minimal sorting of variables into global, setup, and connection done

This commit is contained in:
matthias.ringwald 2014-06-12 21:54:00 +00:00
parent 46857d030e
commit d4eb9144ae

103
ble/sm.c
View File

@ -171,9 +171,9 @@ typedef enum {
typedef enum { typedef enum {
SM_AES128_IDLE, SM_AES128_IDLE,
SM_AES128_PLAINTEXT_SET,
SM_AES128_ACTIVE SM_AES128_ACTIVE
} sm_aes128_state_t; } sm_aes128_state_t;
// //
// GLOBAL DATA // GLOBAL DATA
// //
@ -184,6 +184,7 @@ static uint8_t sm_max_encryption_key_size;
static uint8_t sm_min_encryption_key_size; static uint8_t sm_min_encryption_key_size;
static uint8_t sm_s_auth_req = 0; static uint8_t sm_s_auth_req = 0;
static uint8_t sm_s_io_capabilities = IO_CAPABILITY_UNKNOWN; static uint8_t sm_s_io_capabilities = IO_CAPABILITY_UNKNOWN;
static uint8_t sm_slave_request_security;
static stk_generation_method_t sm_stk_generation_method; static stk_generation_method_t sm_stk_generation_method;
// Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values // Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
@ -203,7 +204,7 @@ static derived_key_generation_t dkg_state = DKG_W4_WORKING;
static random_address_update_t rau_state = RAU_IDLE; static random_address_update_t rau_state = RAU_IDLE;
static bd_addr_t sm_random_address; static bd_addr_t sm_random_address;
// CMAC calculation - single instance // CMAC calculation
static cmac_state_t sm_cmac_state; static cmac_state_t sm_cmac_state;
static sm_key_t sm_cmac_k; static sm_key_t sm_cmac_k;
static uint16_t sm_cmac_message_len; static uint16_t sm_cmac_message_len;
@ -214,19 +215,15 @@ static uint8_t sm_cmac_block_current;
static uint8_t sm_cmac_block_count; static uint8_t sm_cmac_block_count;
static void (*sm_cmac_done_handler)(uint8_t hash[8]); static void (*sm_cmac_done_handler)(uint8_t hash[8]);
// for all connections in slave role // resolvable private address lookup
static uint8_t sm_s_addr_type;
static bd_addr_t sm_s_address;
// resolvable private address lookup: single instance
static int sm_central_device_test; static int sm_central_device_test;
static int sm_central_device_matched; static int sm_central_device_matched;
static int sm_central_ah_calculation_active; static int sm_central_ah_calculation_active;
static uint8_t sm_central_device_addr_type; static uint8_t sm_central_device_addr_type;
static bd_addr_t sm_central_device_address; static bd_addr_t sm_central_device_address;
// state of aes128 crypto engine // aes128 crypto engine
static sm_aes128_state_t sm_aes128_state; static sm_aes128_state_t sm_aes128_state;
// //
// Volume 3, Part H, Chapter 24 // Volume 3, Part H, Chapter 24
@ -235,8 +232,7 @@ static sm_aes128_state_t sm_aes128_state;
// -> master := initiator, slave := responder // -> master := initiator, slave := responder
// //
// PER INSTANCE DATA // data needed for security setup
typedef struct sm_setup_context { typedef struct sm_setup_context {
// used during sm setup // used during sm setup
sm_key_t sm_tk; sm_key_t sm_tk;
@ -250,6 +246,7 @@ typedef struct sm_setup_context {
// user response // user response
uint8_t sm_user_response; uint8_t sm_user_response;
// master = remote data
uint8_t sm_m_io_capabilities; uint8_t sm_m_io_capabilities;
uint8_t sm_m_have_oob_data; uint8_t sm_m_have_oob_data;
uint8_t sm_m_auth_req; uint8_t sm_m_auth_req;
@ -259,6 +256,17 @@ typedef struct sm_setup_context {
sm_key_t sm_m_random; sm_key_t sm_m_random;
sm_key_t sm_m_confirm; sm_key_t sm_m_confirm;
// key distribution, received from master
// commented keys that are not stored or used by Peripheral role
// sm_key_t sm_m_ltk;
// uint16_t sm_m_ediv;
// uint8_t sm_m_rand[8];
uint8_t sm_m_addr_type;
bd_addr_t sm_m_address;
sm_key_t sm_m_csrk;
sm_key_t sm_m_irk;
