mirror of
https://github.com/bluekitchen/btstack.git
synced 2025-04-16 08:42:28 +00:00
add static declaration, move functions
This commit is contained in:
parent
7e6b1e83d2
commit
c5e169ec5e
@ -56,9 +56,52 @@ static float rcos[CVSD_OLAL] = {
|
|||||||
0.45386582,0.36316850,0.27713082,0.19868268,
|
0.45386582,0.36316850,0.27713082,0.19868268,
|
||||||
0.13049554,0.07489143,0.03376389,0.00851345};
|
0.13049554,0.07489143,0.03376389,0.00851345};
|
||||||
|
|
||||||
static float CrossCorrelation(int8_t *x, int8_t *y);
|
static float CrossCorrelation(int8_t *x, int8_t *y){
|
||||||
static int PatternMatch(int8_t *y);
|
float num = 0;
|
||||||
static float AmplitudeMatch(int8_t *y, int8_t bestmatch);
|
float den = 0;
|
||||||
|
float x2 = 0;
|
||||||
|
float y2 = 0;
|
||||||
|
int m;
|
||||||
|
for (m=0;m<CVSD_M;m++){
|
||||||
|
num+=((float)x[m])*y[m];
|
||||||
|
x2+=((float)x[m])*x[m];
|
||||||
|
y2+=((float)y[m])*y[m];
|
||||||
|
}
|
||||||
|
den = (float)sqrt(x2*y2);
|
||||||
|
return num/den;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int PatternMatch(int8_t *y){
|
||||||
|
float maxCn = -999999.0; /* large negative number */
|
||||||
|
int bestmatch = 0;
|
||||||
|
float Cn;
|
||||||
|
int n;
|
||||||
|
for (n=0;n<CVSD_N;n++){
|
||||||
|
Cn = CrossCorrelation(&y[CVSD_LHIST-CVSD_M] /* x */, &y[n]);
|
||||||
|
if (Cn>maxCn){
|
||||||
|
bestmatch=n;
|
||||||
|
maxCn = Cn;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return bestmatch;
|
||||||
|
}
|
||||||
|
|
||||||
|
static float AmplitudeMatch(int8_t *y, int8_t bestmatch) {
|
||||||
|
int i;
|
||||||
|
float sumx = 0;
|
||||||
|
float sumy = 0.000001f;
|
||||||
|
float sf;
|
||||||
|
|
||||||
|
for (i=0;i<CVSD_FS;i++){
|
||||||
|
sumx += abs(y[CVSD_LHIST-CVSD_FS+i]);
|
||||||
|
sumy += abs(y[bestmatch+i]);
|
||||||
|
}
|
||||||
|
sf = sumx/sumy;
|
||||||
|
/* This is not in the paper, but limit the scaling factor to something reasonable to avoid creating artifacts */
|
||||||
|
if (sf<0.75f) sf=0.75f;
|
||||||
|
if (sf>1.2f) sf=1.2f;
|
||||||
|
return sf;
|
||||||
|
}
|
||||||
|
|
||||||
static int8_t crop_to_int8(float val){
|
static int8_t crop_to_int8(float val){
|
||||||
float croped_val = 0;
|
float croped_val = 0;
|
||||||
@ -109,12 +152,14 @@ void btstack_cvsd_plc_bad_frame(btstack_cvsd_plc_state_t *plc_state, int8_t *out
|
|||||||
plc_state->hist[CVSD_LHIST+i] = crop_to_int8(val);
|
plc_state->hist[CVSD_LHIST+i] = crop_to_int8(val);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (i=CVSD_FS+CVSD_OLAL;i<CVSD_FS+CVSD_OLAL+CVSD_RT;i++)
|
for (i=CVSD_FS+CVSD_OLAL;i<CVSD_FS+CVSD_OLAL+CVSD_RT;i++){
|
||||||
plc_state->hist[CVSD_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
|
plc_state->hist[CVSD_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
|
||||||
|
}
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
for (i=0;i<CVSD_FS+CVSD_RT+CVSD_OLAL;i++)
|
for (i=0;i<CVSD_FS+CVSD_RT+CVSD_OLAL;i++){
|
||||||
plc_state->hist[CVSD_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
|
