btstack/src/hci_transport_h4_dma.c

312 lines
8.9 KiB
C
Raw Normal View History

/*
* Copyright (C) 2009 by Matthias Ringwald
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* hci_h4_transport_dma.c
*
* HCI Transport implementation for basic H4 protocol for blocking UART write and IRQ-driven blockwise RX
*
* Created by Matthias Ringwald on 4/29/09.
*/
2011-06-05 12:59:24 +00:00
#include <stdio.h>
#include <string.h>
#include "debug.h"
#include "hci.h"
2011-06-05 12:59:24 +00:00
#include "hci_dump.h"
#include "hci_transport.h"
#include <btstack/hal_uart_dma.h>
// determine size of receive buffer
// use one extra byte to guarantee zero terminated device name in remote name event
#if (HCI_ACL_DATA_PKT_HDR + HCI_ACL_BUFFER_SIZE) > (HCI_EVENT_PKT_HDR + HCI_EVENT_PKT_SIZE + 1)
#define HCI_PACKET_BUFFER_SIZE (HCI_ACL_DATA_PKT_HDR + HCI_ACL_BUFFER_SIZE)
#else
#define HCI_PACKET_BUFFER_SIZE (HCI_EVENT_PKT_HDR + HCI_EVENT_PKT_SIZE + 1)
#endif
typedef enum {
H4_W4_PACKET_TYPE = 1,
H4_W4_EVENT_HEADER,
H4_W4_ACL_HEADER,
H4_W4_PAYLOAD,
H4_PACKET_RECEIVED
} H4_STATE;
typedef enum {
TX_IDLE = 1,
TX_W4_HEADER_SENT,
TX_W4_PACKET_SENT,
TX_DONE
} TX_STATE;
typedef struct hci_transport_h4 {
hci_transport_t transport;
data_source_t *ds;
} hci_transport_h4_t;
// single instance
static hci_transport_h4_t * hci_transport_h4 = NULL;
static int h4_process(struct data_source *ds);
static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size);
static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler;
// packet reader state machine
static H4_STATE h4_state;
static int read_pos;
static int bytes_to_read;
static uint8_t hci_packet[HCI_PACKET_BUFFER_SIZE]; // bigger than largest packet
// tx state
static TX_STATE tx_state;
static uint8_t *tx_data;
static uint16_t tx_len;
static void h4_init_sm(void){
h4_state = H4_W4_PACKET_TYPE;
read_pos = 0;
bytes_to_read = 1;
hal_uart_dma_receive_block(hci_packet, bytes_to_read);
}
// prototypes
static void h4_block_received(void);
static void h4_block_sent(void);
static int h4_open(void *transport_config){
// open uart
hal_uart_dma_init();
hal_uart_dma_set_block_received(h4_block_received);
hal_uart_dma_set_block_sent(h4_block_sent);
// set up data_source
hci_transport_h4->ds = malloc(sizeof(data_source_t));
if (!hci_transport_h4) return -1;
// hci_transport_h4->ds->fd = fd;
hci_transport_h4->ds->process = h4_process;
run_loop_add_data_source(hci_transport_h4->ds);
//
h4_init_sm();
tx_state = TX_IDLE;
return 0;
}
static int h4_close(){
// first remove run loop handler
run_loop_remove_data_source(hci_transport_h4->ds);
// close device
// ...
