# # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import lc3 import tables as T, appendix_c as C import bwdet as m_bwdet import ltpf as m_ltpf import sns as m_sns import tns as m_tns ### ------------------------------------------------------------------------ ### class SpectrumQuantization: def __init__(self, dt, sr): self.dt = dt self.sr = sr def get_gain_offset(self, nbytes): g_off = (nbytes * 8) // (10 * (1 + self.sr)) g_off = -min(115, g_off) - (105 + 5*(1 + self.sr)) return g_off def get_noise_indices(self, bw, xq, lastnz): nf_start = [ 18, 24 ][self.dt] nf_width = [ 2, 3 ][self.dt] bw_stop = int([ 80, 160, 240, 320, 400 ][bw] * (T.DT_MS[self.dt] / 10)) xq = np.append(xq[:lastnz], np.zeros(len(xq) - lastnz)) i_nf = [ np.all(xq[k-nf_width:min(bw_stop, k+nf_width+1)] == 0) for k in range(nf_start, bw_stop) ] return (i_nf, nf_start, bw_stop) class SpectrumAnalysis(SpectrumQuantization): def __init__(self, dt, sr): super().__init__(dt, sr) self.reset_off = 0 self.nbits_off = 0 self.nbits_spec = 0 self.nbits_est = 0 (self.g_idx, self.noise_factor, self.xq, self.lastnz, self.nbits_residual_max, self.xg) = \ (None, None, None, None, None, None) def estimate_gain(self, x, nbits_spec, nbits_off, g_off): nbits = int(nbits_spec + nbits_off + 0.5) ### Energy (dB) by 4 MDCT coefficients e = [ np.sum(x[4*k:4*(k+1)] ** 2) for k in range(len(x) // 4) ] e = 10 * np.log10(2**-31 + np.array(e)) ### Compute gain index g_idx = 255 for i in range(8): factor = 1 << (7 - i) g_idx -= factor tmp = 0 iszero = 1 for ei in e[-1::-1]: if ei * 28/20 < g_idx + g_off: if iszero == 0: tmp += 2.7*28/20 else: if g_idx + g_off < (ei - 43) * 28/20: tmp += 2*ei*28/20 - 2*(g_idx + g_off) - 36*28/20 else: tmp += ei*28/20 - (g_idx + g_off) + 7*28/20 iszero = 0 if tmp > nbits * 1.4 * 28/20 and iszero == 0: g_idx += factor ### Limit gain index x_max = np.amax(np.abs(x)) if x_max > 0: g_min = 28 * np.log10(x_max / (32768 - 0.375)) g_min = np.ceil(g_min).astype(int) - g_off reset_off = g_idx < g_min else: g_min = 0 reset_off = True if reset_off: g_idx = g_min return (g_idx + g_off, reset_off) def quantize(self, g_int, x): xg = x / 10 ** (g_int / 28) xq = np.where(xg < 0, np.ceil(xg - 0.375), np.floor(xg + 0.375)) xq = xq.astype(int) xq = np.fmin(np.fmax(xq, -32768), 32767) nz_pairs = np.any([ xq[::2] != 0, xq[1::2] != 0 ], axis=0) lastnz = len(xq) - 2 * np.argmax(nz_pairs[-1::-1]) if not np.any(nz_pairs): lastnz = 0 return (xg, xq, lastnz) def compute_nbits(self, nbytes, x, lastnz, nbits_spec): mode = 1 if nbytes >= 20 * (3 + self.sr) else 0 rate = 512 if nbytes > 20 * (1 + self.sr) else 0 nbits_est = 0 nbits_trunc = 0 nbits_lsb = 0 lastnz_trunc = 2 c = 0 for n in range(0, lastnz, 2): t = c + rate if n > len(x) // 