btstack/platform/libusb/hci_transport_h2_libusb.c

1351 lines
44 KiB
C
Raw Normal View History

/*
2015-02-06 16:19:27 +00:00
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
2015-02-06 16:19:27 +00:00
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
2015-02-06 16:19:27 +00:00
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define __BTSTACK_FILE__ "hci_transport_h2_libusb.c"
/*
* hci_transport_usb.c
*
* HCI Transport API implementation for USB
*
* Created by Matthias Ringwald on 7/5/09.
*/
// Interface Number - Alternate Setting - suggested Endpoint Address - Endpoint Type - Suggested Max Packet Size
// HCI Commands 0 0 0x00 Control 8/16/32/64
// HCI Events 0 0 0x81 Interrupt (IN) 16
// ACL Data 0 0 0x82 Bulk (IN) 32/64
// ACL Data 0 0 0x02 Bulk (OUT) 32/64
// SCO Data 0 0 0x83 Isochronous (IN)
// SCO Data 0 0 0x03 Isochronous (Out)
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <unistd.h> /* UNIX standard function definitions */
#include <sys/types.h>
#include <libusb.h>
2016-01-21 15:41:16 +01:00
#include "btstack_config.h"
2011-01-12 19:48:08 +00:00
2016-01-20 14:52:45 +01:00
#include "btstack_debug.h"
#include "hci.h"
2010-06-04 18:10:12 +00:00
#include "hci_transport.h"
#if (USB_VENDOR_ID != 0) && (USB_PRODUCT_ID != 0)
#define HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
#endif
#define ACL_IN_BUFFER_COUNT 3
#define EVENT_IN_BUFFER_COUNT 3
#define SCO_IN_BUFFER_COUNT 10
#define ASYNC_POLLING_INTERVAL_MS 1
2016-01-18 13:58:34 +01:00
//
// Bluetooth USB Transport Alternate Settings:
2016-01-18 13:58:34 +01:00
//
// 0: No active voice channels (for USB compliance)
// 1: One 8 kHz voice channel with 8-bit encoding
// 2: Two 8 kHz voice channels with 8-bit encoding or one 8 kHz voice channel with 16-bit encoding
// 3: Three 8 kHz voice channels with 8-bit encoding
// 4: Two 8 kHz voice channels with 16-bit encoding or one 16 kHz voice channel with 16-bit encoding
// 5: Three 8 kHz voice channels with 16-bit encoding or one 8 kHz voice channel with 16-bit encoding and one 16 kHz voice channel with 16-bit encoding
// --> support only a single SCO connection
// #define ALT_SETTING (1)
2016-01-18 13:58:34 +01:00
2017-07-04 17:38:30 +02:00
#ifdef ENABLE_SCO_OVER_HCI
// alt setting for 1-3 connections and 8/16 bit
static const int alt_setting_8_bit[] = {1,2,3};
static const int alt_setting_16_bit[] = {2,4,5};
2016-01-18 13:58:34 +01:00
// for ALT_SETTING >= 1 and 8-bit channel, we need the following isochronous packets
// One complete SCO packet with 24 frames every 3 frames (== 3 ms)
#define NUM_ISO_PACKETS (3)
static const uint16_t iso_packet_size_for_alt_setting[] = {
0,
9,
17,
25,
33,
49,
63,
};
2017-07-04 17:38:30 +02:00
#endif
2016-01-18 13:58:34 +01:00
// 49 bytes is the max usb packet size for alternate setting 5 (Three 8 kHz 16-bit channels or one 8 kHz 16-bit channel and one 16 kHz 16-bit channel)
// note: alt setting 6 has max packet size of 63 every 7.5 ms = 472.5 bytes / HCI packet, while max SCO packet has 255 byte payload
#define SCO_PACKET_SIZE (49 * NUM_ISO_PACKETS)
2016-01-18 13:58:34 +01:00
// Outgoing SCO packet queue
// simplified ring buffer implementation
#define SCO_OUT_BUFFER_COUNT (8)
#define SCO_OUT_BUFFER_SIZE (SCO_OUT_BUFFER_COUNT * SCO_PACKET_SIZE)
2016-01-18 13:58:34 +01:00
// seems to be the max depth for USB 3
#define USB_MAX_PATH_LEN 7
// prototypes
2010-09-21 17:18:50 +00:00
static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size);
2016-01-27 15:30:31 +01:00
static int usb_close(void);
2016-01-18 13:58:34 +01:00
2013-05-21 12:10:36 +00:00
typedef enum {
LIB_USB_CLOSED = 0,
LIB_USB_OPENED,
LIB_USB_DEVICE_OPENDED,
LIB_USB_INTERFACE_CLAIMED,
LIB_USB_TRANSFERS_ALLOCATED
2013-05-21 12:10:36 +00:00
} libusb_state_t;
// SCO packet state machine
typedef enum {
H2_W4_SCO_HEADER = 1,
H2_W4_PAYLOAD,
} H2_SCO_STATE;
2013-05-21 12:10:36 +00:00
static libusb_state_t libusb_state = LIB_USB_CLOSED;
// single instance
static hci_transport_t * hci_transport_usb = NULL;
static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler;
// libusb
#ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
static struct libusb_device_descriptor desc;
static libusb_device * dev;
2011-10-08 16:58:36 +00:00
#endif
static libusb_device_handle * handle;
2013-03-06 13:24:04 +00:00
