btstack/example/libusb/ble_server.c

1279 lines
46 KiB
C
Raw Normal View History

2013-10-17 12:42:18 +00:00
/*
2013-11-09 23:20:11 +00:00
* Copyright (C) 2011-2013 by Matthias Ringwald
2013-10-17 12:42:18 +00:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. This software may not be used in a commercial product
* without an explicit license granted by the copyright holder.
*
* THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
//*****************************************************************************
//
// att device demo
//
//*****************************************************************************
// TODO: seperate BR/EDR from LE ACL buffers
// ..
// NOTE: Supports only a single connection
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include <btstack/run_loop.h>
#include "debug.h"
#include "btstack_memory.h"
#include "hci.h"
#include "hci_dump.h"
#include "l2cap.h"
#include "att.h"
2013-11-01 14:07:59 +00:00
#include "rijndael.h"
2013-10-17 12:42:18 +00:00
2013-11-01 14:07:59 +00:00
typedef enum {
SM_CODE_PAIRING_REQUEST = 0X01,
SM_CODE_PAIRING_RESPONSE,
SM_CODE_PAIRING_CONFIRM,
SM_CODE_PAIRING_RANDOM,
SM_CODE_PAIRING_FAILED,
SM_CODE_ENCRYPTION_INFORMATION,
SM_CODE_MASTER_IDENTIFICATION,
SM_CODE_IDENTITY_INFORMATION,
SM_CODE_IDENTITY_ADDRESS_INFORMATION,
SM_CODE_SIGNING_INFORMATION,
SM_CODE_SECURITY_REQUEST
} SECURITY_MANAGER_COMMANDS;
// Authentication requirement flags
#define SM_AUTHREQ_NO_BONDING 0x00
#define SM_AUTHREQ_BONDING 0x01
#define SM_AUTHREQ_MITM_PROTECTION 0x02
2013-11-01 15:31:00 +00:00
//Key distribution flags
#define SM_KEYDIST_ENC_KEY 0X01
#define SM_KEYDIST_ID_KEY 0x02
#define SM_KEYDIST_SIGN 0x04
2013-11-08 15:18:45 +00:00
// Pairing Failed Reasons
#define SM_REASON_RESERVED 0x00
#define SM_REASON_PASSKEYT_ENTRY_FAILED 0x01
#define SM_REASON_OOB_NOT_AVAILABLE 0x02
#define SM_REASON_AUTHENTHICATION_REQUIREMENTS 0x03
#define SM_REASON_CONFIRM_VALUE_FAILED 0x04
#define SM_REASON_PAIRING_NOT_SUPPORTED 0x05
#define SM_REASON_ENCRYPTION_KEY_SIZE 0x06
#define SM_REASON_COMMAND_NOT_SUPPORTED 0x07
#define SM_REASON_UNSPECIFIED_REASON 0x08
#define SM_REASON_REPEATED_ATTEMPTS 0x09
// also, invalid parameters
// and reserved
2013-11-08 15:18:45 +00:00
2013-11-28 22:16:28 +00:00
// IO Capability Values
typedef enum {
IO_CAPABILITY_DISPLAY_ONLY = 0,
IO_CAPABILITY_DISPLAY_YES_NO,
IO_CAPABILITY_KEYBOARD_ONLY,
IO_CAPABILITY_NO_INPUT_NO_OUTPUT,
IO_CAPABILITY_KEYBOARD_DISPLAY
} io_capability_t;
2013-11-01 14:07:59 +00:00
typedef uint8_t key_t[16];
2013-10-17 12:42:18 +00:00
2013-11-01 21:50:43 +00:00
typedef enum {
2013-11-01 21:50:43 +00:00
SM_STATE_IDLE,
SM_STATE_SEND_SECURITY_REQUEST,
// Phase 1: Pairing Feature Exchange
SM_STATE_PH1_SEND_PAIRING_RESPONSE,
SM_STATE_PH1_W4_PAIRING_CONFIRM,
2013-11-16 22:35:25 +00:00
SM_STATE_SEND_PAIRING_FAILED,
SM_STATE_SEND_PAIRING_RANDOM,
2013-11-16 22:35:25 +00:00
// Phase 2: Authenticating and Encrypting
// get random number for TK if we show it
SM_STATE_PH2_GET_RANDOM_TK,
SM_STATE_PH2_W4_RANDOM_TK,
// calculate confirm values for local and remote connection
SM_STATE_PH2_C1_GET_RANDOM_A,
SM_STATE_PH2_C1_W4_RANDOM_A,
SM_STATE_PH2_C1_GET_RANDOM_B,
SM_STATE_PH2_C1_W4_RANDOM_B,
SM_STATE_PH2_C1_GET_ENC_A,
SM_STATE_PH2_C1_W4_ENC_A,
SM_STATE_PH2_C1_GET_ENC_B,
SM_STATE_PH2_C1_W4_ENC_B,
SM_STATE_PH2_C1_SEND,
SM_STATE_PH2_C1_GET_ENC_C,
SM_STATE_PH2_C1_W4_ENC_C,
SM_STATE_PH2_C1_GET_ENC_D,
SM_STATE_PH2_C1_W4_ENC_D,
// calc STK
SM_STATE_PH2_CALC_STK,
SM_STATE_PH2_W4_STK,
SM_STATE_PH2_SEND_STK,
SM_STATE_PH2_W4_LTK_REQUEST,
SM_STATE_PH2_W4_CONNECTION_ENCRYPTED,
// Phase 3: Transport Specific Key Distribution
// calculate DHK, Y, EDIV, and LTK
SM_STATE_PH3_GET_RANDOM,
SM_STATE_PH3_W4_RANDOM,
SM_STATE_PH3_GET_DIV,
SM_STATE_PH3_W4_DIV,
SM_STATE_PH3_DHK_GET_ENC,
SM_STATE_PH3_DHK_W4_ENC,
SM_STATE_PH3_Y_GET_ENC,
SM_STATE_PH3_Y_W4_ENC,
SM_STATE_PH3_LTK_GET_ENC,
SM_STATE_PH3_LTK_W4_ENC,
2013-11-16 21:32:57 +00:00
SM_STATE_PH3_IRK_GET_ENC,
SM_STATE_PH3_IRK_W4_ENC,
//
SM_STATE_DISTRIBUTE_KEYS,
// re establish previously distribued LTK
SM_STATE_PH4_DHK_GET_ENC,
SM_STATE_PH4_DHK_W4_ENC,
SM_STATE_PH4_Y_GET_ENC,
SM_STATE_PH4_Y_W4_ENC,
SM_STATE_PH4_LTK_GET_ENC,
SM_STATE_PH4_LTK_W4_ENC,
SM_STATE_PH4_SEND_LTK,
2013-11-01 21:50:43 +00:00
} security_manager_state_t;
typedef enum {
JUST_WORKS,
PK_RESP_INPUT, // Initiator displays PK, initiator inputs PK
PK_INIT_INPUT, // Responder displays PK, responder inputs PK