// slave = local data
sm_key_t sm_s_random; sm_key_t sm_s_random;
uint8_t sm_s_have_oob_data; uint8_t sm_s_have_oob_data;
sm_key_t sm_s_confirm; sm_key_t sm_s_confirm;
@ -272,28 +280,20 @@ typedef struct sm_setup_context {
uint8_t sm_s_rand[8]; uint8_t sm_s_rand[8];
// commented keys are not used in Perihperal role // commented keys are not used in Perihperal role
// sm_key_t sm_s_csrk; // sm_key_t sm_s_csrk;
uint8_t sm_s_addr_type;
bd_addr_t sm_s_address;
// key distribution, received from master
// commented keys that are not stored or used by Peripheral role
// sm_key_t sm_m_ltk;
// uint16_t sm_m_ediv;
// uint8_t sm_m_rand[8];
uint8_t sm_m_addr_type;
bd_addr_t sm_m_address;
sm_key_t sm_m_csrk;
sm_key_t sm_m_irk;
} sm_setup_context_t; } sm_setup_context_t;
// connection info available as long as connection exists // connection info available as long as connection exists
typedef struct sm_connection { typedef struct sm_connection {
uint16_t sm_handle;
security_manager_state_t sm_state_responding; security_manager_state_t sm_state_responding;
csrk_lookup_state_t sm_m_csrk_lookup_state; csrk_lookup_state_t sm_m_csrk_lookup_state;
uint8_t sm_connection_encrypted; uint8_t sm_connection_encrypted;
uint8_t sm_connection_authenticated; // [0..1] uint8_t sm_connection_authenticated; // [0..1]
uint8_t sm_actual_encryption_key_size; uint8_t sm_actual_encryption_key_size;
uint8_t sm_s_request_security;
authorization_state_t sm_connection_authorization_state; authorization_state_t sm_connection_authorization_state;
uint16_t sm_response_handle;
timer_source_t sm_timeout; timer_source_t sm_timeout;
} sm_connection_t; } sm_connection_t;
@ -915,7 +915,7 @@ static void sm_run(void){
uint8_t buffer[2]; uint8_t buffer[2];
buffer[0] = SM_CODE_SECURITY_REQUEST; buffer[0] = SM_CODE_SECURITY_REQUEST;
buffer[1] = SM_AUTHREQ_BONDING; buffer[1] = SM_AUTHREQ_BONDING;
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
connection->sm_state_responding = SM_STATE_IDLE; connection->sm_state_responding = SM_STATE_IDLE;
return; return;
} }
@ -935,7 +935,7 @@ static void sm_run(void){
// for validate // for validate
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_reset(); sm_2timeout_reset();
// notify client for: JUST WORKS confirm, PASSKEY display or input // notify client for: JUST WORKS confirm, PASSKEY display or input
@ -970,7 +970,7 @@ static void sm_run(void){
} }
case SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY: case SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_response_handle); hci_send_cmd(&hci_le_long_term_key_negative_reply, connection->sm_handle);
connection->sm_state_responding = SM_STATE_IDLE; connection->sm_state_responding = SM_STATE_IDLE;
return; return;
@ -978,7 +978,7 @@ static void sm_run(void){
uint8_t buffer[2]; uint8_t buffer[2];
buffer[0] = SM_CODE_PAIRING_FAILED; buffer[0] = SM_CODE_PAIRING_FAILED;
buffer[1] = setup->sm_pairing_failed_reason; buffer[1] = setup->sm_pairing_failed_reason;
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_stop(); sm_2timeout_stop();
connection->sm_state_responding = SM_STATE_IDLE; connection->sm_state_responding = SM_STATE_IDLE;
break; break;
@ -988,7 +988,7 @@ static void sm_run(void){
uint8_t buffer[17]; uint8_t buffer[17];
buffer[0] = SM_CODE_PAIRING_RANDOM; buffer[0] = SM_CODE_PAIRING_RANDOM;
swap128(setup->sm_s_random, &buffer[1]); swap128(setup->sm_s_random, &buffer[1]);
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_reset(); sm_2timeout_reset();
connection->sm_state_responding = SM_STATE_PH2_W4_LTK_REQUEST; connection->sm_state_responding = SM_STATE_PH2_W4_LTK_REQUEST;
break; break;
@ -1023,7 +1023,7 @@ static void sm_run(void){
// already busy? // already busy?
