/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ #define __BTSTACK_FILE__ "mesh.c" #include #include #include #include #include "ble/mesh/adv_bearer.h" #include "ble/mesh/pb_adv.h" #include "ble/mesh/beacon.h" #include "provisioning.h" #include "provisioning_device.h" #include "btstack.h" #include "btstack_tlv.h" #define BEACON_TYPE_SECURE_NETWORK 1 const static uint8_t device_uuid[] = { 0x00, 0x1B, 0xDC, 0x08, 0x10, 0x21, 0x0B, 0x0E, 0x0A, 0x0C, 0x00, 0x0B, 0x0E, 0x0A, 0x0C, 0x00 }; static btstack_packet_callback_registration_t hci_event_callback_registration; static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size); static int counter = 'a'; static mesh_provisioning_data_t provisioning_data; static uint8_t mesh_flags; // pin entry static int ui_chars_for_pin; static uint8_t ui_pin[17]; static int ui_pin_offset; static const btstack_tlv_t * btstack_tlv_singleton_impl; static void * btstack_tlv_singleton_context; static btstack_crypto_ccm_t mesh_ccm_request; static btstack_crypto_aes128_t mesh_aes128_request; static void mesh_provisioning_dump( mesh_provisioning_data_t * data){ printf("NID: 0x%02x\n", data->nid); printf("IV Index: 0x%08x\n", data->iv_index); printf("NetworkID: "); printf_hexdump(data->network_id, 8); printf("BeaconKey: "); printf_hexdump(data->beacon_key, 16); printf("EncryptionKey: "); printf_hexdump(data->encryption_key, 16); printf("PrivacyKey: "); printf_hexdump(data->privacy_key, 16); } static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ UNUSED(channel); UNUSED(size); bd_addr_t addr; int i; int prov_len; switch (packet_type) { case HCI_EVENT_PACKET: switch (hci_event_packet_get_type(packet)) { case BTSTACK_EVENT_STATE: if (btstack_event_state_get_state(packet) != HCI_STATE_WORKING) break; // dump bd_addr in pts format gap_local_bd_addr(addr); printf("Local addr: %s - ", bd_addr_to_str(addr)); for (i=0;i<6;i++) { printf("%02x", addr[i]); } printf("\n"); // get tlv btstack_tlv_get_instance(&btstack_tlv_singleton_impl, &btstack_tlv_singleton_context); // load provisioning data prov_len = btstack_tlv_singleton_impl->get_tag(btstack_tlv_singleton_context, 'PROV', (uint8_t *) &provisioning_data, sizeof(mesh_provisioning_data_t)); printf("Provisioning data available: %u\n", prov_len ? 1 : 0); if (prov_len){ mesh_provisioning_dump(&provisioning_data); } // setup scanning gap_set_scan_parameters(0, 0x300, 0x300); gap_start_scan(); break; default: break; } break; } } static uint16_t network_pdu_src; static uint16_t network_pdu_dst; static uint32_t network_pdu_seq; static uint8_t network_pdu_ttl; static uint8_t network_pdu_ctl; // transport pdu static uint8_t transport_pdu_data[16]; static uint8_t transport_pdu_len; // also used for PECB calculation static uint8_t encryption_block[18]; static uint8_t obfuscation_block[16]; // network pdu static uint8_t network_pdu_data[31]; // get correct value static uint8_t network_pdu_len; static uint8_t network_nonce[13]; static void mesh_network_create_nonce(uint8_t * nonce, uint8_t ctl_ttl, uint32_t seq, uint16_t src, uint32_t iv_index){ unsigned int pos = 0; nonce[pos++] = 0x0; // Network Nonce nonce[pos++] = ctl_ttl; big_endian_store_24(nonce, pos, seq); pos += 3; big_endian_store_16(nonce, pos, src); pos += 2; big_endian_store_16(nonce, pos, 0); pos += 2; big_endian_store_32(nonce, pos, iv_index); } // NID/IVI | obfuscated (CTL/TTL, SEQ (24), SRC (16) ), encrypted ( DST(16), TransportPDU), MIC(32 or 64) static void create_network_pdu_c(void *arg){ UNUSED(arg); // obfuscate unsigned int i; for (i=0;i<6;i++){ network_pdu_data[1+i] ^= obfuscation_block[i]; } printf("NetworkPDU: "); printf_hexdump(network_pdu_data, network_pdu_len); // request to send adv_bearer_request_can_send_now_for_mesh_message(); } // static void create_network_pdu_b(void *arg){ UNUSED(arg); // store NetMIC uint8_t net_mic[8]; btstack_crypo_ccm_get_authentication_value(&mesh_ccm_request, net_mic); // store MIC uint8_t net_mic_len = network_pdu_ctl ? 