2: t += 256 a = abs(x[n ]) b = abs(x[n+1]) lev = 0 while max(a, b) >= 4: nbits_est += \ T.AC_SPEC_BITS[T.AC_SPEC_LOOKUP[t + lev*1024]][16]; if lev == 0 and mode == 1: nbits_lsb += 2 else: nbits_est += 2 * 2048 a >>= 1 b >>= 1 lev = min(lev + 1, 3) nbits_est += \ T.AC_SPEC_BITS[T.AC_SPEC_LOOKUP[t + lev*1024]][a + 4*b] a_lsb = abs(x[n ]) b_lsb = abs(x[n+1]) nbits_est += (min(a_lsb, 1) + min(b_lsb, 1)) * 2048 if lev > 0 and mode == 1: a_lsb >>= 1; b_lsb >>= 1; nbits_lsb += int(a_lsb == 0 and x[n ] != 0) nbits_lsb += int(b_lsb == 0 and x[n+1] != 0) if (x[n] != 0 or x[n+1] != 0) and \ (nbits_est <= nbits_spec * 2048): lastnz_trunc = n + 2; nbits_trunc = nbits_est t = 1 + (a + b) * (lev + 1) if lev <= 1 else 12 + lev; c = (c & 15) * 16 + t; nbits_est = (nbits_est + 2047) // 2048 + nbits_lsb; nbits_trunc = (nbits_trunc + 2047) // 2048 self.rate = rate self.lsb_mode = mode == 1 and nbits_est > nbits_spec return (nbits_est, nbits_trunc, lastnz_trunc, self.lsb_mode) def adjust_gain(self, g_idx, nbits, nbits_spec): T1 = [ 80, 230, 380, 530, 680 ] T2 = [ 500, 1025, 1550, 2075, 2600 ] T3 = [ 850, 1700, 2550, 3400, 4250 ] sr = self.sr if nbits < T1[sr]: delta = (nbits + 48) / 16 elif nbits < T2[sr]: a = T1[sr] / 16 + 3 b = T2[sr] / 48 delta = a + (nbits - T1[sr]) * (b - a) / (T2[sr] - T1[sr]) elif nbits < T3[sr]: delta = nbits / 48 else: delta = T3[sr] / 48; delta = np.fix(delta + 0.5).astype(int) if (g_idx < 255 and nbits > nbits_spec) or \ (g_idx > 0 and nbits < nbits_spec - (delta + 2)): if nbits < nbits_spec - (delta + 2): return - 1 if g_idx == 254 or nbits < nbits_spec + delta: return 1 else: return 2 return 0 def estimate_noise(self, bw, xq, lastnz, x): (i_nf, nf_start, nf_stop) = self.get_noise_indices(bw, xq, lastnz) nf = 8 - 16 * sum(abs(x[nf_start:nf_stop] * i_nf)) / sum(i_nf) \ if sum(i_nf) > 0 else 0 return min(max(np.rint(nf).astype(int), 0), 7) def run(self, bw, nbytes, nbits_bw, nbits_ltpf, nbits_sns, nbits_tns, x): sr = self.sr ### Bit budget nbits_gain = 8 nbits_nf = 3 nbits_ari = np.ceil(np.log2(len(x) / 2)).astype(int) nbits_ari += 3 + min((8*nbytes - 1) // 1280, 2) nbits_spec = 8*nbytes - \ nbits_bw - nbits_ltpf - nbits_sns - nbits_tns - \ nbits_gain - nbits_nf - nbits_ari ### Global gain estimation nbits_off = self.nbits_off + self.nbits_spec - self.nbits_est nbits_off = min(40, max(-40, nbits_off)) nbits_off = 0 if self.reset_off else \ 0.8 * self.nbits_off + 0.2 * nbits_off g_off = self.get_gain_offset(nbytes) (g_int, self.reset_off) = \ self.estimate_gain(x, nbits_spec, nbits_off, g_off) self.nbits_off = nbits_off self.nbits_spec = nbits_spec ### Quantization (xg, xq, lastnz) = self.quantize(g_int, x) (nbits_est, nbits_trunc, lastnz_trunc, _) = \ self.compute_nbits(nbytes, xq, lastnz, nbits_spec) self.nbits_est = nbits_est ### Adjust gain and requantize g_adj = self.adjust_gain(g_int - g_off, nbits_est, nbits_spec) (xg, xq, lastnz) = self.quantize(g_adj, xg) (nbits_est, nbits_trunc, lastnz_trunc, lsb_mode) = \ self.compute_nbits(nbytes, xq, lastnz, nbits_spec) self.g_idx = g_int + g_adj - g_off self.xq = xq self.lastnz = lastnz_trunc self.nbits_residual_max = nbits_spec - nbits_trunc + 4 self.xg = xg ### Noise factor self.noise_factor = self.estimate_noise(bw, xq, lastnz, x) return (self.xq, self.lastnz, self.xg) def store(self, b): ne = T.NE[self.dt][self.sr] nbits_lastnz = np.ceil(np.log2(ne/2)).astype(int) b.write_uint((self.lastnz >> 1) - 1, nbits_lastnz) b.write_uint(self.lsb_mode, 1) b.write_uint(self.g_idx, 8) def encode(self, bits): ### Noise factor bits.write_uint(self.noise_factor, 3) ### Quantized data lsbs = [] x = self.xq c = 0 for n in range(0, self.lastnz, 2): t = c + self.rate if n > len(x) // 2: t += 256 a = abs(x[n ]) b = abs(x[n+1]) lev = 0 while max(a, b) >= 4: bits.ac_encode( T.AC_SPEC_CUMFREQ[T.AC_SPEC_LOOKUP[t + lev*1024]][16], T.AC_SPEC_FREQ[T.AC_SPEC_LOOKUP[t + lev*1024]][16]) if lev == 0 and self.lsb_mode: lsb_0 = a & 1 lsb_1 = b & 1 else: bits.write_bit(a & 1) bits.write_bit(b & 1) a >>= 1 b >>= 1 lev = min(lev + 1, 3) bits.ac_encode( T.AC_SPEC_CUMFREQ[T.AC_SPEC_LOOKUP[t + lev*1024]][a + 4*b], T.AC_SPEC_FREQ[T.AC_SPEC_LOOKUP[t + lev*1024]][a + 4*b]) a_lsb = abs(x[n ]) b_lsb = abs(x[n+1]) if lev > 0 and self.lsb_mode: a_lsb >>= 1 b_lsb >>= 1 lsbs.append(lsb_0) if a_lsb == 0 and x[n+0] != 0: lsbs.append(int(x[n+0] < 0)) lsbs.append(lsb_1) if b_lsb == 0 and x[n+1] != 0: lsbs.append(int(x[n+1] < 0)) if a_lsb > 0: bits.write_bit(int(x[n+0] < 0)) if b_lsb > 0: bits.write_bit(int(x[n+1] < 0)) t = 1 + (a + b) * (lev + 1) if lev <= 1 else 12 + lev; c = (c & 15) * 16 + t; ### Residual data if self.lsb_mode == 0: nbits_residual = min(bits.get_bits_left(), self.nbits_residual_max) for i in range(len(self.xg)): if self.xq[i] == 0: continue bits.write_bit(self.xg[i] >= self.xq[i]) nbits_residual -= 1 if nbits_residual <= 0: break else: nbits_residual = min(bits.get_bits_left(), len(lsbs)) for lsb in lsbs[:nbits_residual]: bits.write_bit(lsb) class SpectrumSynthesis(SpectrumQuantization): def __init__(self, dt, sr): super().__init__(dt, sr) (self.lastnz, self.lsb_mode, self.g_idx) = \ (None, None, None) def fill_noise(self, bw, x, lastnz, f_nf, nf_seed): (i_nf, nf_start, nf_stop) = self.get_noise_indices(bw, x, lastnz) k_nf = nf_start + np.argwhere(i_nf) l_nf = (8 - f_nf)/16 for k in k_nf: nf_seed = (13849 + nf_seed * 31821) & 0xffff x[k] = [ -l_nf, l_nf ][nf_seed < 0x8000] return x def load(self, b): ne = T.NE[self.dt][self.sr] nbits_lastnz = np.ceil(np.log2(ne/2)).astype(int) self.lastnz = (b.read_uint(nbits_lastnz) + 1) << 1 self.lsb_mode = b.read_uint(1) self.g_idx = b.read_uint(8) if self.lastnz > ne: raise ValueError('Invalid count of coded samples') def decode(self, bits, bw, nbytes): ### Noise factor f_nf = bits.read_uint(3) ### Quantized data x = np.zeros(T.NE[self.dt][self.sr]) rate = 512 if nbytes > 20 * (1 + self.sr) else 0 levs = np.zeros(len(x), dtype=np.int) c = 0 for n in range(0, self.lastnz, 2): t = c + rate if n > len(x) // 2: t += 256 for lev in range(14): s = t + min(lev, 3) * 1024 sym = bits.ac_decode( T.AC_SPEC_CUMFREQ[T.AC_SPEC_LOOKUP[s]], T.AC_SPEC_FREQ[T.AC_SPEC_LOOKUP[s]]) if sym < 16: break if self.lsb_mode == 0 or lev > 0: x[n ] += bits.read_bit() << lev x[n+1] += bits.read_bit() << lev if lev >= 14: raise ValueError('Out of range value') a = sym % 4 b = sym // 4 levs[n ] = lev levs[n+1] = lev x[n ] += a << lev x[n+1] += b << lev if x[n] and bits.read_bit(): x[n] = -x[n] if x[n+1] and bits.read_bit(): x[n+1] = -x[n+1] lev = min(lev, 3) t = 1 + (a + b) * (lev + 1) if lev <= 1 else 12 + lev; c = (c & 15) * 16 + t; ### Residual data nbits_residual = bits.get_bits_left() if nbits_residual < 0: raise ValueError('Out of bitstream') if self.lsb_mode == 0: xr = np.zeros(len(x), dtype=np.bool) for i in range(len(x)): if nbits_residual <= 0: xr.resize(i) break if x[i] == 0: continue xr[i] = bits.read_bit() nbits_residual -= 1 else: for i in range(len(levs)): if nbits_residual <= 0: break if levs[i] <= 0: continue lsb = bits.read_bit() nbits_residual -= 1 if not lsb: continue sign = int(x[i] < 0) if x[i] == 0: if nbits_residual <= 0: break sign = bits.read_bit() nbits_residual -= 1 x[i] += [ 1, -1 ][sign] ### Set residual and noise nf_seed = sum(abs(x.astype(np.int)) * range(len(x))) zero_frame = (self.lastnz <= 2 and x[0] == 0 and x[1] == 0 and self.g_idx <= 0 and f_nf >= 7) if self.lsb_mode == 0: for i in range(len(xr)): if x[i] and xr[i] == 0: x[i] += [ -0.1875, -0.3125 ][x[i] < 0] elif x[i]: x[i] += [ 0.1875, 0.3125 ][x[i] > 0] if not zero_frame: x = self.fill_noise(bw, x, self.lastnz, f_nf, nf_seed) ### Rescale coefficients g_int = self.get_gain_offset(nbytes) + self.g_idx x *= 10 ** (g_int / 28) return x def initial_state(): return { 'nbits_off' : 0.0, 'nbits_spare' : 0 } ### ------------------------------------------------------------------------ ### def check_estimate_gain(rng, dt, sr): ne = T.I[dt][sr][-1] ok = True analysis = SpectrumAnalysis(dt, sr) for i in range(10): x = rng.random(ne) * i * 1e2 nbytes = 20 + int(rng.random() * 100) nbits_budget = 8 * nbytes - int(rng.random() * 100) nbits_off = rng.random() * 10 g_off = 10 - int(rng.random() * 20) (g_int, reset_off) = \ analysis.estimate_gain(x, nbits_budget, nbits_off, g_off) (g_int_c, reset_off_c) = lc3.spec_estimate_gain( dt, sr, x, nbits_budget, nbits_off, -g_off) ok = ok and g_int_c == g_int ok = ok and reset_off_c == reset_off return ok def check_quantization(rng, dt, sr): ne = T.I[dt][sr][-1] ok = True analysis = SpectrumAnalysis(dt, sr) for g_int in range(-128, 128): x = rng.random(ne) * 1e2 nbytes = 20 + int(rng.random() * 30) (xg, xq, nq) = analysis.quantize(g_int, x) (xg_c, xq_c, nq_c) = lc3.spec_quantize(dt, sr, g_int, x) ok = ok and np.amax(np.abs(1 - xg_c/xg)) < 1e-6 ok = ok and np.any(abs(xq_c - xq) < 1) ok = ok and nq_c == nq return ok def check_compute_nbits(rng, dt, sr): ne = T.I[dt][sr][-1] ok = True analysis = SpectrumAnalysis(dt, sr) for nbytes in range(20, 150): nbits_budget = nbytes * 8 - int(rng.random() * 100) xq = (rng.random(ne) * 8).astype(int) nq = ne // 2 + int(rng.random() * ne // 2) nq = nq - nq % 2 if xq[nq-2] == 0 and xq[nq-1] == 0: xq[nq-2] = 1 (nbits, nbits_trunc, nq_trunc, lsb_mode) = \ analysis.compute_nbits(nbytes, xq, nq, nbits_budget) (nbits_c, nq_c, _) = \ lc3.spec_compute_nbits(dt, sr, nbytes, xq, nq, 0) (nbits_trunc_c, nq_trunc_c, lsb_mode_c) = \ lc3.spec_compute_nbits(dt, sr, nbytes, xq, nq, nbits_budget) ok = ok and nbits_c == nbits ok = ok and nbits_trunc_c == nbits_trunc ok = ok and nq_trunc_c == nq_trunc ok = ok and lsb_mode_c == lsb_mode return ok def check_adjust_gain(rng, dt, sr): ne = T.I[dt][sr][-1] ok = True analysis = SpectrumAnalysis(dt, sr) for g_idx in (0, 128, 254, 255): for nbits in range(50, 5000, 5): nbits_budget = int(nbits * (0.95 + (rng.random() * 0.1))) g_adj = analysis.adjust_gain(g_idx, nbits, nbits_budget) g_adj_c = lc3.spec_adjust_gain(sr, g_idx, nbits, nbits_budget) ok = ok and g_adj_c == g_adj return ok def check_unit(rng, dt, sr): ns = T.NS[dt][sr] ne = T.I[dt][sr][-1] ok = True state_c = initial_state() bwdet = m_bwdet.BandwidthDetector(dt, sr) ltpf = m_ltpf.LtpfAnalysis(dt, sr) tns = m_tns.TnsAnalysis(dt) sns = m_sns.SnsAnalysis(dt, sr) analysis = SpectrumAnalysis(dt, sr) nbytes = 100 for i in range(10): x = rng.random(ns) * 1e4 e = rng.random(min(len(x), 64)) * 1e10 bwdet.run(e) pitch_present = ltpf.run(x) tns.run(x[:ne], sr, False, nbytes) sns.run(e, False, x) (xq, nq, _) = analysis.run(sr, nbytes, bwdet.get_nbits(), ltpf.get_nbits(), sns.get_nbits(), tns.get_nbits(), x[:ne]) (_, xq_c, side_c) = lc3.spec_analyze( dt, sr, nbytes, pitch_present, tns.get_data(), state_c, x[:ne]) ok = ok and side_c['g_idx'] == analysis.g_idx ok = ok and side_c['nq'] == nq ok = ok and np.any(abs(xq_c - xq) < 1) return ok def check_noise(rng, dt, bw): ne = T.NE[dt][bw] ok = True analysis = SpectrumAnalysis(dt, bw) for i in range(10): xq = ((rng.random(ne) - 