if (sm_aes128_state == SM_AES128_ACTIVE) break; if (sm_aes128_state == SM_AES128_ACTIVE) break;
// calculate m_confirm using aes128 engine - step 1 // calculate m_confirm using aes128 engine - step 1
sm_c1_t1(setup->sm_m_random, setup->sm_m_preq, setup->sm_s_pres, setup->sm_m_addr_type, sm_s_addr_type, plaintext); sm_c1_t1(setup->sm_m_random, setup->sm_m_preq, setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
sm_aes128_start(setup->sm_tk, plaintext); sm_aes128_start(setup->sm_tk, plaintext);
sm_next_responding_state(); sm_next_responding_state();
break; break;
@ -1031,7 +1031,7 @@ static void sm_run(void){
// already busy? // already busy?
if (sm_aes128_state == SM_AES128_ACTIVE) break; if (sm_aes128_state == SM_AES128_ACTIVE) break;
// calculate s_confirm using aes128 engine - step 1 // calculate s_confirm using aes128 engine - step 1
sm_c1_t1(setup->sm_s_random, setup->sm_m_preq, setup->sm_s_pres, setup->sm_m_addr_type, sm_s_addr_type, plaintext); sm_c1_t1(setup->sm_s_random, setup->sm_m_preq, setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
sm_aes128_start(setup->sm_tk, plaintext); sm_aes128_start(setup->sm_tk, plaintext);
sm_next_responding_state(); sm_next_responding_state();
break; break;
@ -1056,7 +1056,7 @@ static void sm_run(void){
uint8_t buffer[17]; uint8_t buffer[17];
buffer[0] = SM_CODE_PAIRING_CONFIRM; buffer[0] = SM_CODE_PAIRING_CONFIRM;
swap128(setup->sm_s_confirm, &buffer[1]); swap128(setup->sm_s_confirm, &buffer[1]);
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_reset(); sm_2timeout_reset();
connection->sm_state_responding = SM_STATE_PH2_W4_PAIRING_RANDOM; connection->sm_state_responding = SM_STATE_PH2_W4_PAIRING_RANDOM;
return; return;
@ -1064,14 +1064,14 @@ static void sm_run(void){
case SM_STATE_PH2_SEND_STK: { case SM_STATE_PH2_SEND_STK: {
sm_key_t stk_flipped; sm_key_t stk_flipped;
swap128(setup->sm_s_ltk, stk_flipped); swap128(setup->sm_s_ltk, stk_flipped);
hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_response_handle, stk_flipped); hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
connection->sm_state_responding = SM_STATE_PH2_W4_CONNECTION_ENCRYPTED; connection->sm_state_responding = SM_STATE_PH2_W4_CONNECTION_ENCRYPTED;
return; return;
} }
case SM_STATE_PH4_SEND_LTK: { case SM_STATE_PH4_SEND_LTK: {
sm_key_t ltk_flipped; sm_key_t ltk_flipped;
swap128(setup->sm_s_ltk, ltk_flipped); swap128(setup->sm_s_ltk, ltk_flipped);
hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_response_handle, ltk_flipped); hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
connection->sm_state_responding = SM_STATE_IDLE; connection->sm_state_responding = SM_STATE_IDLE;
return; return;
} }
@ -1091,7 +1091,7 @@ static void sm_run(void){
uint8_t buffer[17]; uint8_t buffer[17];
buffer[0] = SM_CODE_ENCRYPTION_INFORMATION; buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
swap128(setup->sm_s_ltk, &buffer[1]); swap128(setup->sm_s_ltk, &buffer[1]);
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_reset(); sm_2timeout_reset();
return; return;
} }
@ -1101,7 +1101,7 @@ static void sm_run(void){
buffer[0] = SM_CODE_MASTER_IDENTIFICATION; buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
bt_store_16(buffer, 1, setup->sm_s_ediv); bt_store_16(buffer, 1, setup->sm_s_ediv);