8 : 4; memcpy(&network_pdu_data[9+transport_pdu_len], net_mic, net_mic_len); // setup packet network_pdu_len = 0; // Plainn: NID / IVI uint32_t iv_index = provisioning_data.iv_index; uint8_t nid = provisioning_data.nid; network_pdu_data[network_pdu_len++] = (iv_index << 7) | nid; // Obfuscated: uint8_t ctl_ttl = (network_pdu_ctl << 7) | (network_pdu_ttl & 0x7f); network_pdu_data[network_pdu_len++] = ctl_ttl; big_endian_store_24(network_pdu_data, network_pdu_len, network_pdu_seq); network_pdu_len += 3; big_endian_store_16(network_pdu_data, network_pdu_len, network_pdu_src); network_pdu_len += 2; // already encrypted network_pdu_len += 2 + transport_pdu_len + net_mic_len; // calc PECB memset(encryption_block, 0, 5); big_endian_store_32(encryption_block, 5, iv_index); memcpy(&encryption_block[9], &network_pdu_data[7], 7); btstack_crypto_aes128_encrypt(&mesh_aes128_request, provisioning_data.privacy_key, encryption_block, obfuscation_block, &create_network_pdu_c, NULL); } static void create_network_pdu_a(void *arg){ btstack_crypto_ccm_encrypt_block(&mesh_ccm_request, 2 + transport_pdu_len - 16, &encryption_block[16], &network_pdu_data[7+16], &create_network_pdu_b, NULL); } static void create_network_pdu(void){ // get network nonce uint32_t iv_index = provisioning_data.iv_index; uint8_t ctl_ttl = (network_pdu_ctl << 7) | (network_pdu_ttl & 0x7f); mesh_network_create_nonce(network_nonce, ctl_ttl, network_pdu_seq, network_pdu_src, iv_index); // prepare 'DST | TransportPDU' for CCM big_endian_store_16(encryption_block, 0, network_pdu_dst); memcpy(&encryption_block[2], transport_pdu_data, transport_pdu_len); // start ccm uint8_t cypher_len = 2 + transport_pdu_len; btstack_crypo_ccm_init(&mesh_ccm_request, provisioning_data.encryption_key, network_nonce, cypher_len); if (cypher_len > 16){ btstack_crypto_ccm_encrypt_block(&mesh_ccm_request, 16, encryption_block, &network_pdu_data[7], &create_network_pdu_a, NULL); } else { btstack_crypto_ccm_encrypt_block(&mesh_ccm_request, cypher_len, encryption_block, &network_pdu_data[7], &create_network_pdu_b, NULL); } } // provisioning data iterator typedef struct { uint8_t nid; uint8_t first; } provisioning_data_iterator_t; static void provisioning_data_iterator_init(provisioning_data_iterator_t * it, uint8_t nid){ it->nid = nid; it->first = 1; } static int provisioning_data_has_more(provisioning_data_iterator_t * it){ return it->first && it->nid == provisioning_data.nid; } static const mesh_provisioning_data_t * provisioning_data_get_next(provisioning_data_iterator_t * it){ it->first = 0; return &provisioning_data; } // static provisioning_data_iterator_t process_network_pdu_provisioning_data_it; static const mesh_provisioning_data_t * process_network_pdu_prov_data; static uint8_t process_network_pdu_decode_block; static void process_network_pdu_validate(void); static void process_network_pdu_done(void){ printf("process_network_pdu_done\n"); } static void process_network_pdu_validate_d(void * arg){ uint8_t ctl_ttl = network_pdu_data[1]; uint8_t net_mic_len = (ctl_ttl & 0x80) ? 