static struct libusb_transfer *command_out_transfer;
static struct libusb_transfer *acl_out_transfer;
static struct libusb_transfer *event_in_transfer[EVENT_IN_BUFFER_COUNT];
static struct libusb_transfer *acl_in_transfer[ACL_IN_BUFFER_COUNT];
2013-03-06 13:24:04 +00:00
#ifdef ENABLE_SCO_OVER_HCI
2016-01-18 13:58:34 +01:00
2016-02-15 21:49:39 +01:00
#ifdef _WIN32
#error "SCO not working on Win32 (Windows 8, libusb 1.0.19, Zadic WinUSB), please uncomment ENABLE_SCO_OVER_HCI in btstack-config.h for now"
2016-02-15 21:49:39 +01:00
#endif
2016-01-18 13:58:34 +01:00
// incoming SCO
2015-02-17 22:42:08 +00:00
static H2_SCO_STATE sco_state;
static uint8_t sco_buffer[255+3 + SCO_PACKET_SIZE];
static uint16_t sco_read_pos;
static uint16_t sco_bytes_to_read;
static struct libusb_transfer *sco_in_transfer[SCO_IN_BUFFER_COUNT];
static uint8_t hci_sco_in_buffer[SCO_IN_BUFFER_COUNT][SCO_PACKET_SIZE];
2016-01-18 13:58:34 +01:00
// outgoing SCO
static uint8_t sco_out_ring_buffer[SCO_OUT_BUFFER_SIZE];
2016-01-18 13:58:34 +01:00
static int sco_ring_write; // packet idx
static int sco_out_transfers_active;
static struct libusb_transfer *sco_out_transfers[SCO_OUT_BUFFER_COUNT];
static int sco_out_transfers_in_flight[SCO_OUT_BUFFER_COUNT];
// pause/resume
static uint16_t sco_voice_setting;
static int sco_num_connections;
static int sco_shutdown;
// dynamic SCO configuration
static uint16_t iso_packet_size;
#endif
2016-01-18 13:58:34 +01:00
// outgoing buffer for HCI Command packets
static uint8_t hci_cmd_buffer[3 + 256 + LIBUSB_CONTROL_SETUP_SIZE];
2016-01-18 13:58:34 +01:00
// incoming buffer for HCI Events and ACL Packets
static uint8_t hci_event_in_buffer[EVENT_IN_BUFFER_COUNT][HCI_ACL_BUFFER_SIZE]; // bigger than largest packet
static uint8_t hci_acl_in_buffer[ACL_IN_BUFFER_COUNT][HCI_INCOMING_PRE_BUFFER_SIZE + HCI_ACL_BUFFER_SIZE];
// For (ab)use as a linked list of received packets
static struct libusb_transfer *handle_packet;
static int doing_pollfds;
static int num_pollfds;
static btstack_data_source_t * pollfd_data_sources;
static btstack_timer_source_t usb_timer;
static int usb_timer_active;
2013-03-06 13:24:04 +00:00
static int usb_acl_out_active = 0;
2013-03-06 18:06:22 +00:00
static int usb_command_active = 0;
2013-03-06 13:24:04 +00:00
// endpoint addresses
static int event_in_addr;
static int acl_in_addr;
static int acl_out_addr;
static int sco_in_addr;
static int sco_out_addr;
// device path
static int usb_path_len;
static uint8_t usb_path[USB_MAX_PATH_LEN];
#ifdef ENABLE_SCO_OVER_HCI
static void sco_ring_init(void){
sco_ring_write = 0;
sco_out_transfers_active = 0;
}
static int sco_ring_have_space(void){
return sco_out_transfers_active < SCO_OUT_BUFFER_COUNT;
}
2016-01-27 15:30:31 +01:00
#endif
void hci_transport_usb_set_path(int len, uint8_t * port_numbers){
if (len > USB_MAX_PATH_LEN || !port_numbers){
log_error("hci_transport_usb_set_path: len or port numbers invalid");
return;
}
usb_path_len = len;
memcpy(usb_path, port_numbers, len);
}
//
2013-03-06 18:40:47 +00:00
static void queue_transfer(struct libusb_transfer *transfer){
2013-03-05 16:04:53 +00:00
2013-09-02 19:36:28 +00:00
// log_info("queue_transfer %p, endpoint %x size %u", transfer, transfer->endpoint, transfer->actual_length);
2013-03-05 16:04:53 +00:00
transfer->user_data = NULL;
// insert first element
if (handle_packet == NULL) {
handle_packet = transfer;
return;
}
// Walk to end of list and add current packet there
struct libusb_transfer *temp = handle_packet;
while (temp->user_data) {
temp = (struct libusb_transfer*)temp->user_data;
}
temp->user_data = transfer;
}
2016-11-27 17:01:51 +01:00
LIBUSB_CALL static void async_callback(struct libusb_transfer *transfer){
2016-12-05 22:38:19 +01:00
int c;
// identify and free transfers as part of shutdown
#ifdef ENABLE_SCO_OVER_HCI
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED || sco_shutdown) {
for (c=0;c<SCO_IN_BUFFER_COUNT;c++){
if (transfer == sco_in_transfer[c]){
libusb_free_transfer(transfer);
sco_in_transfer[c] = 0;
return;
}
}
for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){
if (transfer == sco_out_transfers[c]){
sco_out_transfers_in_flight[c] = 0;
libusb_free_transfer(transfer);
sco_out_transfers[c] = 0;
return;
}
}
}
#endif
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) {
