const /* * Copyright (C) 2015 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ /* * hci_h4_transport_wiced.c * * HCI Transport API implementation for basic H4 protocol for use with btstack_run_loop_wiced.c */ #include "btstack_config.h" #include "btstack_run_loop_wiced.h" #include "btstack_debug.h" #include "hci.h" #include "hci_transport.h" #include "platform_bluetooth.h" #include "wiced.h" #include #include // priority higher than WIFI to make sure RTS is set #define WICED_BT_UART_THREAD_PRIORITY (WICED_NETWORK_WORKER_PRIORITY - 2) #define WICED_BT_UART_THREAD_STACK_SIZE 300 // assert pre-buffer for packet type is available #if !defined(HCI_OUTGOING_PRE_BUFFER_SIZE) || (HCI_OUTGOING_PRE_BUFFER_SIZE == 0) #error HCI_OUTGOING_PRE_BUFFER_SIZE not defined. Please update hci.h #endif /* Default of 512 bytes should be fine. Only needed if WICED_BT_UART_MANUAL_CTS_RTS */ #ifndef RX_RING_BUFFER_SIZE #define RX_RING_BUFFER_SIZE 512 #endif static wiced_result_t h4_rx_worker_receive_packet(void * arg); static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); typedef struct hci_transport_h4 { hci_transport_t transport; btstack_data_source_t *ds; int uart_fd; // different from ds->fd for HCI reader thread /* power management support, e.g. used by iOS */ btstack_timer_source_t sleep_timer; } hci_transport_h4_t; // single instance static hci_transport_h4_t * hci_transport_h4 = NULL; static hci_transport_config_uart_t * hci_transport_config_uart = NULL; static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; static wiced_worker_thread_t tx_worker_thread; static const uint8_t * tx_worker_data_buffer; static uint16_t tx_worker_data_size; static wiced_worker_thread_t rx_worker_thread; static int rx_worker_read_pos; static uint8_t hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + 1 + HCI_PACKET_BUFFER_SIZE]; // packet type + max(acl header + acl payload, event header + event data) static uint8_t * hci_packet = &hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE]; #ifdef WICED_BT_UART_MANUAL_CTS_RTS static volatile wiced_ring_buffer_t rx_ring_buffer; static volatile uint8_t rx_data[RX_RING_BUFFER_SIZE]; #endif // executed on main run loop static wiced_result_t h4_main_deliver_packet(void *arg){ // deliver packet packet_handler(hci_packet[0], &hci_packet[1], rx_worker_read_pos-1); // trigger receive of next packet wiced_rtos_send_asynchronous_event(&rx_worker_thread, &h4_rx_worker_receive_packet, NULL); return WICED_SUCCESS; } // executed on main run loop static wiced_result_t h4_main_notify_packet_send(void *arg){ // prepare for next packet tx_worker_data_size = 0; // notify upper stack that it might be possible to send again uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event)); return WICED_SUCCESS; } // executed on rx worker thread static void h4_rx_worker_receive_bytes(int bytes_to_read){ #ifdef WICED_UART_READ_DOES_NOT_RETURN_BYTES_READ // older API passes in number of bytes to read (checked in 3.3.1 and 3.4.0) platform_uart_receive_bytes(wiced_bt_uart_driver, &hci_packet[rx_worker_read_pos], bytes_to_read, WICED_NEVER_TIMEOUT); #else // newer API uses pointer to return number of read bytes uint32_t bytes = bytes_to_read; platform_uart_receive_bytes(wiced_bt_uart_driver, &hci_packet[rx_worker_read_pos], &bytes, WICED_NEVER_TIMEOUT); // assumption: bytes = bytes_to_rad as timeout is never #endif rx_worker_read_pos += bytes_to_read; } static wiced_result_t h4_rx_worker_receive_packet(void * arg){ #ifdef WICED_BT_UART_MANUAL_CTS_RTS platform_gpio_output_low(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]); #endif while (1){ rx_worker_read_pos = 0; h4_rx_worker_receive_bytes(1); switch (hci_packet[0]){ case HCI_EVENT_PACKET: h4_rx_worker_receive_bytes(HCI_EVENT_HEADER_SIZE); h4_rx_worker_receive_bytes(hci_packet[2]); break; case HCI_ACL_DATA_PACKET: h4_rx_worker_receive_bytes(HCI_ACL_HEADER_SIZE); h4_rx_worker_receive_bytes(little_endian_read_16( hci_packet, 3)); break; case HCI_SCO_DATA_PACKET: h4_rx_worker_receive_bytes(HCI_SCO_HEADER_SIZE); h4_rx_worker_receive_bytes(hci_packet[3]); break; default: // try again log_error("h4_rx_worker_receive_packet: invalid packet type 0x%02x", hci_packet[0]); continue; } #ifdef WICED_BT_UART_MANUAL_CTS_RTS platform_gpio_output_high(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]); #endif // deliver packet on main thread btstack_run_loop_wiced_execute_code_on_main_thread(&h4_main_deliver_packet, NULL); return WICED_SUCCESS; } } // executed on tx worker thread static wiced_result_t h4_tx_worker_send_packet(void * arg){ #ifdef WICED_BT_UART_MANUAL_CTS_RTS int cts_was_raised = 0; while (platform_gpio_input_get(wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]) == WICED_TRUE){ printf("."); wiced_rtos_delay_milliseconds(100); cts_was_raised = 1; } if (cts_was_raised){ printf("\n"); } #endif // blocking send platform_uart_transmit_bytes(wiced_bt_uart_driver, tx_worker_data_buffer, tx_worker_data_size); // let stack know btstack_run_loop_wiced_execute_code_on_main_thread(&h4_main_notify_packet_send, NULL); return WICED_SUCCESS; } static int h4_set_baudrate(uint32_t baudrate){ #if defined(_STM32F205RGT6_) || defined(STM32F40_41xxx) // directly use STM peripheral functions to change baud rate dynamically // set TX to high log_info("h4_set_baudrate %u", (int) baudrate); const platform_gpio_t* gpio = wiced_bt_uart_pins[WICED_BT_PIN_UART_TX]; platform_gpio_output_high(gpio); // reconfigure TX pin as GPIO GPIO_InitTypeDef gpio_init_structure; gpio_init_structure.GPIO_Speed = GPIO_Speed_50MHz; gpio_init_structure.GPIO_Mode = GPIO_Mode_OUT; gpio_init_structure.GPIO_OType = GPIO_OType_PP; gpio_init_structure.GPIO_PuPd = GPIO_PuPd_NOPULL; gpio_init_structure.GPIO_Pin = (uint32_t) ( 1 << gpio->pin_number ); GPIO_Init( gpio->port, &gpio_init_structure ); // disable USART USART_Cmd( wiced_bt_uart_peripheral->port, DISABLE ); // setup init structure USART_InitTypeDef uart_init_structure; uart_init_structure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; uart_init_structure.USART_BaudRate = baudrate; uart_init_structure.USART_WordLength = USART_WordLength_8b; uart_init_structure.USART_StopBits = USART_StopBits_1; uart_init_structure.USART_Parity = USART_Parity_No; uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_RTS_CTS; #ifdef WICED_BT_UART_MANUAL_CTS_RTS uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; #endif USART_Init(wiced_bt_uart_peripheral->port, &uart_init_structure); // enable USART again USART_Cmd( wiced_bt_uart_peripheral->port, ENABLE ); // set TX pin as USART again gpio_init_structure.GPIO_Mode = GPIO_Mode_AF; GPIO_Init( gpio->port, &gpio_init_structure ); #else log_error("h4_set_baudrate not implemented for this WICED Platform"); #endif return 0; } static void h4_init(const void * transport_config){ // check for hci_transport_config_uart_t if (!transport_config) { log_error("hci_transport_h4_wiced: no config!"); return; } if (((hci_transport_config_t*)transport_config)->type != HCI_TRANSPORT_CONFIG_UART) { log_error("hci_transport_h4_wiced: config not of type != HCI_TRANSPORT_CONFIG_UART!"); return; } hci_transport_config_uart = (hci_transport_config_uart_t*) transport_config; } static int h4_open(void){ // UART config wiced_uart_config_t uart_config = { .baud_rate = 115200, .data_width = DATA_WIDTH_8BIT, .parity = NO_PARITY, .stop_bits = STOP_BITS_1, .flow_control = FLOW_CONTROL_CTS_RTS, }; wiced_ring_buffer_t * ring_buffer = NULL; // configure HOST and DEVICE WAKE PINs platform_gpio_init(wiced_bt_control_pins[WICED_BT_PIN_HOST_WAKE], INPUT_HIGH_IMPEDANCE); platform_gpio_init(wiced_bt_control_pins[WICED_BT_PIN_DEVICE_WAKE], OUTPUT_PUSH_PULL); platform_gpio_output_low(wiced_bt_control_pins[WICED_BT_PIN_DEVICE_WAKE]); /* Configure Reg