0.5) * 10 ** (0.5)).astype(int) nq = ne - int(rng.random() * 5) x = rng.random(ne) * i * 1e-1 nf = analysis.estimate_noise(bw, xq, nq, x) nf_c = lc3.spec_estimate_noise(dt, bw, xq, nq, x) ok = ok and nf_c == nf return ok def check_appendix_c(dt): sr = T.SRATE_16K ne = T.NE[dt][sr] ok = True state_c = initial_state() for i in range(len(C.X_F[dt])): g_int = lc3.spec_estimate_gain(dt, sr, C.X_F[dt][i], C.NBITS_SPEC[dt][i], C.NBITS_OFFSET[dt][i], -C.GG_OFF[dt][i])[0] ok = ok and g_int == C.GG_IND[dt][i] + C.GG_OFF[dt][i] (_, xq, nq) = lc3.spec_quantize(dt, sr, C.GG_IND[dt][i] + C.GG_OFF[dt][i], C.X_F[dt][i]) ok = ok and np.any((xq - C.X_Q[dt][i]) == 0) ok = ok and nq == C.LASTNZ[dt][i] nbits = lc3.spec_compute_nbits(dt, sr, C.NBYTES[dt], C.X_Q[dt][i], C.LASTNZ[dt][i], 0)[0] ok = ok and nbits == C.NBITS_EST[dt][i] g_adj = lc3.spec_adjust_gain(sr, C.GG_IND[dt][i], C.NBITS_EST[dt][i], C.NBITS_SPEC[dt][i]) ok = ok and g_adj == C.GG_IND_ADJ[dt][i] - C.GG_IND[dt][i] if C.GG_IND_ADJ[dt][i] != C.GG_IND[dt][i]: (_, xq, nq) = lc3.spec_quantize(dt, sr, C.GG_IND_ADJ[dt][i] + C.GG_OFF[dt][i], C.X_F[dt][i]) lastnz = C.LASTNZ_REQ[dt][i] ok = ok and np.any(((xq - C.X_Q_REQ[dt][i])[:lastnz]) == 0) tns_data = { 'nfilters' : C.NUM_TNS_FILTERS[dt][i], 'lpc_weighting' : [ True, True ], 'rc_order' : [ C.RC_ORDER[dt][i][0], 0 ], 'rc' : [ C.RC_I_1[dt][i] - 8, np.zeros(8, dtype = np.int) ] } (x, xq, side) = lc3.spec_analyze(dt, sr, C.NBYTES[dt], C.PITCH_PRESENT[dt][i], tns_data, state_c, C.X_F[dt][i]) ok = ok and np.abs(state_c['nbits_off'] - C.NBITS_OFFSET[dt][i]) < 1e-5 if C.GG_IND_ADJ[dt][i] != C.GG_IND[dt][i]: xq = C.X_Q_REQ[dt][i] nq = C.LASTNZ_REQ[dt][i] ok = ok and side['g_idx'] == C.GG_IND_ADJ[dt][i] ok = ok and side['nq'] == nq ok = ok and np.any(((xq[:nq] - xq[:nq])) == 0) else: xq = C.X_Q[dt][i] nq = C.LASTNZ[dt][i] ok = ok and side['g_idx'] == C.GG_IND[dt][i] ok = ok and side['nq'] == nq ok = ok and np.any((xq[:nq] - C.X_Q[dt][i][:nq]) == 0) ok = ok and side['lsb_mode'] == C.LSB_MODE[dt][i] gg = C.GG[dt][i] if C.GG_IND_ADJ[dt][i] == C.GG_IND[dt][i] \ else C.GG_ADJ[dt][i] nf = lc3.spec_estimate_noise(dt, C.P_BW[dt][i], xq, nq, C.X_F[dt][i] / gg) ok = ok and nf == C.F_NF[dt][i] return ok def check(): rng = np.random.default_rng(1234) ok = True for dt in range(T.NUM_DT): for sr in range(T.NUM_SRATE): ok = ok and check_estimate_gain(rng, dt, sr) ok = ok and check_quantization(rng, dt, sr) ok = ok and check_compute_nbits(rng, dt, sr) ok = ok and check_adjust_gain(rng, dt, sr) ok = ok and check_unit(rng, dt, sr) ok = ok and check_noise(rng, dt, sr) for dt in range(T.NUM_DT): ok = ok and check_appendix_c(dt) return ok ### ------------------------------------------------------------------------ ###