for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){
if (transfer == event_in_transfer[c]){
libusb_free_transfer(transfer);
event_in_transfer[c] = 0;
return;
}
}
for (c=0;c<ACL_IN_BUFFER_COUNT;c++){
if (transfer == acl_in_transfer[c]){
libusb_free_transfer(transfer);
acl_in_transfer[c] = 0;
return;
}
}
return;
}
#ifdef ENABLE_SCO_OVER_HCI
// mark SCO OUT transfer as done
for (c=0;c<SCO_OUT_BUFFER_COUNT;c++){
if (transfer == sco_out_transfers[c]){
sco_out_transfers_in_flight[c] = 0;
}
}
#endif
int r;
// log_info("begin async_callback endpoint %x, status %x, actual length %u", transfer->endpoint, transfer->status, transfer->actual_length );
2013-03-05 16:04:53 +00:00
if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
2013-03-06 18:40:47 +00:00
queue_transfer(transfer);
2013-03-06 13:24:04 +00:00
} else if (transfer->status == LIBUSB_TRANSFER_STALL){
log_info("-> Transfer stalled, trying again");
2013-03-06 17:47:50 +00:00
r = libusb_clear_halt(handle, transfer->endpoint);
if (r) {
log_error("Error rclearing halt %d", r);
}
2013-03-06 13:24:04 +00:00
r = libusb_submit_transfer(transfer);
if (r) {
log_error("Error re-submitting transfer %d", r);
}
} else {
2015-11-06 16:26:25 +01:00
log_info("async_callback. not data -> resubmit transfer, endpoint %x, status %x, length %u", transfer->endpoint, transfer->status, transfer->actual_length);
// No usable data, just resubmit packet
2013-03-06 13:24:04 +00:00
r = libusb_submit_transfer(transfer);
if (r) {
log_error("Error re-submitting transfer %d", r);
}
}
// log_info("end async_callback");
}
#ifdef ENABLE_SCO_OVER_HCI
2016-01-27 15:30:31 +01:00
static int usb_send_sco_packet(uint8_t *packet, int size){
int r;
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
// log_info("usb_send_acl_packet enter, size %u", size);
// store packet in free slot
int tranfer_index = sco_ring_write;
uint8_t * data = &sco_out_ring_buffer[tranfer_index * SCO_PACKET_SIZE];
memcpy(data, packet, size);
// setup transfer
// log_info("usb_send_sco_packet: size %u, max size %u, iso packet size %u", size, NUM_ISO_PACKETS * iso_packet_size, iso_packet_size);
struct libusb_transfer * sco_transfer = sco_out_transfers[tranfer_index];
libusb_fill_iso_transfer(sco_transfer, handle, sco_out_addr, data, NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0);
libusb_set_iso_packet_lengths(sco_transfer, iso_packet_size);
r = libusb_submit_transfer(sco_transfer);
if (r < 0) {
log_error("Error submitting sco transfer, %d", r);
return -1;
}
// mark slot as full
sco_ring_write++;
if (sco_ring_write == SCO_OUT_BUFFER_COUNT){
sco_ring_write = 0;
}
sco_out_transfers_active++;
sco_out_transfers_in_flight[tranfer_index] = 1;
// log_info("H2: queued packet at index %u, num active %u", tranfer_index, sco_out_transfers_active);
// notify upper stack that provided buffer can be used again
uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0};
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
// and if we have more space for SCO packets
if (sco_ring_have_space()) {
uint8_t event_sco[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0};
packet_handler(HCI_EVENT_PACKET, &event_sco[0], sizeof(event_sco));
}
return 0;
}
static void sco_state_machine_init(void){
sco_state = H2_W4_SCO_HEADER;
sco_read_pos = 0;
sco_bytes_to_read = 3;
}
static void handle_isochronous_data(uint8_t * buffer, uint16_t size){
while (size){
if (size < sco_bytes_to_read){
// just store incomplete data
memcpy(&sco_buffer[sco_read_pos], buffer, size);
sco_read_pos += size;
sco_bytes_to_read -= size;
return;
}
// copy requested data
memcpy(&sco_buffer[sco_read_pos], buffer, sco_bytes_to_read);
sco_read_pos += sco_bytes_to_read;
buffer += sco_bytes_to_read;
size -= sco_bytes_to_read;
// chunk read successfully, next action
switch (sco_state){
case H2_W4_SCO_HEADER:
sco_state = H2_W4_PAYLOAD;
sco_bytes_to_read = sco_buffer[2];
break;
case H2_W4_PAYLOAD:
// packet complete
packet_handler(HCI_SCO_DATA_PACKET, sco_buffer, sco_read_pos);
sco_state_machine_init();
break;
}
}
}
2016-01-27 15:30:31 +01:00
#endif
2013-03-06 18:40:47 +00:00
static void handle_completed_transfer(struct libusb_transfer *transfer){
2013-03-06 18:40:47 +00:00
int resubmit = 0;
int signal_done = 0;
2013-03-06 18:40:47 +00:00