Enable pin to output. Set to HIGH */ if (wiced_bt_control_pins[ WICED_BT_PIN_POWER ]){ platform_gpio_init( wiced_bt_control_pins[ WICED_BT_PIN_POWER ], OUTPUT_OPEN_DRAIN_PULL_UP ); platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] ); } wiced_rtos_delay_milliseconds( 100 ); // -- init UART #ifdef WICED_BT_UART_MANUAL_CTS_RTS // configure RTS pin as output and set to high platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS], OUTPUT_PUSH_PULL); platform_gpio_output_high(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]); // configure CTS to input, pull-up platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS], INPUT_PULL_UP); // use ring buffer to allow to receive RX_RING_BUFFER_SIZE/2 addition bytes before raising RTS // casts avoid warnings because of volatile qualifier ring_buffer_init((wiced_ring_buffer_t *) &rx_ring_buffer, (uint8_t*) rx_data, sizeof( rx_data ) ); ring_buffer = (wiced_ring_buffer_t *) &rx_ring_buffer; // don't try uart_config.flow_control = FLOW_CONTROL_DISABLED; #endif platform_uart_init( wiced_bt_uart_driver, wiced_bt_uart_peripheral, &uart_config, ring_buffer ); // Reset Bluetooth via RESET line. Fallback to toggling POWER otherwise if ( wiced_bt_control_pins[ WICED_BT_PIN_RESET ]){ platform_gpio_init( wiced_bt_control_pins[ WICED_BT_PIN_RESET ], OUTPUT_PUSH_PULL ); platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] ); platform_gpio_output_low( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] ); wiced_rtos_delay_milliseconds( 100 ); platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] ); } else if ( wiced_bt_control_pins[ WICED_BT_PIN_POWER ]){ platform_gpio_output_low( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] ); wiced_rtos_delay_milliseconds( 100 ); platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] ); } // wait for Bluetooth to start up wiced_rtos_delay_milliseconds( 500 ); // create worker threads for rx/tx. only single request is posted to their queues wiced_rtos_create_worker_thread(&tx_worker_thread, WICED_BT_UART_THREAD_PRIORITY, WICED_BT_UART_THREAD_STACK_SIZE, 1); wiced_rtos_create_worker_thread(&rx_worker_thread, WICED_BT_UART_THREAD_PRIORITY, WICED_BT_UART_THREAD_STACK_SIZE, 1); // start receiving packet wiced_rtos_send_asynchronous_event(&rx_worker_thread, &h4_rx_worker_receive_packet, NULL); // tx is ready tx_worker_data_size = 0; return 0; } static int h4_close(void){ // not implementd return 0; } static int h4_send_packet(uint8_t packet_type, uint8_t * data, int size){ // store packet type before actual data and increase size size++; data--; *data = packet_type; // store in request tx_worker_data_buffer = data; tx_worker_data_size = size; // send packet as single block wiced_rtos_send_asynchronous_event(&tx_worker_thread, &h4_tx_worker_send_packet, NULL); return 0; } static void h4_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ packet_handler = handler; } static int h4_can_send_packet_now(uint8_t packet_type){ return tx_worker_data_size == 0; } static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ } // get h4 singleton const hci_transport_t * hci_transport_h4_instance(const btstack_uart_block_t * uart_driver) { if (hci_transport_h4 == NULL) { hci_transport_h4 = (hci_transport_h4_t*)malloc( sizeof(hci_transport_h4_t)); memset(hci_transport_h4, 0, sizeof(hci_transport_h4_t)); hci_transport_h4->ds = NULL; hci_transport_h4->transport.name = "H4_WICED"; hci_transport_h4->transport.init = h4_init; hci_transport_h4->transport.open = h4_open; hci_transport_h4->transport.close = h4_close; hci_transport_h4->transport.register_packet_handler = h4_register_packet_handler; hci_transport_h4->transport.can_send_packet_now = h4_can_send_packet_now; hci_transport_h4->transport.send_packet = h4_send_packet; hci_transport_h4->transport.set_baudrate = h4_set_baudrate; } return (const hci_transport_t *) hci_transport_h4; }