OK_BOTH_INPUT, // Only input on both, both input PK
OOB // OOB available on both sides
} stk_generation_method_t;
// horizontal: initiator capabilities
// vertial: responder capabilities
static const stk_generation_method_t stk_generation_method[5][5] = {
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
{ PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT },
{ JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS },
{ PK_RESP_INPUT, PK_RESP_INPUT, PK_INIT_INPUT, JUST_WORKS, PK_RESP_INPUT },
};
2013-10-17 12:42:18 +00:00
static att_connection_t att_connection;
2013-11-28 15:34:11 +00:00
static uint16_t att_addr_type;
static bd_addr_t att_address;
2013-10-17 12:42:18 +00:00
static uint16_t att_response_handle = 0;
static uint16_t att_response_size = 0;
static uint8_t att_response_buffer[28];
// Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
static key_t sm_persistent_er;
static key_t sm_persistent_ir;
// derived from sm_persistent_ir
static key_t sm_persistent_dhk;
static key_t sm_persistent_irk;
// derived from sm_persistent_er
// data to send to aes128 crypto engine, see sm_aes128_set_key and sm_aes128_set_plaintext
static key_t sm_aes128_key;
static key_t sm_aes128_plaintext;
//
2013-11-12 19:41:31 +00:00
static uint16_t sm_response_handle = 0;
static stk_generation_method_t sm_stk_generation_method;
2013-11-01 14:07:59 +00:00
2013-11-01 15:31:00 +00:00
// defines which keys will be send after connection is encrypted
static int sm_key_distribution_set = 0;
2013-11-01 21:50:43 +00:00
static security_manager_state_t sm_state_responding = SM_STATE_IDLE;
2013-11-01 14:07:59 +00:00
static int sm_send_encryption_information = 0;
static int sm_send_master_identification = 0;
static int sm_send_identity_information = 0;
static int sm_send_identity_address_information = 0;
static int sm_send_signing_identification = 0;
static int sm_received_encryption_information = 0;
static int sm_received_master_identification = 0;
static int sm_received_identity_information = 0;
static int sm_received_identity_address_information = 0;
static int sm_received_signing_identification = 0;
static key_t sm_tk;
static key_t sm_m_random;
static key_t sm_m_confirm;
static uint8_t sm_m_have_oob_data;
static uint8_t sm_m_auth_req;
static uint8_t sm_m_io_capabilities = 0;
2013-11-01 14:07:59 +00:00
static uint8_t sm_preq[7];
static uint8_t sm_pres[7];
static uint8_t sm_s_auth_req = 0;
static uint8_t sm_s_io_capabilities = 0;
2013-11-01 21:50:43 +00:00
static key_t sm_s_random;
static key_t sm_s_confirm;
2013-11-12 19:41:31 +00:00
static key_t sm_stk;
2013-11-01 21:50:43 +00:00
static uint8_t sm_pairing_failed_reason = 0;
static uint16_t sm_s_div;
static uint16_t sm_s_y;
2013-11-08 15:18:45 +00:00
2013-11-01 14:07:59 +00:00
// key distribution, slave sends
static key_t sm_s_ltk;
static uint16_t sm_s_ediv;
static uint8_t sm_s_rand[8];
static uint8_t sm_s_addr_type;
static bd_addr_t sm_s_address;
static key_t sm_s_csrk;
static key_t sm_s_irk;
2013-11-01 15:31:00 +00:00
// key distribution, received from master
2013-11-01 14:07:59 +00:00
static key_t sm_m_ltk;
static uint16_t sm_m_ediv;
static uint8_t sm_m_rand[8];
static uint8_t sm_m_addr_type;
static bd_addr_t sm_m_address;
static key_t sm_m_csrk;
static key_t sm_m_irk;
2013-11-28 15:34:11 +00:00
// @returns 1 if oob data is available
// stores oob data in provided 16 byte buffer if not null
static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t * addr, uint8_t * oob_data) = NULL;
void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t * addr, uint8_t * oob_data)){
2013-11-28 15:34:11 +00:00
sm_get_oob_data = get_oob_data_callback;
}
2013-10-17 12:42:18 +00:00
static void att_try_respond(void){
if (!att_response_size) return;
if (!att_response_handle) return;
if (!hci_can_send_packet_now(HCI_ACL_DATA_PACKET)) return;
// update state before sending packet
uint16_t size = att_response_size;
att_response_size = 0;
l2cap_send_connectionless(att_response_handle, L2CAP_CID_ATTRIBUTE_PROTOCOL, att_response_buffer, size);
}
static void att_packet_handler(uint8_t packet_type, uint16_t handle, uint8_t *packet, uint16_t size){
if (packet_type != ATT_DATA_PACKET) return;
att_response_handle = handle;
att_response_size = att_handle_request(&att_connection, packet, size, att_response_buffer);
att_try_respond();
}
2013-11-01 14:07:59 +00:00
// SECURITY MANAGER (SM) MATERIALIZES HERE