swap64(setup->sm_s_rand, &buffer[3]); swap64(setup->sm_s_rand, &buffer[3]);
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_reset(); sm_2timeout_reset();
return; return;
} }
@ -1110,7 +1110,7 @@ static void sm_run(void){
uint8_t buffer[17]; uint8_t buffer[17];
buffer[0] = SM_CODE_IDENTITY_INFORMATION; buffer[0] = SM_CODE_IDENTITY_INFORMATION;
swap128(sm_persistent_irk, &buffer[1]); swap128(sm_persistent_irk, &buffer[1]);
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_reset(); sm_2timeout_reset();
return; return;
} }
@ -1118,9 +1118,9 @@ static void sm_run(void){
setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION; setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
uint8_t buffer[8]; uint8_t buffer[8];
buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION; buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
buffer[1] = sm_s_addr_type; buffer[1] = setup->sm_s_addr_type;
bt_flip_addr(&buffer[2], sm_s_address); bt_flip_addr(&buffer[2], setup->sm_s_address);
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_reset(); sm_2timeout_reset();
return; return;
} }
@ -1130,7 +1130,7 @@ static void sm_run(void){
buffer[0] = SM_CODE_SIGNING_INFORMATION; buffer[0] = SM_CODE_SIGNING_INFORMATION;
// swap128(sm_s_csrk, &buffer[1]); // swap128(sm_s_csrk, &buffer[1]);
memset(&buffer[1], 0, 16); // csrk not calculated memset(&buffer[1], 0, 16); // csrk not calculated
l2cap_send_connectionless(connection->sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer)); l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_2timeout_reset(); sm_2timeout_reset();
return; return;
} }
@ -1223,8 +1223,7 @@ static void sm_handle_encryption_result(uint8_t * data){
{ {
sm_key_t t2; sm_key_t t2;
swap128(data, t2); swap128(data, t2);
sm_c1_t3(t2, setup->sm_m_address, sm_s_address, setup->sm_aes128_plaintext); sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_aes128_plaintext);
sm_aes128_state = SM_AES128_PLAINTEXT_SET;
} }
sm_next_responding_state(); sm_next_responding_state();
return; return;
@ -1264,7 +1263,6 @@ static void sm_handle_encryption_result(uint8_t * data){
// PH3B4 - calculate LTK - enc // PH3B4 - calculate LTK - enc
// LTK = d1(ER, DIV, 0)) // LTK = d1(ER, DIV, 0))
sm_d1_d_prime(setup->sm_s_div, 0, setup->sm_aes128_plaintext); sm_d1_d_prime(setup->sm_s_div, 0, setup->sm_aes128_plaintext);
sm_aes128_state = SM_AES128_PLAINTEXT_SET;
connection->sm_state_responding = SM_STATE_PH3_LTK_GET_ENC; connection->sm_state_responding = SM_STATE_PH3_LTK_GET_ENC;
return; return;
} }
@ -1279,7 +1277,6 @@ static void sm_handle_encryption_result(uint8_t * data){
// PH3B4 - calculate LTK - enc // PH3B4 - calculate LTK - enc
// LTK = d1(ER, DIV, 0)) // LTK = d1(ER, DIV, 0))
sm_d1_d_prime(setup->sm_s_div, 0, setup->sm_aes128_plaintext); sm_d1_d_prime(setup->sm_s_div, 0, setup->sm_aes128_plaintext);
sm_aes128_state = SM_AES128_PLAINTEXT_SET;
connection->sm_state_responding = SM_STATE_PH4_LTK_GET_ENC; connection->sm_state_responding = SM_STATE_PH4_LTK_GET_ENC;
return; return;
} }
@ -1397,19 +1394,19 @@ static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint
if (packet[3]) return; // connection failed if (packet[3]) return; // connection failed
// only single connection for peripheral // only single connection for peripheral