if (transfer->endpoint == event_in_addr) {
packet_handler(HCI_EVENT_PACKET, transfer-> buffer, transfer->actual_length);
2013-03-06 18:40:47 +00:00
resubmit = 1;
} else if (transfer->endpoint == acl_in_addr) {
2013-03-06 18:40:47 +00:00
// log_info("-> acl");
packet_handler(HCI_ACL_DATA_PACKET, transfer-> buffer, transfer->actual_length);
2013-03-06 18:40:47 +00:00
resubmit = 1;
2016-01-27 15:30:31 +01:00
} else if (transfer->endpoint == 0){
// log_info("command done, size %u", transfer->actual_length);
usb_command_active = 0;
signal_done = 1;
} else if (transfer->endpoint == acl_out_addr){
// log_info("acl out done, size %u", transfer->actual_length);
usb_acl_out_active = 0;
signal_done = 1;
#ifdef ENABLE_SCO_OVER_HCI
} else if (transfer->endpoint == sco_in_addr) {
2016-01-18 13:58:34 +01:00
// log_info("handle_completed_transfer for SCO IN! num packets %u", transfer->NUM_ISO_PACKETS);
int i;
for (i = 0; i < transfer->num_iso_packets; i++) {
struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i];
if (pack->status != LIBUSB_TRANSFER_COMPLETED) {
log_error("Error: pack %u status %d\n", i, pack->status);
continue;
}
2015-11-06 16:26:25 +01:00
if (!pack->actual_length) continue;
uint8_t * data = libusb_get_iso_packet_buffer_simple(transfer, i);
// printf_hexdump(data, pack->actual_length);
// log_info("handle_isochronous_data,size %u/%u", pack->length, pack->actual_length);
2015-11-06 16:26:25 +01:00
handle_isochronous_data(data, pack->actual_length);
}
resubmit = 1;
} else if (transfer->endpoint == sco_out_addr){
2016-12-05 22:38:19 +01:00
int i;
for (i = 0; i < transfer->num_iso_packets; i++) {
struct libusb_iso_packet_descriptor *pack = &transfer->iso_packet_desc[i];
if (pack->status != LIBUSB_TRANSFER_COMPLETED) {
log_error("Error: pack %u status %d\n", i, pack->status);
}
}
// log_info("sco out done, {{ %u/%u (%x)}, { %u/%u (%x)}, { %u/%u (%x)}}",
// transfer->iso_packet_desc[0].actual_length, transfer->iso_packet_desc[0].length, transfer->iso_packet_desc[0].status,
// transfer->iso_packet_desc[1].actual_length, transfer->iso_packet_desc[1].length, transfer->iso_packet_desc[1].status,
// transfer->iso_packet_desc[2].actual_length, transfer->iso_packet_desc[2].length, transfer->iso_packet_desc[2].status);
// notify upper layer if there's space for new SCO packets
if (sco_ring_have_space()) {
uint8_t event[] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0};
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
}
// decrease tab
sco_out_transfers_active--;
// log_info("H2: sco out complete, num active num active %u", sco_out_transfers_active);
2016-01-27 15:30:31 +01:00
#endif
} else {
log_info("usb_process_ds endpoint unknown %x", transfer->endpoint);
}
2013-03-06 18:40:47 +00:00
if (signal_done){
// notify upper stack that provided buffer can be used again
uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0};
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
2013-03-06 18:40:47 +00:00
}
2013-03-06 13:24:04 +00:00
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
2013-03-06 18:40:47 +00:00
if (resubmit){
// Re-submit transfer
transfer->user_data = NULL;
int r = libusb_submit_transfer(transfer);
2013-03-06 18:40:47 +00:00
if (r) {
log_error("Error re-submitting transfer %d", r);
}
2013-03-06 18:40:47 +00:00
}
}
static void usb_process_ds(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type) {
2016-12-22 22:16:16 +01:00
UNUSED(ds);
UNUSED(callback_type);
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
2013-09-02 19:36:28 +00:00
// log_info("begin usb_process_ds");
2013-03-06 18:40:47 +00:00
// always handling an event as we're called when data is ready
struct timeval tv;
memset(&tv, 0, sizeof(struct timeval));
libusb_handle_events_timeout(NULL, &tv);
2013-03-06 18:06:22 +00:00
2013-03-06 18:40:47 +00:00
// Handle any packet in the order that they were received
while (handle_packet) {
2013-09-02 19:36:28 +00:00
// log_info("handle packet %p, endpoint %x, status %x", handle_packet, handle_packet->endpoint, handle_packet->status);
2013-03-06 18:40:47 +00:00
void * next = handle_packet->user_data;
handle_completed_transfer(handle_packet);
// handle case where libusb_close might be called by hci packet handler
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