static inline void swapX(uint8_t *src, uint8_t *dst, int len){
2013-11-01 14:07:59 +00:00
int i;
for (i = 0; i < len; i++)
dst[len - 1 - i] = src[i];
2013-11-01 14:07:59 +00:00
}
static inline void swap56(uint8_t src[7], uint8_t dst[7]){
swapX(src, dst, 7);
}
static inline void swap64(uint8_t src[8], uint8_t dst[8]){
swapX(src, dst, 8);
}
static inline void swap128(uint8_t src[16], uint8_t dst[16]){
swapX(src, dst, 16);
2013-11-01 14:07:59 +00:00
}
static void print_key(const char * name, key_t key){
printf("%-6s ", name);
hexdump(key, 16);
}
static void print_hex16(const char * name, uint16_t value){
printf("%-6s 0x%04x\n", name, value);
}
static inline void sm_aes128_set_key(key_t key){
memcpy(sm_aes128_key, key, 16);
}
static inline void sm_aes128_set_plaintext(key_t plaintext){
memcpy(sm_aes128_plaintext, plaintext, 16);
}
static void sm_d1_d_prime(uint16_t d, uint16_t r, key_t d1_prime){
2013-11-08 21:12:51 +00:00
// d'= padding || r || d
memset(d1_prime, 0, 16);
net_store_16(d1_prime, 12, r);
net_store_16(d1_prime, 14, d);
}
static void sm_d1(key_t k, uint16_t d, uint16_t r, key_t d1){
key_t d1_prime;
sm_d1_d_prime(d, r, d1_prime);
2013-11-08 21:12:51 +00:00
// d1(k,d,r) = e(k, d'),
unsigned long rk[RKLENGTH(KEYBITS)];
int nrounds = rijndaelSetupEncrypt(rk, &k[0], KEYBITS);
rijndaelEncrypt(rk, nrounds, d1_prime, d1);
}
static void sm_dm_r_prime(uint8_t r[8], key_t r_prime){
// r = padding || r
memset(r_prime, 0, 16);
memcpy(&r_prime[8], r, 8);
}
2013-11-08 21:12:51 +00:00
// calculate arguments for first AES128 operation in C1 function
static void sm_c1_t1(key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, key_t t1){
2013-11-01 17:54:33 +00:00
// p1 = pres || preq || rat || iat
// "The octet of iat becomes the least significant octet of p1 and the most signifi-
// cant octet of pres becomes the most significant octet of p1.
// For example, if the 8-bit iat is 0x01, the 8-bit rat is 0x00, the 56-bit preq
// is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
// p1 is 0x05000800000302070710000001010001."
2013-11-09 23:20:11 +00:00
key_t p1;
swap56(pres, &p1[0]);
swap56(preq, &p1[7]);
p1[14] = rat;
p1[15] = iat;
print_key("p1", p1);
print_key("r", r);
2013-11-01 17:54:33 +00:00
// t1 = r xor p1
int i;
for (i=0;i<16;i++){
t1[i] = r[i] ^ p1[i];
2013-11-01 17:54:33 +00:00
}
print_key("t1", t1);
}
// calculate arguments for second AES128 operation in C1 function
static void sm_c1_t3(key_t t2, bd_addr_t ia, bd_addr_t ra, key_t t3){
// p2 = padding || ia || ra
// "The least significant octet of ra becomes the least significant octet of p2 and
// the most significant octet of padding becomes the most significant octet of p2.
// For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
// 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
key_t p2;
memset(p2, 0, 16);
memcpy(&p2[4], ia, 6);
memcpy(&p2[10], ra, 6);
print_key("p2", p2);
// c1 = e(k, t2_xor_p2)
int i;
for (i=0;i<16;i++){
t3[i] = t2[i] ^ p2[i];
}
print_key("t3", t3);
}
2013-11-12 19:41:31 +00:00
static void sm_s1_r_prime(key_t r1, key_t r2, key_t r_prime){
print_key("r1", r1);
print_key("r2", r2);
2013-11-12 19:41:31 +00:00
memcpy(&r_prime[8], &r2[8], 8);
memcpy(&r_prime[0], &r1[8], 8);
}
2013-11-01 17:54:33 +00:00
void sm_reset_tk(){
int i;
for (i=0;i<16;i++){
sm_tk[i] = 0;
}
}
// decide on stk generation based on
// - pairing request
// - io capabilities
// - OOB data availability
static void sm_tk_setup(){
2013-11-28 21:23:01 +00:00
// default: just works
sm_stk_generation_method = JUST_WORKS;
sm_reset_tk();
// If both devices have out of band authentication data, then the Authentication
// Requirements Flags shall be ignored when selecting the pairing method and the
// Out of Band pairing method shall be used.
if (sm_m_have_oob_data && (*sm_get_oob_data)(att_addr_type, &att_address, sm_tk)){
sm_stk_generation_method = OOB;
return;
}
// If both devices have not set the MITM option in the Authentication Requirements
// Flags, then the IO capabilities shall be ignored and the Just Works association
// model shall be used.
if ((sm_s_auth_req & sm_m_auth_req & 0x04) == 0){
2013-11-28 21:23:01 +00:00
return;
}
// Also use just works if unknown io capabilites
if ((sm_m_io_capabilities > 4) || (sm_m_io_capabilities > 4)){
return;
}
// Otherwise the IO capabilities of the devices shall be used to determine the
// pairing method as defined in Table 2.4.