if (connection->sm_response_handle){ if (connection->sm_handle){
printf("Already connected, ignoring incoming connection\n"); printf("Already connected, ignoring incoming connection\n");
return; return;
} }
connection->sm_response_handle = READ_BT_16(packet, 4); connection->sm_handle = READ_BT_16(packet, 4);
setup->sm_m_addr_type = packet[7]; setup->sm_m_addr_type = packet[7];
bt_flip_addr(setup->sm_m_address, &packet[8]); bt_flip_addr(setup->sm_m_address, &packet[8]);
sm_reset_tk(); sm_reset_tk();
hci_le_advertisement_address(&sm_s_addr_type, &sm_s_address); hci_le_advertisement_address(&setup->sm_s_addr_type, &setup->sm_s_address);
printf("Incoming connection, own address %s\n", bd_addr_to_str(sm_s_address)); printf("Incoming connection, own address %s\n", bd_addr_to_str(setup->sm_s_address));
// reset security properties // reset security properties
connection->sm_connection_encrypted = 0; connection->sm_connection_encrypted = 0;
@ -1417,7 +1414,7 @@ static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint
connection->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN; connection->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
// request security // request security
if (connection->sm_s_request_security){ if (sm_slave_request_security){
connection->sm_state_responding = SM_STATE_SEND_SECURITY_REQUEST; connection->sm_state_responding = SM_STATE_SEND_SECURITY_REQUEST;
} }
@ -1464,7 +1461,7 @@ static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint
break; break;
case HCI_EVENT_ENCRYPTION_CHANGE: case HCI_EVENT_ENCRYPTION_CHANGE:
if (connection->sm_response_handle != READ_BT_16(packet, 3)) break; if (connection->sm_handle != READ_BT_16(packet, 3)) break;
connection->sm_connection_encrypted = packet[5]; connection->sm_connection_encrypted = packet[5];
log_info("Eencryption state change: %u", connection->sm_connection_encrypted); log_info("Eencryption state change: %u", connection->sm_connection_encrypted);
if (!connection->sm_connection_encrypted) break; if (!connection->sm_connection_encrypted) break;
@ -1475,7 +1472,7 @@ static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint
case HCI_EVENT_DISCONNECTION_COMPLETE: case HCI_EVENT_DISCONNECTION_COMPLETE:
connection->sm_state_responding = SM_STATE_IDLE; connection->sm_state_responding = SM_STATE_IDLE;
connection->sm_response_handle = 0; connection->sm_handle = 0;
break; break;
case HCI_EVENT_COMMAND_COMPLETE: case HCI_EVENT_COMMAND_COMPLETE:
@ -1507,8 +1504,8 @@ static void sm_packet_handler(uint8_t packet_type, uint16_t handle, uint8_t *pac
if (packet_type != SM_DATA_PACKET) return; if (packet_type != SM_DATA_PACKET) return;
if (handle != connection->sm_response_handle){ if (handle != connection->sm_handle){
printf("sm_packet_handler: packet from handle %u, but expecting from %u\n", handle, connection->sm_response_handle); printf("sm_packet_handler: packet from handle %u, but expecting from %u\n", handle, connection->sm_handle);
return; return;
} }
@ -1722,7 +1719,7 @@ void sm_set_io_capabilities(io_capability_t io_capability){
} }
void sm_set_request_security(int enable){ void sm_set_request_security(int enable){
connection->sm_s_request_security = enable; sm_slave_request_security = enable;
} }
void sm_set_er(sm_key_t er){ void sm_set_er(sm_key_t er){