// Move to next in the list of packets to handle
if (next) {
handle_packet = (struct libusb_transfer*)next;
} else {
handle_packet = NULL;
}
}
2013-09-02 19:36:28 +00:00
// log_info("end usb_process_ds");
}
static void usb_process_ts(btstack_timer_source_t *timer) {
2016-12-22 22:16:16 +01:00
UNUSED(timer);
// log_info("in usb_process_ts");
// timer is deactive, when timer callback gets called
usb_timer_active = 0;
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return;
// actually handled the packet in the pollfds function
usb_process_ds((struct btstack_data_source *) NULL, DATA_SOURCE_CALLBACK_READ);
// Get the amount of time until next event is due
long msec = ASYNC_POLLING_INTERVAL_MS;
// Activate timer
btstack_run_loop_set_timer(&usb_timer, msec);
btstack_run_loop_add_timer(&usb_timer);
usb_timer_active = 1;
return;
}
#ifndef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
// list of known devices, using VendorID/ProductID tuples
static const uint16_t known_bt_devices[] = {
// DeLOCK Bluetooth 4.0
0x0a5c, 0x21e8,
// Asus BT400
0x0b05, 0x17cb,
};
static int num_known_devices = sizeof(known_bt_devices) / sizeof(uint16_t) / 2;
static int is_known_bt_device(uint16_t vendor_id, uint16_t product_id){
int i;
for (i=0; i<num_known_devices; i++){
if (known_bt_devices[i*2] == vendor_id && known_bt_devices[i*2+1] == product_id){
return 1;
}
}
return 0;
}
static void scan_for_bt_endpoints(void) {
int r;
2015-02-13 15:34:43 +00:00
event_in_addr = 0;
acl_in_addr = 0;
acl_out_addr = 0;
sco_out_addr = 0;
sco_in_addr = 0;
// get endpoints from interface descriptor
struct libusb_config_descriptor *config_descriptor;
r = libusb_get_active_config_descriptor(dev, &config_descriptor);
int num_interfaces = config_descriptor->bNumInterfaces;
log_info("active configuration has %u interfaces", num_interfaces);
int i;
for (i = 0; i < num_interfaces ; i++){
const struct libusb_interface *interface = &config_descriptor->interface[i];
const struct libusb_interface_descriptor * interface_descriptor = interface->altsetting;
log_info("interface %u: %u endpoints", i, interface_descriptor->bNumEndpoints);
const struct libusb_endpoint_descriptor *endpoint = interface_descriptor->endpoint;
for (r=0;r<interface_descriptor->bNumEndpoints;r++,endpoint++){
log_info("- endpoint %x, attributes %x", endpoint->bEndpointAddress, endpoint->bmAttributes);
switch (endpoint->bmAttributes & 0x3){
case LIBUSB_TRANSFER_TYPE_INTERRUPT:
2015-02-13 15:34:43 +00:00
if (event_in_addr) continue;
event_in_addr = endpoint->bEndpointAddress;
log_info("-> using 0x%2.2X for HCI Events", event_in_addr);
break;
case LIBUSB_TRANSFER_TYPE_BULK:
if (endpoint->bEndpointAddress & 0x80) {
2015-02-13 15:34:43 +00:00
if (acl_in_addr) continue;
acl_in_addr = endpoint->bEndpointAddress;
log_info("-> using 0x%2.2X for ACL Data In", acl_in_addr);
} else {
2015-02-13 15:34:43 +00:00
if (acl_out_addr) continue;
acl_out_addr = endpoint->bEndpointAddress;
log_info("-> using 0x%2.2X for ACL Data Out", acl_out_addr);
}
break;
case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
if (endpoint->bEndpointAddress & 0x80) {
2015-02-13 15:34:43 +00:00
if (sco_in_addr) continue;
sco_in_addr = endpoint->bEndpointAddress;
log_info("-> using 0x%2.2X for SCO Data In", sco_in_addr);
} else {
2015-02-13 15:34:43 +00:00
if (sco_out_addr) continue;
sco_out_addr = endpoint->bEndpointAddress;
log_info("-> using 0x%2.2X for SCO Data Out", sco_out_addr);
}
break;
default:
break;
}
}
}
libusb_free_config_descriptor(config_descriptor);
}
// returns index of found device or -1
static int scan_for_bt_device(libusb_device **devs, int start_index) {
int i;
for (i = start_index; devs[i] ; i++){
dev = devs[i];
int r = libusb_get_device_descriptor(dev, &desc);
if (r < 0) {
log_error("failed to get device descriptor");
return 0;
}
log_info("%04x:%04x (bus %d, device %d) - class %x subclass %x protocol %x ",
desc.idVendor, desc.idProduct,
libusb_get_bus_number(dev), libusb_get_device_address(dev),
desc.bDeviceClass, desc.bDeviceSubClass, desc.bDeviceProtocol);
// Detect USB Dongle based Class, Subclass, and Protocol
// The class code (bDeviceClass) is 0xE0 Wireless Controller.
// The SubClass code (bDeviceSubClass) is 0x01 RF Controller.
// The Protocol code (bDeviceProtocol) is 0x01 Bluetooth programming.
