp_counter: SPP Server - Heartbeat Counter over RFCOMM
	5.4. spp_accel: SPP Server - Accelerator Values
	5.5. spp_flowcontrol: SPP Server - Flow Control

	6. Porting to Other Platforms
	6.1. Tick Hardware Abstraction Layer
	6.2. Bluetooth Hardware Control API
	6.3. HCI Transport Implementation
	6.4. Persistent Storage API

	7. Integrating with Existing Systems
	7.1. Adapting BTstack for Single-Threaded Environments
	7.2. Adapting BTstack for Multi-Threaded Environments

	Appendix A. BTstack Protocol API
	A.1. Host Controller Interface (HCI) API
	A.2. L2CAP API
	A.3. RFCOMM API
	A.4. SDP API
	A.5. SDP Client API

	Appendix B. Events and Errors
	Appendix C. Run Loop API
	Appendix D. Revision History