// free struct
free(hci_transport_h4->ds);
hci_transport_h4->ds = NULL;
return 0;
}
static void h4_block_received(void){
read_pos += bytes_to_read;
// act
switch (h4_state) {
case H4_W4_PACKET_TYPE:
switch (hci_packet[0]) {
case HCI_ACL_DATA_PACKET:
h4_state = H4_W4_ACL_HEADER;
bytes_to_read = HCI_ACL_DATA_PKT_HDR;
break;
case HCI_EVENT_PACKET:
h4_state = H4_W4_EVENT_HEADER;
bytes_to_read = HCI_EVENT_PKT_HDR;
break;
default:
2011-07-22 18:34:18 +00:00
log_error("h4_process: invalid packet type 0x%02x\r\n", hci_packet[0]);
read_pos = 0;
h4_state = H4_W4_PACKET_TYPE;
bytes_to_read = 1;
break;
}
break;
case H4_W4_EVENT_HEADER:
bytes_to_read = hci_packet[2];
if (bytes_to_read == 0) {
h4_state = H4_PACKET_RECEIVED;
break;
}
h4_state = H4_W4_PAYLOAD;
break;
case H4_W4_ACL_HEADER:
bytes_to_read = READ_BT_16( hci_packet, 3);
if (bytes_to_read == 0) {
h4_state = H4_PACKET_RECEIVED;
break;
}
h4_state = H4_W4_PAYLOAD;
break;
case H4_W4_PAYLOAD:
h4_state = H4_PACKET_RECEIVED;
bytes_to_read = 0;
break;
default:
bytes_to_read = 0;
break;
}
// read next block
if (bytes_to_read) {
hal_uart_dma_receive_block(&hci_packet[read_pos], bytes_to_read);
}
}
static void h4_block_sent(void){
switch (tx_state){
case TX_W4_HEADER_SENT:
tx_state = TX_W4_PACKET_SENT;
// h4 packet type + actual packet
hal_uart_dma_send_block(tx_data, tx_len);
break;
case TX_W4_PACKET_SENT:
tx_state = TX_DONE;
break;
default:
break;
}
}
static void h4_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){
packet_handler = handler;
}
2011-07-25 21:17:33 +00:00
// #define DUMP
2011-07-16 21:02:20 +00:00
#ifdef DUMP
static void dump(uint8_t *data, uint16_t len){
int i;
for (i=0; i<len;i++){
printf("%02X ", ((uint8_t *)data)[i]);
}
printf("\n\r");
}
#endif
static int h4_process(struct data_source *ds) {
// notify about packet sent
if (tx_state == TX_DONE){
// reset state
tx_state = TX_IDLE;
uint8_t event = DAEMON_EVENT_HCI_PACKET_SENT;
packet_handler(HCI_EVENT_PACKET, &event, 1);
}
if (h4_state != H4_PACKET_RECEIVED) return 0;
// log packet
2011-07-16 21:02:20 +00:00
#ifdef DUMP
printf("RX: ");
dump(hci_packet, read_pos);
#endif
packet_handler(hci_packet[0], &hci_packet[1], read_pos-1);
2011-07-25 21:16:34 +00:00
h4_init_sm();
return 0;
}
static int h4_send_packet(uint8_t packet_type, uint8_t *packet, int size){
2011-05-31 21:42:21 +00:00
// write in progress
if (tx_state != TX_IDLE) {
2011-07-22 18:34:18 +00:00
log_error("h4_send_packet with tx_state = %u, type %u, data %02x %02x %02x", tx_state, packet_type, packet[0], packet[1], packet[2]);
return -1;
}
2011-07-16 21:02:20 +00:00
#ifdef DUMP
printf("TX: %02x ", packet_type);
dump(packet, size);
#endif
tx_data = packet;
tx_len = size;
tx_state = TX_W4_HEADER_SENT;
2011-06-05 12:59:24 +00:00
hal_uart_dma_send_block(&packet_type, 1);
return 0;
}
2011-06-05 12:59:24 +00:00
static int h4_set_baudrate(uint32_t baudrate){
printf("h4_set_baudrate - set baud %lu\n\r", baudrate);
return hal_uart_dma_set_baud(baudrate);
}
static int h4_can_send_packet_now(uint8_t packet_type){
return tx_state == TX_IDLE;
}
static const char * h4_get_transport_name(){
2011-05-31 21:42:21 +00:00
return "H4_DMA";
}
static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){
}
// get h4 singleton
hci_transport_t * hci_transport_h4_dma_instance() {
if (hci_transport_h4 == NULL) {
hci_transport_h4 = malloc(sizeof(hci_transport_h4_t));
hci_transport_h4->ds = NULL;
hci_transport_h4->transport.open = h4_open;
hci_transport_h4->transport.close = h4_close;
hci_transport_h4->transport.send_packet = h4_send_packet;
hci_transport_h4->transport.register_packet_handler = h4_register_packet_handler;
hci_transport_h4->transport.get_transport_name = h4_get_transport_name;
2011-06-05 12:59:24 +00:00
hci_transport_h4->transport.set_baudrate = h4_set_baudrate;
hci_transport_h4->transport.can_send_packet_now = h4_can_send_packet_now;
}
return (hci_transport_t *) hci_transport_h4;
}