// if (desc.bDeviceClass == 0xe0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01){
if (desc.bDeviceClass == 0xE0 && desc.bDeviceSubClass == 0x01 && desc.bDeviceProtocol == 0x01) {
return i;
}
// Detect USB Dongle based on whitelist
if (is_known_bt_device(desc.idVendor, desc.idProduct)) {
return i;
}
}
return -1;
}
#endif
static int prepare_device(libusb_device_handle * aHandle){
2016-07-08 22:50:35 +02:00
// print device path
uint8_t port_numbers[USB_MAX_PATH_LEN];
2016-07-08 22:50:35 +02:00
libusb_device * device = libusb_get_device(aHandle);
int path_len = libusb_get_port_numbers(device, port_numbers, USB_MAX_PATH_LEN);
2016-07-08 22:50:35 +02:00
printf("USB Path: ");
int i;
for (i=0;i<path_len;i++){
if (i) printf("-");
printf("%02x", port_numbers[i]);
}
printf("\n");
int r;
int kernel_driver_detached = 0;
// Detach OS driver (not possible for OS X and WIN32)
#if !defined(__APPLE__) && !defined(_WIN32)
r = libusb_kernel_driver_active(aHandle, 0);
if (r < 0) {
log_error("libusb_kernel_driver_active error %d", r);
libusb_close(aHandle);
return r;
}
if (r == 1) {
r = libusb_detach_kernel_driver(aHandle, 0);
if (r < 0) {
log_error("libusb_detach_kernel_driver error %d", r);
libusb_close(aHandle);
return r;
}
kernel_driver_detached = 1;
}
log_info("libusb_detach_kernel_driver");
#endif
const int configuration = 1;
log_info("setting configuration %d...", configuration);
r = libusb_set_configuration(aHandle, configuration);
if (r < 0) {
log_error("Error libusb_set_configuration: %d", r);
if (kernel_driver_detached){
libusb_attach_kernel_driver(aHandle, 0);
}
libusb_close(aHandle);
return r;
}
// reserve access to device
log_info("claiming interface 0...");
r = libusb_claim_interface(aHandle, 0);
if (r < 0) {
log_error("Error claiming interface %d", r);
if (kernel_driver_detached){
libusb_attach_kernel_driver(aHandle, 0);
}
libusb_close(aHandle);
return r;
}
#ifdef ENABLE_SCO_OVER_HCI
log_info("claiming interface 1...");
r = libusb_claim_interface(aHandle, 1);
if (r < 0) {
log_error("Error claiming interface %d", r);
if (kernel_driver_detached){
libusb_attach_kernel_driver(aHandle, 0);
}
libusb_close(aHandle);
return r;
}
#endif
return 0;
}
static libusb_device_handle * try_open_device(libusb_device * device){
int r;
libusb_device_handle * dev_handle;
r = libusb_open(device, &dev_handle);
if (r < 0) {
log_error("libusb_open failed!");
dev_handle = NULL;
return NULL;
}
log_info("libusb open %d, handle %p", r, dev_handle);
// reset device
libusb_reset_device(dev_handle);
if (r < 0) {
log_error("libusb_reset_device failed!");
libusb_close(dev_handle);
return NULL;
}
return dev_handle;
}
#ifdef ENABLE_SCO_OVER_HCI
static int usb_sco_start(void){
printf("usb_sco_start\n");
log_info("usb_sco_start");
sco_state_machine_init();
sco_ring_init();
int alt_setting;
if (sco_voice_setting & 0x0020){
// 16-bit PCM
alt_setting = alt_setting_16_bit[sco_num_connections-1];
} else {
// 8-bit PCM or mSBC
alt_setting = alt_setting_8_bit[sco_num_connections-1];
}
// derive iso packet size from alt setting
iso_packet_size = iso_packet_size_for_alt_setting[alt_setting];
log_info("Switching to setting %u on interface 1..", alt_setting);
int r = libusb_set_interface_alt_setting(handle, 1, alt_setting);
if (r < 0) {
log_error("Error setting alternative setting %u for interface 1: %s\n", alt_setting, libusb_error_name(r));
return r;
}
// incoming
int c;
for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) {
sco_in_transfer[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // isochronous transfers SCO in
if (!sco_in_transfer[c]) {
usb_close();
return LIBUSB_ERROR_NO_MEM;
}
// configure sco_in handlers
libusb_fill_iso_transfer(sco_in_transfer[c], handle, sco_in_addr,
hci_sco_in_buffer[c], NUM_ISO_PACKETS * iso_packet_size, NUM_ISO_PACKETS, async_callback, NULL, 0);
libusb_set_iso_packet_lengths(sco_in_transfer[c], iso_packet_size);
r = libusb_submit_transfer(sco_in_transfer[c]);
if (r) {
log_error("Error submitting isochronous in transfer %d", r);
usb_close();
return r;
}
}
// outgoing
for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){
sco_out_transfers[c] = libusb_alloc_transfer(NUM_ISO_PACKETS); // 1 isochronous transfers SCO out - up to 3 parts
sco_out_transfers_in_flight[c] = 0;
}
return 0;
}
static void usb_sco_stop(void){
printf("usb_sco_stop\n");
log_info("usb_sco_stop");
sco_shutdown = 1;
libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR);
int c;
for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) {