8 : 4; uint8_t cypher_len = network_pdu_len - 9 - net_mic_len; printf("Transport PDU: "); printf_hexdump(network_pdu_data, network_pdu_len); // store NetMIC uint8_t net_mic[8]; btstack_crypo_ccm_get_authentication_value(&mesh_ccm_request, net_mic); printf("NetMIC: "); printf_hexdump(net_mic, net_mic_len); printf("Decrypted: "); printf_hexdump(transport_pdu_data, 2 + cypher_len); // compare nic to nic in data if (memcmp(net_mic, &network_pdu_data[network_pdu_len-net_mic_len], net_mic_len) == 0){ // match printf("NetMIC matches\n"); process_network_pdu_done(); } else { // fail printf("NetMIC maismatch, try next key\n"); process_network_pdu_validate(); } } static void process_network_pdu_validate_c(void * arg){ uint8_t ctl_ttl = network_pdu_data[1]; uint8_t net_mic_len = (ctl_ttl & 0x80) ? 8 : 4; uint8_t cypher_len = network_pdu_len - 9 - net_mic_len; btstack_crypto_ccm_decrypt_block(&mesh_ccm_request, cypher_len - 16, &network_pdu_data[7+16], &transport_pdu_data[16], &process_network_pdu_validate_d, NULL); } static void process_network_pdu_validate_b(void * arg){ // printf("PECB: "); printf_hexdump(obfuscation_block, 6); // de-obfuscate unsigned int i; for (i=0;i<6;i++){ network_pdu_data[1+i] ^= obfuscation_block[i]; } // printf_hexdump(network_pdu_data, network_pdu_len); // parse header uint32_t iv_index = process_network_pdu_prov_data->iv_index; uint8_t ctl_ttl = network_pdu_data[1]; uint32_t seq = big_endian_read_24(network_pdu_data, 2); uint16_t src = big_endian_read_16(network_pdu_data, 5); // get network nonce mesh_network_create_nonce(network_nonce, ctl_ttl, seq, src, iv_index); printf("Network Nonce: "); printf_hexdump(network_nonce, 13); // uint8_t net_mic_len = (ctl_ttl & 0x80) ? 8 : 4; uint8_t cypher_len = network_pdu_len - 7 - net_mic_len; printf("Cyper len %u, mic len %u\n", cypher_len, net_mic_len); printf("Encryption Key: "); printf_hexdump(process_network_pdu_prov_data->encryption_key, 16); // 034b50057e400000010000 btstack_crypo_ccm_init(&mesh_ccm_request, process_network_pdu_prov_data->encryption_key, network_nonce, cypher_len); if (cypher_len > 16){ btstack_crypto_ccm_decrypt_block(&mesh_ccm_request, 16, &network_pdu_data[7], transport_pdu_data, &process_network_pdu_validate_c, NULL); } else { btstack_crypto_ccm_decrypt_block(&mesh_ccm_request, cypher_len, &network_pdu_data[7], transport_pdu_data, &process_network_pdu_validate_d, NULL); } } static void process_network_pdu_validate(void){ if (!provisioning_data_has_more(&process_network_pdu_provisioning_data_it)){ process_network_pdu_done(); return; } process_network_pdu_prov_data = provisioning_data_get_next(&process_network_pdu_provisioning_data_it); // calc PECB memset(encryption_block, 0, 5); big_endian_store_32(encryption_block, 5, process_network_pdu_prov_data->iv_index); memcpy(&encryption_block[9], &network_pdu_data[7], 7); btstack_crypto_aes128_encrypt(&mesh_aes128_request, process_network_pdu_prov_data->privacy_key, encryption_block, obfuscation_block, &process_network_pdu_validate_b, NULL); } static void process_network_pdu(void){ // printf_hexdump(network_pdu_data, network_pdu_len); // uint8_t nid = network_pdu_data[0] & 0x7f; // uint8_t iv_index = network_pdu_data[0] >> 7; provisioning_data_iterator_init(&process_network_pdu_provisioning_data_it, nid); process_network_pdu_validate(); } static void mesh_message_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ if (packet_type != HCI_EVENT_PACKET) return; const