/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ #define BTSTACK_FILE__ "hci_transport_h2_libusb.c" /* * hci_transport_usb.c * * HCI Transport API implementation for USB * * Created by Matthias Ringwald on 7/5/09. */ // Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size // HCI Commands 0 0 0x00 Control 8/16/32/64 // HCI Events 0 0 0x81 Interrupt (IN) 16 // ACL Data 0 0 0x82 Bulk (IN) 32/64 // ACL Data 0 0 0x02 Bulk (OUT) 32/64 // SCO Data 0 0 0x83 Isochronous (IN) // SCO Data 0 0 0x03 Isochronous (Out) #include #include #include /* UNIX standard function definitions */ #include #include // bail out if seen libusb is apperently to old #if !defined(LIBUSB_API_VERSION) || (LIBUSB_API_VERSION < 0x01000104) #error libusb api version to old! #endif #include #include "btstack_config.h" #include "btstack_debug.h" #include "hci.h" #include "hci_transport.h" #include "hci_transport_usb.h" #define DEBUG // deal with changes in libusb API: #ifdef LIBUSB_API_VERSION #if LIBUSB_API_VERSION >= 0x01000106 // since 1.0.22, libusb_set_option replaces libusb_set_debug #define libusb_set_debug(context,level) libusb_set_option(context, LIBUSB_OPTION_LOG_LEVEL, level) #endif #endif #if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0) #define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID #endif #define ACL_IN_BUFFER_COUNT 3 #define EVENT_IN_BUFFER_COUNT 3 #define EVENT_OUT_BUFFER_COUNT 4 #define SCO_IN_BUFFER_COUNT 10 #define ASYNC_POLLING_INTERVAL_MS 1 // // Bluetooth USB Transport Alternate Settings: // // 0: No active voice channels (for USB compliance) // 1: One 8 kHz voice channel with 8-bit encoding // 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding // 3: Three 8 kHz voice channels with 8-bit encoding // 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding // 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding // --> support only a single SCO connection // #define ALT_SETTING (1) #ifdef ENABLE_SCO_OVER_HCI // alt setting for 1-3 connections and 8/16 bit static const int alt_setting_8_bit[] = {1,2,3}; static const int alt_setting_16_bit[] = {2,4,5}; // for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets // One complete SCO packet with 24 frames every 3 frames (== 3 ms) #define NUM_ISO_PACKETS (3) static const uint16_t iso_packet_size_for_alt_setting[] = { 0, 9, 17, 25, 33, 49, 63, }; #endif // 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel) // note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload #define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS) // Outgoing SCO packet queue // simplified ring buffer implementation #define SCO_OUT_BUFFER_COUNT (20) #define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE) // seems to be the max depth for USB 3 #define USB_MAX_PATH_LEN 7 // prototypes static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size); static int usb_close(void); typedef enum { LIB_USB_CLOSED = 0, LIB_USB_OPENED, LIB_USB_DEVICE_OPENDED, LIB_USB_INTERFACE_CLAIMED, LIB_USB_TRANSFERS_ALLOCATED } libusb_state_t; // SCO packet state machine typedef enum { H2_W4_SCO_HEADER = 1, H2_W4_PAYLOAD, } H2_SCO_STATE; static libusb_state_t libusb_state = LIB_USB_CLOSED; // single instance static hci_transport_t * hci_transport_usb = NULL; static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler; // libusb #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID static struct libusb_device_descriptor desc; #endif static libusb_device_handle * handle; // known devices typedef struct { btstack_linked_item_t next; uint16_t vendor_id; uint16_t product_id; } usb_known_device_t; static btstack_linked_list_t usb_knwon_devices; typedef struct list_head { struct list_head *next, *prev; } list_head_t; static inline void __list_add( list_head_t *new, list_head_t *prev, list_head_t *next ) { next->prev = new; new->next = next; new->prev = prev; prev->next = new; } #define LIST_HEAD_INIT(name) { &(name), &(name) } static inline void init_list_head( list_head_t *list ) { list->next = list; list->prev = list; } static inline void list_add( list_head_t *new, list_head_t *head ) { __list_add( new, head, head->next ); } static inline void list_add_tail( list_head_t *new, list_head_t *head ) { __list_add( new, head->prev, head ); } static inline void list_del( list_head_t *entry ) { entry->next->prev = entry->prev; entry->prev->next = entry->next; entry->prev = NULL; entry->next = NULL; } static inline bool list_empty( list_head_t *head ) { return head->next == head; } static inline list_head_t *list_pop_front( list_head_t *head ) { list_head_t *front = head->next; list_del( front ); return front; } typedef struct { list_head_t list; struct libusb_transfer *t; uint8_t *data; bool in_flight; } usb_transfer_list_entry_t; typedef struct { list_head_t transfers; int nbr; usb_transfer_list_entry_t entries[0]; } usb_transfer_list_t; static struct libusb_transfer *usb_transfer_list_acquire( usb_transfer_list_t *list ) { usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)list_pop_front( &list->transfers ); struct libusb_transfer *transfer = current->t; current->in_flight = true; return transfer; } void usb_transfer_list_free( usb_transfer_list_t *list ); static void usb_transfer_list_release( usb_transfer_list_t *list, struct libusb_transfer *transfer ) { usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data; btstack_assert( current != NULL ); current->in_flight = false; list_add( ¤t->list, &list->transfers ); } static bool usb_transfer_list_empty( usb_transfer_list_t *list ) { return list_empty( &list->transfers ); } static usb_transfer_list_t *usb_transfer_list_alloc( int nbr, int iso_packets, int length ) { usb_transfer_list_t *list = malloc( sizeof(usb_transfer_list_t) + nbr*sizeof(usb_transfer_list_entry_t) ); init_list_head( &list->transfers ); list->nbr = nbr; for( int i=0; ientries[i]; struct libusb_transfer *transfer = libusb_alloc_transfer(iso_packets); entry->data = malloc( length ); transfer->buffer = entry->data; transfer->user_data = entry; entry->t = transfer; usb_transfer_list_release( list, transfer ); btstack_assert( entry->t->user_data != NULL ); } return list; } static void usb_transfer_list_cancel( usb_transfer_list_t *list ) { #ifdef __APPLE__ // for darwin ignore all warnings libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR); #endif for( int i=0; inbr; ++i ) { usb_transfer_list_entry_t *current = &list->entries[i]; if( current->in_flight ) { libusb_cancel_transfer( current->t ); } } #ifdef __APPLE__ libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); #endif } static int usb_transfer_list_in_flight( usb_transfer_list_t *list ) { int cnt = 0; for(int i=0; inbr; ++i) { usb_transfer_list_entry_t *entry = &list->entries[i]; if( entry->in_flight ) { ++cnt; } } return cnt; } static void usb_transfer_list_free_entry( struct libusb_transfer *transfer ) { usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data; free( current->data ); libusb_free_transfer( transfer ); current->in_flight = false; current->t = NULL; current->data = NULL; } void usb_transfer_list_free( usb_transfer_list_t *list ) { for( int i=0; inbr; ++i ) { usb_transfer_list_entry_t *entry = &list->entries[i]; btstack_assert( entry->in_flight == false ); if( entry->t ) { usb_transfer_list_free_entry( entry->t ); } } free( list ); } static usb_transfer_list_t *default_transfer_list = NULL; // For (ab)use as a linked list of received packets static list_head_t handle_packet_list = LIST_HEAD_INIT(handle_packet_list); static void enqueue_transfer(struct libusb_transfer *transfer) { usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)transfer->user_data; btstack_assert( current != NULL ); list_add_tail( ¤t->list, &handle_packet_list ); } static void signal_acknowledge(void); static void signal_sco_can_send_now(void); #ifdef ENABLE_SCO_OVER_HCI #ifdef _WIN32 #error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now" #endif // incoming SCO static H2_SCO_STATE sco_state; static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE]; static uint16_t sco_read_pos; static uint16_t sco_bytes_to_read; // pause/resume static uint16_t sco_voice_setting; static int sco_num_connections; static bool sco_activated; // dynamic SCO configuration static uint16_t iso_packet_size; static int sco_enabled; usb_transfer_list_t *sco_transfer_list = NULL; #endif static int doing_pollfds; static int num_pollfds; static btstack_data_source_t * pollfd_data_sources; static void usb_transport_response_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type); static btstack_data_source_t transport_response; static btstack_timer_source_t usb_timer; static int usb_timer_active; // endpoint addresses static int event_in_addr; static int acl_in_addr; static int acl_out_addr; static int sco_in_addr; static int sco_out_addr; // device info static int usb_path_len; static uint8_t usb_path[USB_MAX_PATH_LEN]; static uint16_t usb_vendor_id; static uint16_t usb_product_id; // transport interface state static int usb_transport_open; static void hci_transport_h2_libusb_emit_usb_info(void) { uint8_t