libusb_cancel_transfer(sco_in_transfer[c]);
}
for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){
if (sco_out_transfers_in_flight[c]) {
libusb_cancel_transfer(sco_out_transfers[c]);
} else {
libusb_free_transfer(sco_out_transfers[c]);
sco_out_transfers[c] = 0;
}
}
// wait until all transfers are completed
int completed = 0;
while (!completed){
struct timeval tv;
memset(&tv, 0, sizeof(struct timeval));
libusb_handle_events_timeout(NULL, &tv);
// check if all done
completed = 1;
// Cancel all synchronous transfer
for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) {
if (sco_in_transfer[c]){
completed = 0;
break;
}
}
if (!completed) continue;
for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){
if (sco_out_transfers[c]){
completed = 0;
break;
}
}
}
sco_shutdown = 0;
libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING);
log_info("Switching to setting %u on interface 1..", 0);
int r = libusb_set_interface_alt_setting(handle, 1, 0);
if (r < 0) {
log_error("Error setting alternative setting %u for interface 1: %s", 0, libusb_error_name(r));
return;
}
printf("usb_sco_stop done\n");
}
2016-01-27 15:30:31 +01:00
#endif
static int usb_open(void){
int r;
handle_packet = NULL;
// default endpoint addresses
event_in_addr = 0x81; // EP1, IN interrupt
acl_in_addr = 0x82; // EP2, IN bulk
acl_out_addr = 0x02; // EP2, OUT bulk
sco_in_addr = 0x83; // EP3, IN isochronous
sco_out_addr = 0x03; // EP3, OUT isochronous
// USB init
r = libusb_init(NULL);
if (r < 0) return -1;
libusb_state = LIB_USB_OPENED;
// configure debug level
libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING);
#ifdef HAVE_USB_VENDOR_ID_AND_PRODUCT_ID
// Use a specified device
log_info("Want vend: %04x, prod: %04x", USB_VENDOR_ID, USB_PRODUCT_ID);
handle = libusb_open_device_with_vid_pid(NULL, USB_VENDOR_ID, USB_PRODUCT_ID);
if (!handle){
log_error("libusb_open_device_with_vid_pid failed!");
2016-01-27 15:30:31 +01:00
usb_close();
return -1;
}
log_info("libusb open %d, handle %p", r, handle);
r = prepare_device(handle);
if (r < 0){
2016-01-27 15:30:31 +01:00
usb_close();
return -1;
}
#else
// Scan system for an appropriate devices
libusb_device **devs;
ssize_t num_devices;
log_info("Scanning for USB Bluetooth device");
num_devices = libusb_get_device_list(NULL, &devs);
if (num_devices < 0) {
2016-01-27 15:30:31 +01:00
usb_close();
return -1;
}
dev = NULL;
if (usb_path_len){
int i;
for (i=0;i<num_devices;i++){
uint8_t port_numbers[USB_MAX_PATH_LEN];
int len = libusb_get_port_numbers(devs[i], port_numbers, USB_MAX_PATH_LEN);
if (len != usb_path_len) continue;
if (memcmp(usb_path, port_numbers, len) == 0){
log_info("USB device found at specified path");
handle = try_open_device(devs[i]);
if (!handle) continue;
r = prepare_device(handle);
if (r < 0) continue;
dev = devs[i];
libusb_state = LIB_USB_INTERFACE_CLAIMED;
break;
};
}
if (!handle){
log_error("USB device with given path not found");
printf("USB device with given path not found\n");
return -1;
}
} else {
int deviceIndex = -1;
while (1){
// look for next Bluetooth dongle
deviceIndex = scan_for_bt_device(devs, deviceIndex+1);
if (deviceIndex < 0) break;
log_info("USB Bluetooth device found, index %u", deviceIndex);
handle = try_open_device(devs[deviceIndex]);
if (!handle) continue;
r = prepare_device(handle);
if (r < 0) continue;
dev = devs[deviceIndex];
libusb_state = LIB_USB_INTERFACE_CLAIMED;
break;
}
}
libusb_free_device_list(devs, 1);
if (handle == 0){
log_error("No USB Bluetooth device found");
return -1;
}
scan_for_bt_endpoints();
#endif
// allocate transfer handlers
int c;
for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) {
event_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers Events
if (!event_in_transfer[c]) {
usb_close();
return LIBUSB_ERROR_NO_MEM;
}
}
for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) {
acl_in_transfer[c] = libusb_alloc_transfer(0); // 0 isochronous transfers ACL in
if (!acl_in_transfer[c]) {
2016-01-27 15:30:31 +01:00
usb_close();
return LIBUSB_ERROR_NO_MEM;
}
}
2013-03-06 13:24:04 +00:00
command_out_transfer = libusb_alloc_transfer(0);
acl_out_transfer = libusb_alloc_transfer(0);
2013-03-06 13:24:04 +00:00
// TODO check for error
libusb_state = LIB_USB_TRANSFERS_ALLOCATED;
for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) {
// configure event_in handlers
libusb_fill_interrupt_transfer(event_in_transfer[c], handle, event_in_addr,
hci_event_in_buffer[c], HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ;