sm_stk_generation_method = stk_generation_method[sm_m_io_capabilities][sm_s_io_capabilities];
}
2013-11-01 14:07:59 +00:00
static void sm_run(void){
2013-11-01 21:50:43 +00:00
// assert that we can send either one
if (!hci_can_send_packet_now(HCI_COMMAND_DATA_PACKET)) return;
2013-11-01 14:07:59 +00:00
if (!hci_can_send_packet_now(HCI_ACL_DATA_PACKET)) return;
2013-11-01 21:50:43 +00:00
switch (sm_state_responding){
case SM_STATE_SEND_SECURITY_REQUEST: {
uint8_t buffer[2];
buffer[0] = SM_CODE_SECURITY_REQUEST;
buffer[1] = SM_AUTHREQ_BONDING;
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_state_responding = SM_STATE_IDLE;
return;
}
case SM_STATE_PH1_SEND_PAIRING_RESPONSE: {
// TODO use locally defined max encryption key size
uint8_t buffer[7];
memcpy(buffer, sm_preq, 7);
buffer[0] = SM_CODE_PAIRING_RESPONSE;
buffer[1] = sm_s_io_capabilities;
buffer[2] = sm_stk_generation_method == OOB ? 1 : 0;
buffer[3] = sm_s_auth_req;
buffer[4] = 0x10; // maxium encryption key size
// for validate
memcpy(sm_pres, buffer, 7);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_state_responding = SM_STATE_PH1_W4_PAIRING_CONFIRM;
return;
}
2013-11-16 22:35:25 +00:00
case SM_STATE_SEND_PAIRING_FAILED: {
uint8_t buffer[2];
buffer[0] = SM_CODE_PAIRING_FAILED;
buffer[1] = sm_pairing_failed_reason;
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_state_responding = SM_STATE_IDLE;
break;
}
case SM_STATE_SEND_PAIRING_RANDOM: {
uint8_t buffer[17];
buffer[0] = SM_CODE_PAIRING_RANDOM;
swap128(sm_s_random, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_state_responding = SM_STATE_PH2_W4_LTK_REQUEST;
break;
}
case SM_STATE_PH2_GET_RANDOM_TK:
case SM_STATE_PH2_C1_GET_RANDOM_A:
case SM_STATE_PH2_C1_GET_RANDOM_B:
case SM_STATE_PH3_GET_RANDOM:
case SM_STATE_PH3_GET_DIV:
2013-11-01 21:50:43 +00:00
hci_send_cmd(&hci_le_rand);
sm_state_responding++;
return;
case SM_STATE_PH2_C1_GET_ENC_A:
case SM_STATE_PH2_C1_GET_ENC_B:
case SM_STATE_PH2_C1_GET_ENC_C:
case SM_STATE_PH2_C1_GET_ENC_D:
case SM_STATE_PH2_CALC_STK:
case SM_STATE_PH3_DHK_GET_ENC:
case SM_STATE_PH3_Y_GET_ENC:
case SM_STATE_PH3_LTK_GET_ENC:
2013-11-16 21:32:57 +00:00
case SM_STATE_PH3_IRK_GET_ENC:
case SM_STATE_PH4_DHK_GET_ENC:
case SM_STATE_PH4_Y_GET_ENC:
case SM_STATE_PH4_LTK_GET_ENC:
{
key_t key_flipped, plaintext_flipped;
swap128(sm_aes128_key, key_flipped);
swap128(sm_aes128_plaintext, plaintext_flipped);
hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
sm_state_responding++;
}
return;
case SM_STATE_PH2_C1_SEND: {
2013-11-01 21:50:43 +00:00
uint8_t buffer[17];
buffer[0] = SM_CODE_PAIRING_CONFIRM;
swap128(sm_s_confirm, &buffer[1]);
2013-11-01 21:50:43 +00:00
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_state_responding = SM_STATE_PH2_W4_LTK_REQUEST;
2013-11-01 21:50:43 +00:00
return;
}
case SM_STATE_PH2_SEND_STK: {
2013-11-12 19:41:31 +00:00
key_t stk_flipped;
swap128(sm_stk, stk_flipped);
hci_send_cmd(&hci_le_long_term_key_request_reply, sm_response_handle, stk_flipped);
sm_state_responding = SM_STATE_PH2_W4_CONNECTION_ENCRYPTED;
return;
}
case SM_STATE_PH4_SEND_LTK: {
key_t ltk_flipped;
swap128(sm_s_ltk, ltk_flipped);
hci_send_cmd(&hci_le_long_term_key_request_reply, sm_response_handle, ltk_flipped);
sm_state_responding = SM_STATE_IDLE;
return;
2013-11-12 19:41:31 +00:00
}
case SM_STATE_DISTRIBUTE_KEYS:
if (sm_send_encryption_information){
sm_send_encryption_information = 0;
uint8_t buffer[17];
buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
swap128(sm_s_ltk, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
return;
}
if (sm_send_master_identification){
sm_send_master_identification = 0;
uint8_t buffer[11];
buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
bt_store_16(buffer, 1, sm_s_ediv);
swap64(sm_s_rand, &buffer[3]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
return;
}
if (sm_send_identity_information){
sm_send_identity_information = 0;
uint8_t buffer[17];
buffer[0] = SM_CODE_IDENTITY_INFORMATION;
swap128(sm_s_irk, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
return;
}
if (sm_send_identity_address_information ){
sm_send_identity_address_information = 0;
uint8_t buffer[8];
buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
buffer[1] = sm_s_addr_type;
bt_flip_addr(&buffer[2], sm_s_address);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
return;
}
if (sm_send_signing_identification){
sm_send_signing_identification = 0;
uint8_t buffer[17];
buffer[0] = SM_CODE_SIGNING_INFORMATION;
swap128(sm_s_csrk, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
return;
}
sm_state_responding = SM_STATE_IDLE;
2013-11-01 21:50:43 +00:00
break;
default:
