#!/usr/bin/env python3 # # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import matplotlib.pyplot as plt def fast_exp2(x, t, p): p = p.astype(np.float32) x = x.astype(np.float32) m = ((x + 0.5/8) % (1/8)) - (0.5/8) e = int((x - m) * 8) y = ((((p[0]*m) + p[1])*m + p[2])*m + p[3])*m + p[4] y = y * 2**(e // 8) * t[e % 8] return y.astype(np.float32) def approx_exp2(): x = np.arange(0, 1/8, step=1e-6) p = np.polyfit(x, 2 ** x, 4) t = [ 2**(i/8) for i in range(8) ] x = np.arange(-10, 10, step=1e-3) y = [ fast_exp2(x[i], t, p) for i in range(len(x)) ] e = np.abs(y - 2**x) / (2 ** x) print('{{ {:14.8e}, {:14.8e}, {:14.8e}, {:14.8e}, \n' ' {:14.8e}, {:14.8e}, {:14.8e}, {:14.8e}, '.format(*t)) print('{{ {:14.8e}, {:14.8e}, {:14.8e}, {:14.8e}, {:14.8e} }}'.format(*p)) print('Max relative error: ', np.max(e)) print('Max RMS error: ', np.sqrt(np.mean(e ** 2))) if False: fig, (ax1, ax2) = plt.subplots(2) ax1.plot(x, 2**x, label='Reference') ax1.plot(x, y, label='Approximation') ax1.legend() ax2.plot(x, e, label='Relative Error') ax2.legend() plt.show() def fast_log2(x, p): p = p.astype(np.float32) x = x.astype(np.float32) (x, e) = np.frexp(x) y = ((((p[0]*x) + p[1])*x + p[2])*x + p[3])*x + p[4] return (e ) + y.astype(np.float32) def approx_log2(): x = np.logspace(-1, 0, base=2, num=100) p = np.polyfit(x, np.log2(x), 4) x = np.logspace(-2, 5, num=10000) y = [ fast_log2(x[i], p) for i in range(len(x)) ] e = np.abs(y - np.log2(x)) print('{{ {:14.8e}, {:14.8e}, {:14.8e}, {:14.8e}, {:14.8e} }}' .format(p[0], p[1], p[2], p[3], p[4])) print('Max absolute error: ', np.max(e)) print('Max RMS error: ', np.sqrt(np.mean(e ** 2))) if False: fig, (ax1, ax2) = plt.subplots(2) ax1.plot(x, np.log2(x), label='Reference') ax1.plot(x, y, label='Approximation') ax1.legend() ax2.plot(x, e, label = 'Absolute error') ax2.legend() plt.show() def table_db_q16(): k = 10 * np.log10(2); for i in range(32): a = k * np.log2(np.ldexp(32 + i , -5)) - (i // 16) * (k/2); b = k * np.log2(np.ldexp(32 + i+1, -5)) - (i // 16) * (k/2); an = np.ldexp(a, 15) + 0.5 bn = np.ldexp(b - a, 15) + 0.5 print('{{ {:5d}, {:4d} }},' .format(int(np.ldexp(a, 15) + 0.5), int(np.ldexp(b - a, 15) + 0.5)), end = ' ' if i % 4 < 3 else '\n') if __name__ == '__main__': print('\n--- Approximation of 2^n ---') approx_exp2() print('\n--- Approximation of log2(n) ---') approx_log2() print('\n--- Table of fixed Q16 dB ---') table_db_q16() print('')