uint8_t * adv_data; const uint8_t * pdu_data; uint8_t pdu_len; uint8_t adv_len; switch(packet[0]){ case HCI_EVENT_MESH_META: switch(packet[2]){ case MESH_SUBEVENT_CAN_SEND_NOW: adv_bearer_send_mesh_message(&network_pdu_data[0], network_pdu_len); break; case MESH_PB_ADV_LINK_OPEN: printf("Provisioner link opened"); break; case MESH_PB_PROV_ATTENTION_TIMER: printf("Attention Timer: %u\n", packet[3]); break; case MESH_PB_PROV_INPUT_OOB_REQUEST: printf("Enter passphrase: "); fflush(stdout); ui_chars_for_pin = 1; ui_pin_offset = 0; break; case MESH_PB_PROV_COMPLETE: printf("Provisioning complete\n"); memcpy(provisioning_data.network_id, provisioning_device_data_get_network_id(), 8); memcpy(provisioning_data.beacon_key, provisioning_device_data_get_beacon_key(), 16); memcpy(provisioning_data.encryption_key, provisioning_device_data_get_encryption_key(), 16); memcpy(provisioning_data.privacy_key, provisioning_device_data_get_privacy_key(), 16); provisioning_data.iv_index = provisioning_device_data_get_iv_index(); provisioning_data.nid = provisioning_device_data_get_nid(); mesh_flags = provisioning_device_data_get_flags(); // store in TLV btstack_tlv_singleton_impl->store_tag(btstack_tlv_singleton_context, 'PROV', (uint8_t *) &provisioning_data, sizeof(mesh_provisioning_data_t)); // dump mesh_provisioning_dump(&provisioning_data); break; default: break; } break; case GAP_EVENT_ADVERTISING_REPORT: adv_len = gap_event_advertising_report_get_data_length(packet); adv_data = gap_event_advertising_report_get_data(packet); // validate data item len pdu_len = adv_data[0] - 1; printf("adv len %u pdu len %u\n", adv_len, pdu_len); if ((pdu_len + 2) > adv_len) break; if (pdu_len < 13) break; // transport PDU len = 0, 32 bit NetMIC // get transport pdu pdu_data = &adv_data[2]; printf("received mesh message: "); printf_hexdump(pdu_data, pdu_len); // temp.. memcpy(network_pdu_data, pdu_data, pdu_len); network_pdu_len = pdu_len; // process process_network_pdu(); break; default: break; } } static void mesh_unprovisioned_beacon_handler(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ if (packet_type != HCI_EVENT_PACKET) return; uint8_t device_uuid[16]; uint16_t oob; const uint8_t * data; switch(packet[0]){ case GAP_EVENT_ADVERTISING_REPORT: data = gap_event_advertising_report_get_data(packet); memcpy(device_uuid, &packet[15], 16); oob = big_endian_read_16(data, 31); printf("received unprovisioned device beacon, oob data %x, device uuid: ", oob); printf_hexdump(device_uuid, 16); pb_adv_create_link(device_uuid); break; default: break; } } uint8_t pts_device_uuid[16]; const char * pts_device_uuid_string = "001BDC0810210B0E0A0C000B0E0A0C00"; static int scan_hex_byte(const char * byte_string){ int upper_nibble = nibble_for_char(*byte_string++); if (upper_nibble < 0) return -1; int lower_nibble = nibble_for_char(*byte_string); if (lower_nibble < 0) return -1; return (upper_nibble << 4) | lower_nibble; } static int btstack_parse_hex(const char * string, uint16_t len, uint8_t * buffer){ int i; for (i = 0; i < len; i++) { int single_byte = scan_hex_byte(string); if (single_byte < 0) return 0; string += 2; buffer[i] = (uint8_t)single_byte; // don't check seperator after last byte if (i == len - 1) { return 1; } // optional seperator char separator = *string; if (separator == ':' && separator == '-' && separator == ' ') { string++; } } return 1; } static void btstack_print_hex(const uint8_t * data, uint16_t len, char separator){ int i; for (i=0;i