break;
2013-11-08 15:31:09 +00:00
}
2013-11-01 14:07:59 +00:00
}
static void sm_packet_handler(uint8_t packet_type, uint16_t handle, uint8_t *packet, uint16_t size){
if (packet_type != SM_DATA_PACKET) return;
printf("sm_packet_handler, request %0x\n", packet[0]);
2013-11-08 15:18:45 +00:00
2013-11-01 14:07:59 +00:00
switch (packet[0]){
case SM_CODE_PAIRING_REQUEST:
2013-11-01 15:31:00 +00:00
// store key distribtion request
sm_m_io_capabilities = packet[1];
sm_m_have_oob_data = packet[2];
sm_m_auth_req = packet[3];
2013-11-01 15:31:00 +00:00
sm_key_distribution_set = packet[6];
2013-11-01 14:07:59 +00:00
// for validate
memcpy(sm_preq, packet, 7);
// decide on Passkey Entry pairing algorithm
sm_tk_setup();
// generate random number first, if we need to show passkey
if (sm_stk_generation_method == PK_INIT_INPUT){
sm_state_responding = SM_STATE_PH2_GET_RANDOM_TK;
break;;
}
sm_state_responding = SM_STATE_PH1_SEND_PAIRING_RESPONSE;
2013-11-01 14:07:59 +00:00
break;
2013-11-01 14:07:59 +00:00
case SM_CODE_PAIRING_CONFIRM:
// received confirm value
swap128(&packet[1], sm_m_confirm);
2013-11-01 14:07:59 +00:00
// notify client to hide shown passkey
if (sm_stk_generation_method == PK_INIT_INPUT){
printf("close passkey display\n");
}
2013-11-08 15:31:09 +00:00
// calculate and send s_confirm
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A;
2013-11-01 14:07:59 +00:00
break;
2013-11-01 15:31:00 +00:00
2013-11-01 14:07:59 +00:00
case SM_CODE_PAIRING_RANDOM:
2013-11-09 23:31:39 +00:00
// received random value
swap128(&packet[1], sm_m_random);
2013-11-01 14:07:59 +00:00
// use aes128 engine
// calculate m_confirm using aes128 engine - step 1
sm_aes128_set_key(sm_tk);
sm_c1_t1(sm_m_random, sm_preq, sm_pres, sm_m_addr_type, sm_s_addr_type, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH2_C1_GET_ENC_C;
2013-11-08 15:18:45 +00:00
break;
2013-11-01 14:07:59 +00:00
case SM_CODE_ENCRYPTION_INFORMATION:
sm_received_encryption_information = 1;
swap128(&packet[1], sm_m_ltk);
2013-11-01 14:07:59 +00:00
break;
case SM_CODE_MASTER_IDENTIFICATION:
sm_received_master_identification = 1;
sm_m_ediv = READ_BT_16(packet, 1);
swap64(&packet[3], sm_m_rand);
2013-11-01 14:07:59 +00:00
break;
case SM_CODE_IDENTITY_INFORMATION:
sm_received_identity_information = 1;
swap128(&packet[1], sm_m_irk);
2013-11-01 14:07:59 +00:00
break;
case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
sm_received_identity_address_information = 1;
sm_m_addr_type = packet[1];
BD_ADDR_COPY(sm_m_address, &packet[2]);
break;
case SM_CODE_SIGNING_INFORMATION:
sm_received_signing_identification = 1;
swap128(&packet[1], sm_m_csrk);
2013-11-01 14:07:59 +00:00
break;
}
// try to send preparared packet
sm_run();
}
static void sm_distribute_keys(){
// TODO: handle initiator case here
// distribute keys as requested by initiator
if (sm_key_distribution_set & SM_KEYDIST_ENC_KEY)
sm_send_encryption_information = 1;
sm_send_master_identification = 1;
if (sm_key_distribution_set & SM_KEYDIST_ID_KEY)
sm_send_identity_information = 1;
sm_send_identity_address_information = 1;
if (sm_key_distribution_set & SM_KEYDIST_SIGN)
sm_send_signing_identification = 1;
}
void sm_set_er(key_t er){
memcpy(sm_persistent_er, er, 16);
}
void sm_set_ir(key_t ir){
memcpy(sm_persistent_ir, ir, 16);
// sm_dhk(sm_persistent_ir, sm_persistent_dhk);
// sm_irk(sm_persistent_ir, sm_persistent_irk);
}
void sm_init(){
// set some (BTstack default) ER and IR
int i;
key_t er;
key_t ir;
for (i=0;i<16;i++){
er[i] = 0x30 + i;
ir[i] = 0x90 + i;
}
sm_set_er(er);
sm_set_ir(ir);
sm_state_responding = SM_STATE_IDLE;
}
2013-11-01 14:07:59 +00:00
// END OF SM
2013-10-17 12:42:18 +00:00
// enable LE, setup ADV data
static void packet_handler (void * connection, uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
uint8_t adv_data[] = { 02, 01, 05, 03, 02, 0xf0, 0xff };
2013-11-01 14:07:59 +00:00
sm_run();
2013-10-17 12:42:18 +00:00
switch (packet_type) {
case HCI_EVENT_PACKET:
switch (packet[0]) {
case BTSTACK_EVENT_STATE:
2013-11-01 21:50:43 +00:00
// bt stack activated, get started
2013-10-17 12:42:18 +00:00
if (packet[2] == HCI_STATE_WORKING) {
2013-10-17 13:22:20 +00:00
printf("Working!\n");
hci_send_cmd(&hci_le_set_advertising_data, sizeof(adv_data), adv_data);
2013-10-17 12:42:18 +00:00
}
break;
case DAEMON_EVENT_HCI_PACKET_SENT:
att_try_respond();
break;
case HCI_EVENT_LE_META:
switch (packet[2]) {
case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
2013-11-01 14:07:59 +00:00
sm_response_handle = READ_BT_16(packet, 4);
2013-11-01 21:50:43 +00:00
sm_m_addr_type = packet[7];
bt_flip_addr(sm_m_address, &packet[8]);