event[7 + USB_MAX_PATH_LEN]; uint16_t pos = 0; event[pos++] = HCI_EVENT_TRANSPORT_USB_INFO; event[pos++] = 5 + usb_path_len; little_endian_store_16(event, pos, usb_vendor_id); pos+=2; little_endian_store_16(event, pos, usb_product_id); pos+=2; event[pos++] = usb_path_len; memcpy(&event[pos], usb_path, usb_path_len); pos += usb_path_len; (*packet_handler)(HCI_EVENT_PACKET, event, pos); } void hci_transport_usb_add_device(uint16_t vendor_id, uint16_t product_id) { usb_known_device_t * device = malloc(sizeof(usb_known_device_t)); if (device != NULL) { device->vendor_id = vendor_id; device->product_id = product_id; btstack_linked_list_add(&usb_knwon_devices, (btstack_linked_item_t *) device); } } void hci_transport_usb_set_path(int len, uint8_t * port_numbers){ if (len > USB_MAX_PATH_LEN || !port_numbers){ log_error("hci_transport_usb_set_path: len or port numbers invalid"); return; } usb_path_len = len; memcpy(usb_path, port_numbers, len); } LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer) { if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) { log_info("shutdown, transfer %p", transfer); usb_transfer_list_free_entry( transfer ); return; } int r; // log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length ); if (transfer->status == LIBUSB_TRANSFER_COMPLETED) { enqueue_transfer(transfer); } else if (transfer->status == LIBUSB_TRANSFER_STALL){ log_info("-> Transfer stalled, trying again"); r = libusb_clear_halt(handle, transfer->endpoint); if (r) { log_error("Error rclearing halt %d", r); } r = libusb_submit_transfer(transfer); if (r) { log_error("Error re-submitting transfer %d", r); } } else if ( transfer->status == LIBUSB_TRANSFER_CANCELLED ) { #ifdef ENABLE_SCO_OVER_HCI if(( transfer->endpoint == sco_in_addr) || (transfer->endpoint == sco_out_addr)) { usb_transfer_list_release( sco_transfer_list, transfer ); } else #endif { usb_transfer_list_release( default_transfer_list, transfer ); } } else { log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length); // No usable data, just resubmit packet r = libusb_submit_transfer(transfer); if (r) { log_error("Error re-submitting transfer %d", r); } } // log_info("end async_callback"); } #ifdef ENABLE_SCO_OVER_HCI static int usb_send_sco_packet(uint8_t *packet, int size){ int r; if( !sco_activated ) { log_error("sco send without beeing active!"); return -1; } if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; struct libusb_transfer *transfer = usb_transfer_list_acquire( sco_transfer_list ); uint8_t *data = transfer->buffer; void *user_data = transfer->user_data; // log_info("usb_send_acl_packet enter, size %u", size); // store packet in free slot memcpy(data, packet, size); // setup transfer // log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size); libusb_fill_iso_transfer(transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, user_data, 0); libusb_set_iso_packet_lengths(transfer, iso_packet_size); r = libusb_submit_transfer(transfer); if (r < 0) { log_error("Error submitting sco transfer, %d", r); return -1; } // log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active); signal_acknowledge(); if( !usb_transfer_list_empty( sco_transfer_list ) ) { signal_sco_can_send_now(); } return 0; } static void sco_state_machine_init(void){ sco_state = H2_W4_SCO_HEADER; sco_read_pos = 0; sco_bytes_to_read = 3; } static void handle_isochronous_data(uint8_t * buffer, uint16_t size){ while (size){ if (size < sco_bytes_to_read){ // just store incomplete data memcpy(&sco_buffer[sco_read_pos], buffer, size); sco_read_pos += size; sco_bytes_to_read -= size; return; } // copy requested data memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read); sco_read_pos += sco_bytes_to_read; buffer += sco_bytes_to_read; size -= sco_bytes_to_read; // chunk read successfully, next action switch (sco_state){ case H2_W4_SCO_HEADER: sco_state = H2_W4_PAYLOAD; sco_bytes_to_read = sco_buffer[2]; break; case H2_W4_PAYLOAD: // packet complete packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos); sco_state_machine_init(); break; default: btstack_assert(false); break; } } } #endif static void handle_completed_transfer(struct libusb_transfer *transfer){ int resubmit = 0; if (transfer->endpoint == event_in_addr) { packet_handler(HCI_EVENT_PACKET, transfer->buffer, transfer->actual_length); resubmit = 1; } else if (transfer->endpoint == acl_in_addr) { // log_info("-> acl"); packet_handler(HCI_ACL_DATA_PACKET, transfer->buffer, transfer->actual_length); resubmit = 