plc_state->hist[CVSD_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (i=0;i<CVSD_FS;i++){
|
for (i=0;i<CVSD_FS;i++){
|
||||||
@ -160,51 +205,3 @@ void btstack_cvsd_plc_good_frame(btstack_cvsd_plc_state_t *plc_state, int8_t *in
|
|||||||
plc_state->nbf=0;
|
plc_state->nbf=0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
float CrossCorrelation(int8_t *x, int8_t *y){
|
|
||||||
float num = 0;
|
|
||||||
float den = 0;
|
|
||||||
float x2 = 0;
|
|
||||||
float y2 = 0;
|
|
||||||
int m;
|
|
||||||
for (m=0;m<CVSD_M;m++){
|
|
||||||
num+=((float)x[m])*y[m];
|
|
||||||
x2+=((float)x[m])*x[m];
|
|
||||||
y2+=((float)y[m])*y[m];
|
|
||||||
}
|
|
||||||
den = (float)sqrt(x2*y2);
|
|
||||||
return num/den;
|
|
||||||
}
|
|
||||||
|
|
||||||
int PatternMatch(int8_t *y){
|
|
||||||
float maxCn = -999999.0; /* large negative number */
|
|
||||||
int bestmatch = 0;
|
|
||||||
float Cn;
|
|
||||||
int n;
|
|
||||||
for (n=0;n<CVSD_N;n++){
|
|
||||||
Cn = CrossCorrelation(&y[CVSD_LHIST-CVSD_M] /* x */, &y[n]);
|
|
||||||
if (Cn>maxCn){
|
|
||||||
bestmatch=n;
|
|
||||||
maxCn = Cn;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return bestmatch;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
float AmplitudeMatch(int8_t *y, int8_t bestmatch) {
|
|
||||||
int i;
|
|
||||||
float sumx = 0;
|
|
||||||
float sumy = 0.000001f;
|
|
||||||
float sf;
|
|
||||||
|
|
||||||
for (i=0;i<CVSD_FS;i++){
|
|
||||||
sumx += abs(y[CVSD_LHIST-CVSD_FS+i]);
|
|
||||||
sumy += abs(y[bestmatch+i]);
|
|
||||||
}
|
|
||||||
sf = sumx/sumy;
|
|
||||||
/* This is not in the paper, but limit the scaling factor to something reasonable to avoid creating artifacts */
|
|
||||||
if (sf<0.75f) sf=0.75f;
|
|
||||||
if (sf>1.2f) sf=1.2f;
|
|
||||||
return sf;
|
|
||||||
}
|
|
@ -63,9 +63,53 @@ static float rcos[SBC_OLAL] = {
|
|||||||
0.45386582f,0.36316850f,0.27713082f,0.19868268f,
|
0.45386582f,0.36316850f,0.27713082f,0.19868268f,
|
||||||
0.13049554f,0.07489143f,0.03376389f,0.00851345f};
|
0.13049554f,0.07489143f,0.03376389f,0.00851345f};
|
||||||
|
|
||||||
static float CrossCorrelation(int16_t *x, int16_t *y);
|
static float CrossCorrelation(int16_t *x, int16_t *y){
|
||||||
static int PatternMatch(int16_t *y);
|
float num = 0;
|
||||||
static float AmplitudeMatch(int16_t *y, int16_t bestmatch);
|
float den = 0;
|
||||||
|
float x2 = 0;
|
||||||
|
float y2 = 0;
|
||||||
|
int m;
|
||||||
|
for (m=0;m<SBC_M;m++){
|
||||||
|
num+=((float)x[m])*y[m];
|
||||||
|
x2+=((float)x[m])*x[m];
|
||||||
|
y2+=((float)y[m])*y[m];
|
||||||
|
}
|
||||||
|
den = (float)sqrt(x2*y2);
|
||||||
|
return num/den;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int PatternMatch(int16_t *y){
|
||||||
|
float maxCn = -999999.0; /* large negative number */
|
||||||
|
int bestmatch = 0;
|
||||||
|
float Cn;
|
||||||
|
int n;
|
||||||
|
for (n=0;n<SBC_N;n++){
|
||||||
|
Cn = CrossCorrelation(&y[SBC_LHIST-SBC_M] /* x */, &y[n]);
|
||||||
|
if (Cn>maxCn){
|
||||||
|
bestmatch=n;
|
||||||
|