2013-11-01 21:50:43 +00:00
// TODO use non-null TK if appropriate
sm_reset_tk();
// TODO support private addresses
sm_s_addr_type = 0;
BD_ADDR_COPY(sm_s_address, hci_local_bd_addr());
printf("Incoming connection, own address ");
print_bd_addr(sm_s_address);
2013-11-01 14:07:59 +00:00
2013-10-17 12:42:18 +00:00
// reset connection MTU
att_connection.mtu = 23;
// request security
sm_state_responding = SM_STATE_SEND_SECURITY_REQUEST;
2013-10-17 12:42:18 +00:00
break;
2013-11-01 14:07:59 +00:00
case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
log_info("LTK Request, state %u", sm_state_responding);
if (sm_state_responding == SM_STATE_PH2_W4_LTK_REQUEST){
// calculate STK
log_info("calculating STK");
// key_t sm_stk;
// sm_s1(sm_tk, sm_s_random, sm_m_random, sm_stk);
sm_aes128_set_key(sm_tk);
2013-11-12 19:41:31 +00:00
sm_s1_r_prime(sm_s_random, sm_m_random, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH2_CALC_STK;
break;
}
// re-establish previously used LTK using Rand and EDIV
log_info("recalculating LTK");
swap64(&packet[5], sm_s_rand);
sm_s_ediv = READ_BT_16(packet, 13);
// dhk = d1(IR, 1, 0) - enc
// y = dm(dhk, rand) - enc
// div = y xor ediv
// ltk = d1(ER, div, 0) - enc
// DHK = d1(IR, 3, 0)
sm_aes128_set_key(sm_persistent_ir);
sm_d1_d_prime(3, 0, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH4_DHK_GET_ENC;
// sm_s_div = sm_div(sm_persistent_dhk, sm_s_rand, sm_s_ediv);
// sm_ltk(sm_persistent_er, sm_s_div, sm_s_ltk);
2013-11-01 14:07:59 +00:00
break;
2013-10-17 12:42:18 +00:00
default:
break;
}
break;
2013-11-01 21:50:43 +00:00
case HCI_EVENT_ENCRYPTION_CHANGE:
log_info("Connection encrypted");
if (sm_state_responding == SM_STATE_PH2_W4_CONNECTION_ENCRYPTED) {
sm_state_responding = SM_STATE_PH3_GET_RANDOM;
}
2013-11-01 14:07:59 +00:00
break;
2013-10-17 12:42:18 +00:00
case HCI_EVENT_DISCONNECTION_COMPLETE:
2013-11-01 21:50:43 +00:00
att_response_handle = 0;
2013-10-17 12:42:18 +00:00
att_response_size = 0;
// restart advertising
hci_send_cmd(&hci_le_set_advertise_enable, 1);
break;
case HCI_EVENT_COMMAND_COMPLETE:
if (COMMAND_COMPLETE_EVENT(packet, hci_le_set_advertising_parameters)){
2013-10-17 13:22:20 +00:00
// only needed for BLE Peripheral
hci_send_cmd(&hci_le_set_advertising_data, sizeof(adv_data), adv_data);
break;
2013-10-17 12:42:18 +00:00
}
if (COMMAND_COMPLETE_EVENT(packet, hci_le_set_advertising_data)){
2013-10-17 13:22:20 +00:00
// only needed for BLE Peripheral
2013-10-17 12:42:18 +00:00
hci_send_cmd(&hci_le_set_scan_response_data, 10, adv_data);
break;
}
if (COMMAND_COMPLETE_EVENT(packet, hci_le_set_scan_response_data)){
2013-10-17 13:22:20 +00:00
// only needed for BLE Peripheral
2013-10-17 12:42:18 +00:00
hci_send_cmd(&hci_le_set_advertise_enable, 1);
break;
}
if (COMMAND_COMPLETE_EVENT(packet, hci_le_encrypt)){
switch (sm_state_responding){
case SM_STATE_PH2_C1_W4_ENC_A:
case SM_STATE_PH2_C1_W4_ENC_C:
{
sm_aes128_set_key(sm_tk);
key_t t2;
swap128(&packet[6], t2);
sm_c1_t3(t2, sm_m_address, sm_s_address, sm_aes128_plaintext);
}
sm_state_responding++;
break;
case SM_STATE_PH2_C1_W4_ENC_B:
swap128(&packet[6], sm_s_confirm);
print_key("c1!", sm_s_confirm);
sm_state_responding++;
break;
case SM_STATE_PH2_C1_W4_ENC_D:
{
key_t m_confirm_test;
swap128(&packet[6], m_confirm_test);
print_key("c1!", m_confirm_test);
if (memcmp(sm_m_confirm, m_confirm_test, 16) == 0){
// send s_random
sm_state_responding = SM_STATE_SEND_PAIRING_RANDOM;
break;
}
2013-11-16 22:35:25 +00:00
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
}
break;
case SM_STATE_PH2_W4_STK:
2013-11-12 19:41:31 +00:00
swap128(&packet[6], sm_stk);
print_key("stk", sm_stk);
sm_state_responding = SM_STATE_PH2_SEND_STK;
2013-11-12 19:41:31 +00:00
break;
case SM_STATE_PH3_DHK_W4_ENC:
case SM_STATE_PH4_DHK_W4_ENC:
swap128(&packet[6], sm_persistent_dhk);
print_key("dhk", sm_persistent_dhk);
// PH3B2 - calculate Y from - enc
// Y = dm(DHK, Rand)
sm_aes128_set_key(sm_persistent_dhk);
sm_dm_r_prime(sm_s_rand, sm_aes128_plaintext);
sm_state_responding++;
break;
case SM_STATE_PH3_Y_W4_ENC:{
key_t y128;
swap128(&packet[6], y128);
sm_s_y = READ_NET_16(y128, 14);
print_hex16("y", sm_s_y);
// PH3B3 - calculate EDIV
sm_s_ediv = sm_s_y ^ sm_s_div;
print_hex16("ediv", sm_s_ediv);
// PH3B4 - calculate LTK - enc
// LTK = d1(ER, DIV, 0))
sm_aes128_set_key(sm_persistent_er);
sm_d1_d_prime(sm_s_div, 0, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH3_LTK_GET_ENC;
break;
}
case SM_STATE_PH4_Y_W4_ENC:{
key_t y128;
swap128(&packet[6], y128);
sm_s_y = READ_NET_16(y128, 14);
print_hex16("y", sm_s_y);
// PH3B3 - calculate DIV
sm_s_div = sm_s_y ^ sm_s_ediv;