1; } else if (transfer->endpoint == 0){ // log_info("command done, size %u", transfer->actual_length); // printf("%s cmd release\n", __FUNCTION__ ); usb_transfer_list_release( default_transfer_list, transfer ); } else if (transfer->endpoint == acl_out_addr){ // log_info("acl out done, size %u", transfer->actual_length); // printf("%s acl release\n", __FUNCTION__ ); usb_transfer_list_release( default_transfer_list, transfer ); #ifdef ENABLE_SCO_OVER_HCI } else if (transfer->endpoint == sco_in_addr) { // log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS); // give the transfer back to the pool, without resubmiting if( !sco_activated ) { usb_transfer_list_release( sco_transfer_list, transfer ); return; } int i; for (i = 0; i < transfer->num_iso_packets; i++) { struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; if (pack->status != LIBUSB_TRANSFER_COMPLETED) { log_error("Error: pack %u status %d\n", i, pack->status); continue; } if (!pack->actual_length) continue; uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i); handle_isochronous_data(data, pack->actual_length); } resubmit = 1; } else if (transfer->endpoint == sco_out_addr){ int i; for (i = 0; i < transfer->num_iso_packets; i++) { struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i]; if (pack->status != LIBUSB_TRANSFER_COMPLETED) { log_error("Error: pack %u status %d\n", i, pack->status); } } usb_transfer_list_release( sco_transfer_list, transfer ); if( !sco_activated ) { return; } // log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}", // transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status, // transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status, // transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status); // notify upper layer if there's space for new SCO packets if (!usb_transfer_list_empty(sco_transfer_list)) { signal_sco_can_send_now(); } // log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active); #endif } else { log_info("usb_process_ds endpoint unknown %x", transfer->endpoint); } if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; if (resubmit){ // Re-submit transfer int r = libusb_submit_transfer(transfer); if (r) { log_error("Error re-submitting transfer %d", r); } } } void usb_handle_pending_events(void); void usb_handle_pending_events(void) { struct timeval tv = { 0 }; libusb_handle_events_timeout_completed(NULL, &tv, NULL); } static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { UNUSED(ds); UNUSED(callback_type); if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; // log_info("begin usb_process_ds"); // always handling an event as we're called when data is ready usb_handle_pending_events(); // Handle any packet in the order that they were received while (!list_empty(&handle_packet_list)) { // log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status); // pop next transfer usb_transfer_list_entry_t *current = (usb_transfer_list_entry_t*)list_pop_front( &handle_packet_list ); // handle transfer handle_completed_transfer(current->t); // handle case where libusb_close might be called by hci packet handler if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; } // log_info("end usb_process_ds"); } static void usb_process_ts(btstack_timer_source_t *timer) { UNUSED(timer); // log_info("in usb_process_ts"); // timer is deactive, when timer callback gets called usb_timer_active = 0; if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return; // actually handled the packet in the pollfds function usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ); // Get the amount of time until next event is due long msec = ASYNC_POLLING_INTERVAL_MS; // Activate timer btstack_run_loop_set_timer(&usb_timer, msec); btstack_run_loop_add_timer(&usb_timer); usb_timer_active = 1; return; } static int scan_for_bt_endpoints(libusb_device *dev) { int r; event_in_addr = 0; acl_in_addr = 0; acl_out_addr = 0; sco_out_addr = 0; sco_in_addr = 0; // get endpoints from interface descriptor struct libusb_config_descriptor *config_descriptor; r = libusb_get_active_config_descriptor(dev, &config_descriptor); if (r < 0) return r; int num_interfaces = config_descriptor->bNumInterfaces; log_info("active configuration has %u interfaces", num_interfaces); int i; for (i = 0; i < num_interfaces ; i++){ const struct libusb_interface *interface = &config_descriptor->interface[i]; const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting; log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints); const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint; for (r=0;rbNumEndpoints;r++,endpoint++){ log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes); switch (endpoint->bmAttributes & 0x3){ case LIBUSB_TRANSFER_TYPE_INTERRUPT: if (event_in_addr) continue; event_in_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for HCI Events", event_in_addr); break; case LIBUSB_TRANSFER_TYPE_BULK: if (endpoint->bEndpointAddress & 0x80) { if (acl_in_addr) continue; acl_in_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr); } else { if (acl_out_addr) continue; acl_out_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr); } break; case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: if (endpoint->bEndpointAddress & 0x80) { if (sco_in_addr) continue; sco_in_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr); } else { if (sco_out_addr) continue; sco_out_addr = endpoint->bEndpointAddress; log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr); } break; default: break; } } } libusb_free_config_descriptor(config_descriptor); return 0; } #ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID // list of known devices, using VendorID/ProductID tuples static const uint16_t known_bluetooth_devices[] = { // BCM20702A0 - DeLOCK Bluetooth 4.0 0x0a5c, 0x21e8, // BCM20702A0 - Asus BT400 0x0b05, 0x17cb, // BCM20702B0 - Generic USB Detuned Class 1 @ 20 MHz 0x0a5c, 0x22be, // nRF5x Zephyr USB HCI, e.g nRF52840-PCA10056 0x2fe3, 0x0100, 0x2fe3, 0x000b, }; static int num_known_devices = sizeof(known_bluetooth_devices) / sizeof(uint16_t) / 2; static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){ int i; for (i=0; ivendor_id != vendor_id) continue; if (device->product_id != product_id) continue; return 1; } return 0; } // returns index of found device or -1 static int scan_for_bt_device(libusb_device **devs, int start_index) { int i; for (i = start_index; devs[i] ; i++){ libusb_device * dev = devs[i]; int r = libusb_get_device_descriptor(dev, &desc); if (r < 0) { log_error("failed to get device descriptor"); return 0; } log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ", desc.idVendor, desc.idProduct, libusb_get_bus_number(dev), libusb_get_device_address(dev), desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol); // Detect USB Dongle based Class, Subclass, and Protocol // The class code (bDeviceClass) is 0xE0 – Wireless Controller. // The SubClass code (bDeviceSubClass) is 0x01 – RF Controller. // The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming. if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) { return i; } // Detect USB Dongle based on whitelist if (is_known_bt_device(desc.idVendor, desc.idProduct)) { return i; } } return -1; } #endif static int prepare_device(libusb_device_handle * aHandle){ // get device path libusb_device * device = libusb_get_device(aHandle); usb_path_len = libusb_get_port_numbers(device, usb_path, USB_MAX_PATH_LEN); int r; int kernel_driver_detached = 0; // Detach OS driver (not possible for OS X, FreeBSD, and Windows) #if !defined(__APPLE__) && !defined(_WIN32) && !defined(__CYGWIN__) && !defined(__FreeBSD__) r = libusb_kernel_driver_active(aHandle, 0); if (r < 0) { log_error("libusb_kernel_driver_active error %d", r); libusb_close(aHandle); return r; } if (r == 1) { r = libusb_detach_kernel_driver(aHandle, 0); if (r < 0) { log_error("libusb_detach_kernel_driver error %d", r); libusb_close(aHandle); return r; } kernel_driver_detached = 1; } log_info("libusb_detach_kernel_driver"); #endif const int configuration = 1; log_info("setting configuration %d...", configuration); r = libusb_set_configuration(aHandle, configuration); if (r < 0) { log_error("Error libusb_set_configuration: %d", r); if (kernel_driver_detached){ libusb_attach_kernel_driver(aHandle, 0); } libusb_close(aHandle); return r; } // reserve access to device log_info("claiming interface 0..."); r = libusb_claim_interface(aHandle, 0); if (r < 0) { log_error("Error %d claiming interface 0", r); if (kernel_driver_detached){ libusb_attach_kernel_driver(aHandle, 0); } libusb_close(aHandle); return r; } #ifdef ENABLE_SCO_OVER_HCI // get endpoints from interface descriptor struct libusb_config_descriptor *config_descriptor; r = libusb_get_active_config_descriptor(device, &config_descriptor); if (r >= 0){ int num_interfaces = config_descriptor->bNumInterfaces; if (num_interfaces > 1) { r = libusb_claim_interface(aHandle, 1); if (r < 0) { log_error("Error %d claiming interface 1: - disabling SCO over HCI", r); } else { sco_enabled = 1; } } else { log_info("Device