maxCn = Cn;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return bestmatch;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static float AmplitudeMatch(int16_t *y, int16_t bestmatch) {
|
||||||
|
int i;
|
||||||
|
float sumx = 0;
|
||||||
|
float sumy = 0.000001f;
|
||||||
|
float sf;
|
||||||
|
|
||||||
|
for (i=0;i<SBC_FS;i++){
|
||||||
|
sumx += abs(y[SBC_LHIST-SBC_FS+i]);
|
||||||
|
sumy += abs(y[bestmatch+i]);
|
||||||
|
}
|
||||||
|
sf = sumx/sumy;
|
||||||
|
/* This is not in the paper, but limit the scaling factor to something reasonable to avoid creating artifacts */
|
||||||
|
if (sf<0.75f) sf=0.75f;
|
||||||
|
if (sf>1.2f) sf=1.2f;
|
||||||
|
return sf;
|
||||||
|
}
|
||||||
|
|
||||||
static int16_t crop_to_int16(float val){
|
static int16_t crop_to_int16(float val){
|
||||||
float croped_val = 0;
|
float croped_val = 0;
|
||||||
@ -123,8 +167,9 @@ void btstack_sbc_plc_bad_frame(btstack_sbc_plc_state_t *plc_state, int16_t *ZIRb
|
|||||||
}
|
}
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
for (i=0;i<SBC_FS+SBC_RT+SBC_OLAL;i++)
|
for (i=0;i<SBC_FS+SBC_RT+SBC_OLAL;i++){
|
||||||
plc_state->hist[SBC_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
|
plc_state->hist[SBC_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
for (i=0;i<SBC_FS;i++){
|
for (i=0;i<SBC_FS;i++){
|
||||||
out[i] = plc_state->hist[SBC_LHIST+i];
|
out[i] = plc_state->hist[SBC_LHIST+i];
|
||||||
@ -167,52 +212,3 @@ void btstack_sbc_plc_good_frame(btstack_sbc_plc_state_t *plc_state, int16_t *in,
|
|||||||
|
|
||||||
plc_state->nbf=0;
|
plc_state->nbf=0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
float CrossCorrelation(int16_t *x, int16_t *y){
|
|
||||||
float num = 0;
|
|
||||||
float den = 0;
|
|
||||||
float x2 = 0;
|
|
||||||
float y2 = 0;
|
|
||||||
int m;
|
|
||||||
for (m=0;m<SBC_M;m++){
|
|
||||||
num+=((float)x[m])*y[m];
|
|
||||||
x2+=((float)x[m])*x[m];
|
|
||||||
y2+=((float)y[m])*y[m];
|
|
||||||
}
|
|
||||||
den = (float)sqrt(x2*y2);
|
|
||||||
return num/den;
|
|
||||||
}
|
|
||||||
|
|
||||||
int PatternMatch(int16_t *y){
|
|
||||||
float maxCn = -999999.0; /* large negative number */
|
|
||||||
int bestmatch = 0;
|
|
||||||
float Cn;
|
|
||||||
int n;
|
|
||||||
for (n=0;n<SBC_N;n++){
|
|
||||||
Cn = CrossCorrelation(&y[SBC_LHIST-SBC_M] /* x */, &y[n]);
|
|
||||||
if (Cn>maxCn){
|
|
||||||
bestmatch=n;
|
|
||||||
maxCn = Cn;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return bestmatch;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
float AmplitudeMatch(int16_t *y, int16_t bestmatch) {
|
|
||||||
int i;
|
|
||||||
float sumx = 0;
|
|
||||||
float sumy = 0.000001f;
|
|
||||||
float sf;
|
|
||||||
|
|
||||||
for (i=0;i<SBC_FS;i++){
|
|
||||||
sumx += abs(y[SBC_LHIST-SBC_FS+i]);
|
|
||||||
sumy += abs(y[bestmatch+i]);
|
|
||||||
}
|
|
||||||
sf = sumx/sumy;
|
|
||||||
/* This is not in the paper, but limit the scaling factor to something reasonable to avoid creating artifacts */
|
|
||||||
if (sf<0.75f) sf=0.75f;
|
|
||||||
if (sf>1.2f) sf=1.2f;
|
|
||||||
return sf;
|
|
||||||
}
|
|
Loading…
x
Reference in New Issue
Block a user