print_hex16("ediv", sm_s_ediv);
// PH3B4 - calculate LTK - enc
// LTK = d1(ER, DIV, 0))
sm_aes128_set_key(sm_persistent_er);
sm_d1_d_prime(sm_s_div, 0, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH4_LTK_GET_ENC;
break;
}
case SM_STATE_PH3_LTK_W4_ENC:
swap128(&packet[6], sm_s_ltk);
print_key("ltk", sm_s_ltk);
2013-11-16 21:32:57 +00:00
// IRK = d1(IR, 1, 0)
sm_aes128_set_key(sm_persistent_ir);
sm_d1_d_prime(1, 0, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH3_IRK_GET_ENC;
break;
case SM_STATE_PH3_IRK_W4_ENC:
swap128(&packet[6], sm_persistent_irk);
print_key("irk", sm_persistent_irk);
// distribute keys
sm_distribute_keys();
// done
sm_state_responding = SM_STATE_IDLE;
break;
case SM_STATE_PH4_LTK_W4_ENC:
swap128(&packet[6], sm_s_ltk);
print_key("ltk", sm_s_ltk);
sm_state_responding = SM_STATE_PH4_SEND_LTK;
break;
default:
break;
}
}
2013-11-01 21:50:43 +00:00
if (COMMAND_COMPLETE_EVENT(packet, hci_le_rand)){
switch (sm_state_responding){
case SM_STATE_PH2_W4_RANDOM_TK:
{
// map random to 0-999999 without speding much cycles on a modulus operation
uint32_t tk = * (uint32_t*) &packet[6]; // random endianess
tk = tk & 0xfffff; // 1048575
if (tk >= 999999){
tk = tk - 999999;
}
sm_reset_tk();
net_store_32( sm_tk, 12, tk);
// notify client to show passkey
printf("show passkey %06u\n", tk);
// continue with phase 1
sm_state_responding = SM_STATE_PH1_SEND_PAIRING_RESPONSE;
break;
}
case SM_STATE_PH2_C1_W4_RANDOM_A:
memcpy(&sm_s_random[0], &packet[6], 8); // random endinaness
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_B;
2013-11-01 21:50:43 +00:00
break;
case SM_STATE_PH2_C1_W4_RANDOM_B:
memcpy(&sm_s_random[8], &packet[6], 8); // random endinaness
2013-11-01 21:50:43 +00:00
// calculate s_confirm manually
// sm_c1(sm_tk, sm_s_random, sm_preq, sm_pres, sm_m_addr_type, sm_s_addr_type, sm_m_address, sm_s_address, sm_s_confirm);
2013-11-08 15:31:09 +00:00
// send s_confirm
// sm_state_responding = SM_STATE_PH2_C1_SEND;
// calculate s_confirm using aes128 engine - step 1
sm_aes128_set_key(sm_tk);
sm_c1_t1(sm_s_random, sm_preq, sm_pres, sm_m_addr_type, sm_s_addr_type, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH2_C1_GET_ENC_A;
2013-11-01 21:50:43 +00:00
break;
case SM_STATE_PH3_W4_RANDOM:
swap64(&packet[6], sm_s_rand);
sm_state_responding = SM_STATE_PH3_GET_DIV;
break;
case SM_STATE_PH3_W4_DIV:
// use 16 bit from random value as div
sm_s_div = READ_NET_16(packet, 6);
print_hex16("div", sm_s_div);
// PLAN
// PH3B1 - calculate DHK from IR - enc
// PH3B2 - calculate Y from - enc
// PH3B3 - calculate EDIV
// PH3B4 - calculate LTK - enc
// DHK = d1(IR, 3, 0)
sm_aes128_set_key(sm_persistent_ir);
sm_d1_d_prime(3, 0, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH3_DHK_GET_ENC;
// // calculate EDIV and LTK
// sm_s_ediv = sm_ediv(sm_persistent_dhk, sm_s_rand, sm_s_div);
// sm_ltk(sm_persistent_er, sm_s_div, sm_s_ltk);
// print_key("ltk", sm_s_ltk);
// print_hex16("ediv", sm_s_ediv);
// // distribute keys
// sm_distribute_keys();
// // done
// sm_state_responding = SM_STATE_IDLE;
break;
2013-11-01 21:50:43 +00:00
default:
break;
}
break;
}
2013-10-17 12:42:18 +00:00
}
}
2013-11-01 14:07:59 +00:00
sm_run();
2013-10-17 12:42:18 +00:00
}
// aes128 c implementation only code
static uint16_t sm_dm(key_t k, uint8_t r[8]){
key_t r_prime;
sm_dm_r_prime(r, r_prime);
// dm(k, r) = e(k, r) dm(k, r) = e(k, r)
key_t dm128;
unsigned long rk[RKLENGTH(KEYBITS)];
int nrounds = rijndaelSetupEncrypt(rk, &k[0], KEYBITS);
rijndaelEncrypt(rk, nrounds, r_prime, dm128);
uint16_t dm = READ_NET_16(dm128, 14);
return dm;
}
static uint16_t sm_y(key_t dhk, uint8_t rand[8]){
// Y = dm(DHK, Rand)
return sm_dm(dhk, rand);
}
static uint16_t sm_ediv(key_t dhk, uint8_t rand[8], uint16_t div){
// EDIV = Y xor DIV
uint16_t y = sm_y(dhk, rand);
uint16_t ediv = y ^ div;
return ediv;
}
static uint16_t sm_div(key_t dhk, uint8_t rand[8], uint16_t ediv){
// DIV = Y xor EDIV
uint16_t y = sm_y(dhk, rand);
uint16_t div = y ^ ediv;
return div;
}
static void sm_ltk(key_t er, uint16_t div, key_t ltk){
// LTK = d1(ER, DIV, 0))
sm_d1(er, div, 0, ltk);
}
static void sm_csrk(key_t er, uint16_t div, key_t csrk){
// LTK = d1(ER, DIV, 0))
sm_d1(er, div, 1, csrk);
}
static void sm_irk(key_t ir, key_t irk){
// IRK = d1(IR, 1, 0)
sm_d1(ir, 1, 0, irk);
}
static void sm_dhk(key_t ir, key_t dhk){
// DHK = d1(IR, 3, 0)
sm_d1(ir, 3, 0, dhk);
}
//
// Endianess:
// - preq, pres as found in SM PDUs (little endian), we flip it here
// - everything else in big endian incl. result
static void sm_c1(key_t k, key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, bd_addr_t ia, bd_addr_t ra, key_t c1){