has only on interface, disabling SCO over HCI"); } } #endif return 0; } static libusb_device_handle * try_open_device(libusb_device * device){ int r; r = libusb_get_device_descriptor(device, &desc); if (r < 0) { log_error("libusb_get_device_descriptor failed!"); return NULL; } usb_vendor_id = desc.idVendor; usb_product_id = desc.idProduct; libusb_device_handle * dev_handle; r = libusb_open(device, &dev_handle); if (r < 0) { log_error("libusb_open failed!"); dev_handle = NULL; return NULL; } log_info("libusb open %d, handle %p", r, dev_handle); // reset device (Not currently possible under FreeBSD 11.x/12.x due to usb framework) #if !defined(__FreeBSD__) r = libusb_reset_device(dev_handle); if (r < 0) { log_error("libusb_reset_device failed!"); libusb_close(dev_handle); return NULL; } #endif return dev_handle; } #ifdef ENABLE_SCO_OVER_HCI static int usb_sco_start(void){ log_info("usb_sco_start"); if( sco_activated ) { log_error("double sco start!"); return -1; } sco_activated = true; sco_state_machine_init(); int alt_setting; if (sco_voice_setting & 0x0020){ // 16-bit PCM alt_setting = alt_setting_16_bit[sco_num_connections-1]; } else { // 8-bit PCM or mSBC alt_setting = alt_setting_8_bit[sco_num_connections-1]; } // derive iso packet size from alt setting iso_packet_size = iso_packet_size_for_alt_setting[alt_setting]; log_info("Switching to setting %u on interface 1..", alt_setting); int r = libusb_set_interface_alt_setting(handle, 1, alt_setting); if (r < 0) { log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r)); return r; } #ifdef DEBUG int in_flight = usb_transfer_list_in_flight( sco_transfer_list ); // there need to be at least SCO_IN_BUFFER_COUNT packets available to // fill them in below btstack_assert( in_flight <= SCO_OUT_BUFFER_COUNT ); #endif // incoming int c; for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) { struct libusb_transfer *transfer = usb_transfer_list_acquire( sco_transfer_list ); uint8_t *data = transfer->buffer; void *user_data = transfer->user_data; // configure sco_in handlers libusb_fill_iso_transfer(transfer, handle, sco_in_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, user_data, 0); libusb_set_iso_packet_lengths(transfer, iso_packet_size); r = libusb_submit_transfer(transfer); if (r) { log_error("Error submitting isochronous in transfer %d", r); usb_close(); return r; } } return 0; } static void usb_sco_stop(void){ log_info("usb_sco_stop"); sco_activated = false; usb_transfer_list_cancel( sco_transfer_list ); log_info("Switching to setting %u on interface 1..", 0); int r = libusb_set_interface_alt_setting(handle, 1, 0); if (r < 0) { log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r)); return; } log_info("usb_sco_stop done"); } #endif void pollfd_added_cb(int fd, short events, void *user_data); void pollfd_remove_cb(int fd, void *user_data); void pollfd_added_cb(int fd, short events, void *user_data) { UNUSED(fd); UNUSED(events); UNUSED(user_data); log_error("add fd: %d", fd); btstack_assert(0); } void pollfd_remove_cb(int fd, void *user_data) { UNUSED(fd); UNUSED(user_data); log_error("remove fd: %d", fd); btstack_assert(0); } static int usb_open(void){ int r; if (usb_transport_open) return 0; // default endpoint addresses event_in_addr = 0x81; // EP1, IN interrupt acl_in_addr = 0x82; // EP2, IN bulk acl_out_addr = 0x02; // EP2, OUT bulk sco_in_addr = 0x83; // EP3, IN isochronous sco_out_addr = 0x03; // EP3, OUT isochronous // USB init r = libusb_init(NULL); if (r < 0) return -1; libusb_state = LIB_USB_OPENED; // configure debug level libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING); libusb_device * dev = NULL; #ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID // Use a specified device log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID); handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID); if (!handle){ log_error("libusb_open_device_with_vid_pid failed!"); usb_close(); return -1; } log_info("libusb open %d, handle %p", r, handle); r = prepare_device(handle); if (r < 0){ usb_close(); return -1; } dev = libusb_get_device(handle); r = scan_for_bt_endpoints(dev); if (r < 0){ usb_close(); return -1; } usb_vendor_id = USB_VENDOR_ID; usb_product_id = USB_PRODUCT_ID; #else // Scan system for an appropriate devices libusb_device **devs; ssize_t num_devices; log_info("Scanning for USB Bluetooth device"); num_devices = libusb_get_device_list(NULL, &devs); if (num_devices < 0) { usb_close(); return -1; } if (usb_path_len){ int i; for (i=0;ibuffer; void *user_data = transfer->user_data; // configure event_in handlers libusb_fill_interrupt_transfer(transfer, handle, event_in_addr, data, HCI_ACL_BUFFER_SIZE, async_callback, user_data, 0); r = libusb_submit_transfer(transfer); if (r) { log_error("Error submitting interrupt transfer %d", r); usb_close(); return r; } } for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) { struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list ); usb_transfer_list_entry_t *transfer_meta_data = (usb_transfer_list_entry_t*)transfer->user_data; uint8_t *data = transfer_meta_data->data; void *user_data = transfer->user_data; // configure acl_in handlers libusb_fill_bulk_transfer(transfer, handle, acl_in_addr, data + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, user_data, 0) ; r = libusb_submit_transfer(transfer); if (r) { log_error("Error submitting bulk in transfer %d", r); usb_close(); return r; } } // Check for pollfds functionality doing_pollfds = libusb_pollfds_handle_timeouts(NULL); libusb_set_pollfd_notifiers( NULL, pollfd_added_cb, pollfd_remove_cb, NULL ); if (doing_pollfds) { log_info("Async using pollfds:"); const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL); for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++); pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds); if (!pollfd_data_sources){ log_error("Cannot allocate data sources for pollfds"); usb_close(); return 1; } memset(pollfd_data_sources, 0, sizeof(btstack_data_source_t) * num_pollfds); for (r = 0 ; r < num_pollfds ; r++) { btstack_data_source_t *ds = &pollfd_data_sources[r]; btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd); btstack_run_loop_set_data_source_handler(ds, &usb_process_ds); if( pollfd[r]->events & POLLIN ) btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ); else btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_WRITE); btstack_run_loop_add_data_source(ds); log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events); } libusb_free_pollfds(pollfd); } else { log_info("Async using timers:"); usb_timer.process = usb_process_ts; btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS); btstack_run_loop_add_timer(&usb_timer); usb_timer_active = 1; } usb_transport_open = 1; hci_transport_h2_libusb_emit_usb_info(); btstack_data_source_t *ds = &transport_response; btstack_run_loop_set_data_source_handler(ds, &usb_transport_response_ds); btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_POLL); btstack_run_loop_add_data_source(ds); return 0; } static int usb_close(void) { if (!usb_transport_open) return 0; log_info("usb_close"); switch (libusb_state){ case LIB_USB_CLOSED: break; case LIB_USB_TRANSFERS_ALLOCATED: libusb_state = LIB_USB_INTERFACE_CLAIMED; if(usb_timer_active) { btstack_run_loop_remove_timer(&usb_timer); usb_timer_active = 0; } if (doing_pollfds){ int r; for (r = 0 ; r < num_pollfds ; r++) { btstack_data_source_t *ds = &pollfd_data_sources[r]; btstack_run_loop_remove_data_source(ds); } free(pollfd_data_sources); pollfd_data_sources = NULL; num_pollfds = 0; doing_pollfds = 0; } /* fall through */ case LIB_USB_INTERFACE_CLAIMED: libusb_set_pollfd_notifiers( NULL, NULL, NULL, NULL ); usb_transfer_list_cancel( default_transfer_list ); #ifdef ENABLE_SCO_OVER_HCI usb_transfer_list_cancel( sco_transfer_list ); #endif int in_flight_transfers = usb_transfer_list_in_flight( default_transfer_list ); #ifdef ENABLE_SCO_OVER_HCI in_flight_transfers += usb_transfer_list_in_flight( sco_transfer_list ); #endif while( in_flight_transfers > 0 ) { struct timeval tv = { 0 }; libusb_handle_events_timeout(NULL, &tv); in_flight_transfers = usb_transfer_list_in_flight( default_transfer_list ); #ifdef ENABLE_SCO_OVER_HCI in_flight_transfers += usb_transfer_list_in_flight( sco_transfer_list ); #endif } usb_transfer_list_free( default_transfer_list ); #ifdef ENABLE_SCO_OVER_HCI usb_transfer_list_free( sco_transfer_list ); sco_enabled = 0; #endif // finally release interface libusb_release_interface(handle, 0); #ifdef ENABLE_SCO_OVER_HCI libusb_release_interface(handle, 1); #endif log_info("Libusb shutdown complete"); /* fall through */ case LIB_USB_DEVICE_OPENDED: libusb_close(handle); /* fall through */ case LIB_USB_OPENED: libusb_exit(NULL); break; default: btstack_assert(false); break; } libusb_state = LIB_USB_CLOSED; handle = NULL; usb_transport_open = 0; return 0; } static int acknowledge_count = 0; static void signal_acknowledge(void) { ++acknowledge_count; btstack_run_loop_poll_data_sources_from_irq(); } static int sco_can_send_now_count = 0; static void signal_sco_can_send_now(void) { ++sco_can_send_now_count; btstack_run_loop_poll_data_sources_from_irq(); } static void usb_transport_response_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) { UNUSED(ds); UNUSED(callback_type); // printf("%s packet sent: %d sco can send now: %d\n", __FUNCTION__, acknowledge_count, sco_can_send_now_count); for(; acknowledge_count>0; --acknowledge_count) { static const uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0 }; packet_handler(HCI_EVENT_PACKET, (uint8_t*)&event[0], sizeof(event)); } for(; sco_can_send_now_count>0; --sco_can_send_now_count) { static const uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0 }; packet_handler(HCI_EVENT_PACKET, (uint8_t*)&event[0], sizeof(event)); } } static int usb_send_cmd_packet(uint8_t *packet, int size){ int r; if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; // printf("%s( %p, %d )\n", __FUNCTION__, packet, size ); struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list ); uint8_t *data = transfer->buffer; void *user_data = transfer->user_data; // async libusb_fill_control_setup(data, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size); memcpy(data + LIBUSB_CONTROL_SETUP_SIZE, packet, size); // prepare transfer libusb_fill_control_transfer(transfer, handle, data, async_callback, user_data, 0); // submit transfer r = libusb_submit_transfer(transfer); if (r < 0) { log_error("Error submitting cmd transfer %d", r); return -1; } signal_acknowledge(); return 0; } static int usb_send_acl_packet(uint8_t *packet, int size){ int r; if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1; // printf("%s( %p, %d )\n", __FUNCTION__, packet, size ); // log_info("usb_send_acl_packet enter, size %u", size); struct libusb_transfer *transfer = usb_transfer_list_acquire( default_transfer_list ); uint8_t *data = transfer->buffer; // prepare transfer memcpy( data, packet, size ); libusb_fill_bulk_transfer(transfer, handle, acl_out_addr, data, size, async_callback, transfer->user_data, 0); r = libusb_submit_transfer(transfer); if (r < 0) { log_error("Error submitting acl transfer, %d", r); return -1; } signal_acknowledge(); return 0; } static int usb_can_send_packet_now(uint8_t packet_type){ switch (packet_type){ case HCI_COMMAND_DATA_PACKET: { int ret = !usb_transfer_list_empty( default_transfer_list ); if( !ret ) { log_error("command transfers shouldn't be empty!"); } return ret; } case HCI_ACL_DATA_PACKET: { int ret = !usb_transfer_list_empty( default_transfer_list ); if( !ret ) { log_error("acl transfers shouldn't be empty!"); } return ret; } #ifdef ENABLE_SCO_OVER_HCI case HCI_SCO_DATA_PACKET: { if (!sco_enabled || !sco_activated) return 0; int ret = !usb_transfer_list_empty( sco_transfer_list ); if( !ret ) { log_error("sco transfers shouldn't be empty!"); } return ret; } #endif default: return 0; } } static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){ switch (packet_type){ case HCI_COMMAND_DATA_PACKET: return usb_send_cmd_packet(packet, size); case HCI_ACL_DATA_PACKET: return usb_send_acl_packet(packet, size); #ifdef ENABLE_SCO_OVER_HCI case HCI_SCO_DATA_PACKET: if (!sco_enabled) return -1; return usb_send_sco_packet(packet, size); #endif default: return -1; } } #ifdef ENABLE_SCO_OVER_HCI static void usb_set_sco_config(uint16_t voice_setting, int num_connections){ if (!sco_enabled) return; log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections); if (num_connections != sco_num_connections){ sco_voice_setting = voice_setting; if (sco_num_connections){ usb_sco_stop(); } sco_num_connections = num_connections; if (num_connections){ usb_sco_start(); } } } #endif static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){ log_info("registering packet handler"); packet_handler = handler; } static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ UNUSED(packet_type); UNUSED(packet); UNUSED(size); } // get usb singleton const hci_transport_t * hci_transport_usb_instance(void) { if (!hci_transport_usb) { hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t)); memset(hci_transport_usb, 0, sizeof(hci_transport_t)); hci_transport_usb->name = "H2_LIBUSB"; hci_transport_usb->open = usb_open; hci_transport_usb->close = usb_close; hci_transport_usb->register_packet_handler = usb_register_packet_handler; hci_transport_usb->can_send_packet_now = usb_can_send_packet_now; hci_transport_usb->send_packet = usb_send_packet; #ifdef ENABLE_SCO_OVER_HCI hci_transport_usb->set_sco_config = usb_set_sco_config; #endif } return hci_transport_usb; }