printf("iat %u: ia ", iat);
print_bd_addr(ia);
printf("rat %u: ra ", rat);
print_bd_addr(ra);
print_key("k", k);
// first operation
key_t t1;
sm_c1_t1(r, preq, pres, iat, rat, t1);
unsigned long rk[RKLENGTH(KEYBITS)];
int nrounds = rijndaelSetupEncrypt(rk, &k[0], KEYBITS);
// t2 = e(k, r_xor_p1)
key_t t2;
rijndaelEncrypt(rk, nrounds, t1, t2);
print_key("t2", t2);
// second operation
key_t t3;
sm_c1_t3(t2, ia, ra, t3);
rijndaelEncrypt(rk, nrounds, t3, c1);
print_key("c1", c1);
}
static void sm_s1(key_t k, key_t r1, key_t r2, key_t s1){
printf("sm_s1\n");
print_key("k", k);
key_t r_prime;
sm_s1_r_prime(r1, r2, r_prime);
// setup aes decryption
unsigned long rk[RKLENGTH(KEYBITS)];
int nrounds = rijndaelSetupEncrypt(rk, &k[0], KEYBITS);
rijndaelEncrypt(rk, nrounds, r_prime, s1);
print_key("s1", s1);
}
// test code using aes128 c implementation
static int sm_validate_m_confirm(void){
printf("sm_validate_m_confirm\n");
key_t c1;
sm_c1(sm_tk, sm_m_random, sm_preq, sm_pres, sm_m_addr_type, sm_s_addr_type, sm_m_address, sm_s_address, c1);
print_key("mc", sm_m_confirm);
int m_confirm_valid = memcmp(c1, sm_m_confirm, 16) == 0;
printf("m_confirm_valid: %u\n", m_confirm_valid);
return m_confirm_valid;
}
static void sm_test(){
key_t k;
memset(k, 0, 16 );
print_key("k", k);
// c1
key_t r = { 0x57, 0x83, 0xD5, 0x21, 0x56, 0xAD, 0x6F, 0x0E, 0x63, 0x88, 0x27, 0x4E, 0xC6, 0x70, 0x2E, 0xE0 };
print_key("r", r);
uint8_t preq[] = {0x01, 0x01, 0x00, 0x00, 0x10, 0x07, 0x07};
uint8_t pres[] = {0x02, 0x03, 0x00, 0x00, 0x08, 0x00, 0x05};
bd_addr_t ia = { 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6 };
bd_addr_t ra = { 0xB1, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6 };
key_t c1;
sm_c1(k, r, preq, pres, 1, 0, ia, ra, c1);
// s1
key_t s1;
key_t r1 = { 0x00, 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88};
key_t r2 = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF, 0x00};
sm_s1(k, r1, r2, s1);
}
void sm_test2(){
key_t k;
memset(k, 0, 16 );
print_key("k", k);
key_t r = { 0x55, 0x05, 0x1D, 0xF4, 0x7C, 0xC9, 0xBC, 0x97, 0x3C, 0x6A, 0x7D, 0x0D, 0x0F, 0x57, 0x0E, 0xC4 };
print_key("r", r);
// preq [ 01 04 00 01 10 07 07 ]
// pres [ 02 04 00 01 10 07 07 ]
uint8_t preq[] = {0x01, 0x04, 0x00, 0x01, 0x10, 0x07, 0x07};
uint8_t pres[] = {0x02, 0x04, 0x00, 0x01, 0x10, 0x07, 0x07};
// Initiator
// Peer_Address_Type: Random Device Address
// Peer_Address: 5C:49:F9:4F:1F:04
// Responder
// Peer_Address_Type: Public Device Address
// Peer_Address: 00:1B:DC:05:B5:DC
bd_addr_t ia = { 0x5c, 0x49, 0xf9, 0x4f, 0x1f, 0x04 };
bd_addr_t ra = { 0x00, 0x1b, 0xdc, 0x05, 0xB5, 0xdc };
key_t c1;
key_t c1_true = { 0xFB, 0xAB, 0x63, 0x6F, 0xE4, 0xB4, 0xA5, 0x16, 0xAF, 0x8D, 0x88, 0xED, 0xBD, 0xB6, 0xA6, 0xFE };
bd_addr_t ia_le;
bd_addr_t ra_le;
bt_flip_addr(ia_le, ia);
bt_flip_addr(ra_le, ra);
sm_c1(k, r, preq, pres, 1, 0, ia, ra, c1);
printf("Confirm value correct :%u\n", memcmp(c1, c1_true, 16) == 0);
}
2013-10-17 12:42:18 +00:00
// test profile
#include "profile.h"
// write requests
static void att_write_callback(uint16_t handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size, signature_t * signature){
printf("WRITE Callback, handle %04x\n", handle);
switch(handle){
case 0x000b:
buffer[buffer_size]=0;
printf("New text: %s\n", buffer);
break;
case 0x000d:
printf("New value: %u\n", buffer[0]);
break;
}
}
void setup(void){
/// GET STARTED with BTstack ///
btstack_memory_init();
run_loop_init(RUN_LOOP_POSIX);
// use logger: format HCI_DUMP_PACKETLOGGER, HCI_DUMP_BLUEZ or HCI_DUMP_STDOUT
hci_dump_open("/tmp/hci_dump.pklg", HCI_DUMP_PACKETLOGGER);
// init HCI
hci_transport_t * transport = hci_transport_usb_instance();
2013-10-17 13:35:43 +00:00
hci_uart_config_t * config = NULL;
2013-10-17 12:42:18 +00:00
bt_control_t * control = NULL;
remote_device_db_t * remote_db = (remote_device_db_t *) &remote_device_db_memory;
hci_init(transport, config, control, remote_db);
// set up l2cap_le
l2cap_init();
l2cap_register_fixed_channel(att_packet_handler, L2CAP_CID_ATTRIBUTE_PROTOCOL);
2013-11-01 14:07:59 +00:00
l2cap_register_fixed_channel(sm_packet_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
2013-10-17 12:42:18 +00:00
l2cap_register_packet_handler(packet_handler);
// set up ATT
att_set_db(profile_data);
att_set_write_callback(att_write_callback);
att_dump_attributes();
att_connection.mtu = 27;
// setup SM
sm_init();
2013-10-17 12:42:18 +00:00
}
int main(void)
{
2013-11-09 23:20:11 +00:00
// sm_test();
// sm_test2();
// exit(0);
2013-10-17 12:42:18 +00:00
setup();
// turn on!
hci_power_control(HCI_POWER_ON);
// go!
run_loop_execute();
// happy compiler!
return 0;
}