r = libusb_submit_transfer(event_in_transfer[c]);
if (r) {
log_error("Error submitting interrupt transfer %d", r);
2016-01-27 15:30:31 +01:00
usb_close();
return r;
}
}
for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) {
// configure acl_in handlers
libusb_fill_bulk_transfer(acl_in_transfer[c], handle, acl_in_addr,
hci_acl_in_buffer[c] + HCI_INCOMING_PRE_BUFFER_SIZE, HCI_ACL_BUFFER_SIZE, async_callback, NULL, 0) ;
r = libusb_submit_transfer(acl_in_transfer[c]);
if (r) {
log_error("Error submitting bulk in transfer %d", r);
2016-01-27 15:30:31 +01:00
usb_close();
return r;
}
}
// Check for pollfds functionality
doing_pollfds = libusb_pollfds_handle_timeouts(NULL);
// NOTE: using pollfds doesn't work on Linux, so it is disable until further investigation here
doing_pollfds = 0;
if (doing_pollfds) {
log_info("Async using pollfds:");
const struct libusb_pollfd ** pollfd = libusb_get_pollfds(NULL);
for (num_pollfds = 0 ; pollfd[num_pollfds] ; num_pollfds++);
2017-05-23 11:50:08 +02:00
pollfd_data_sources = (btstack_data_source_t *)malloc(sizeof(btstack_data_source_t) * num_pollfds);
if (!pollfd_data_sources){
log_error("Cannot allocate data sources for pollfds");
2016-01-27 15:30:31 +01:00
usb_close();
return 1;
}
for (r = 0 ; r < num_pollfds ; r++) {
btstack_data_source_t *ds = &pollfd_data_sources[r];
btstack_run_loop_set_data_source_fd(ds, pollfd[r]->fd);
2016-03-24 19:36:55 +01:00
btstack_run_loop_set_data_source_handler(ds, &usb_process_ds);
btstack_run_loop_enable_data_source_callbacks(ds, DATA_SOURCE_CALLBACK_READ);
btstack_run_loop_add_data_source(ds);
log_info("%u: %p fd: %u, events %x", r, pollfd[r], pollfd[r]->fd, pollfd[r]->events);
}
free(pollfd);
} else {
log_info("Async using timers:");
usb_timer.process = usb_process_ts;
btstack_run_loop_set_timer(&usb_timer, ASYNC_POLLING_INTERVAL_MS);
btstack_run_loop_add_timer(&usb_timer);
usb_timer_active = 1;
}
return 0;
}
2016-01-27 15:30:31 +01:00
static int usb_close(void){
int c;
2017-05-23 11:50:08 +02:00
int completed = 0;
switch (libusb_state){
2011-10-08 16:58:36 +00:00
case LIB_USB_CLOSED:
break;
case LIB_USB_TRANSFERS_ALLOCATED:
libusb_state = LIB_USB_INTERFACE_CLAIMED;
if(usb_timer_active) {
btstack_run_loop_remove_timer(&usb_timer);
usb_timer_active = 0;
}
if (doing_pollfds){
int r;
for (r = 0 ; r < num_pollfds ; r++) {
btstack_data_source_t *ds = &pollfd_data_sources[r];
btstack_run_loop_remove_data_source(ds);
}
free(pollfd_data_sources);
pollfd_data_sources = NULL;
num_pollfds = 0;
doing_pollfds = 0;
}
case LIB_USB_INTERFACE_CLAIMED:
// Cancel all transfers, ignore warnings for this
libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_ERROR);
for (c = 0 ; c < EVENT_IN_BUFFER_COUNT ; c++) {
libusb_cancel_transfer(event_in_transfer[c]);
}
for (c = 0 ; c < ACL_IN_BUFFER_COUNT ; c++) {
libusb_cancel_transfer(acl_in_transfer[c]);
}
#ifdef ENABLE_SCO_OVER_HCI
for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) {
libusb_cancel_transfer(sco_in_transfer[c]);
}
for (c = 0; c < SCO_OUT_BUFFER_COUNT ; c++){
if (sco_out_transfers_in_flight[c]) {
libusb_cancel_transfer(sco_out_transfers[c]);
} else {
libusb_free_transfer(sco_out_transfers[c]);
sco_out_transfers[c] = 0;
}
}
#endif
libusb_set_debug(NULL, LIBUSB_LOG_LEVEL_WARNING);
// wait until all transfers are completed
while (!completed){
struct timeval tv;
memset(&tv, 0, sizeof(struct timeval));
libusb_handle_events_timeout(NULL, &tv);
// check if all done
completed = 1;
for (c=0;c<EVENT_IN_BUFFER_COUNT;c++){
if (event_in_transfer[c]) {
completed = 0;
break;
}
}
if (!completed) continue;
for (c=0;c<ACL_IN_BUFFER_COUNT;c++){
if (acl_in_transfer[c]) {
completed = 0;
break;
}
}
#ifdef ENABLE_SCO_OVER_HCI
if (!completed) continue;
// Cancel all synchronous transfer
for (c = 0 ; c < SCO_IN_BUFFER_COUNT ; c++) {
if (sco_in_transfer[c]){
completed = 0;
break;
}
}
if (!completed) continue;
for (c=0; c < SCO_OUT_BUFFER_COUNT ; c++){
if (sco_out_transfers[c]){
completed = 0;
break;
}
}
#endif
}
// finally release interface
libusb_release_interface(handle, 0);
#ifdef ENABLE_SCO_OVER_HCI
libusb_release_interface(handle, 1);
#endif
log_info("Libusb shutdown complete");
case LIB_USB_DEVICE_OPENDED:
libusb_close(handle);
case LIB_USB_OPENED:
libusb_exit(NULL);
}
libusb_state = LIB_USB_CLOSED;
handle = NULL;
return 0;
}
static int usb_send_cmd_packet(uint8_t *packet, int size){
int r;
2009-07-06 21:40:30 +00:00
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
2013-03-06 18:06:22 +00:00
// async
libusb_fill_control_setup(hci_cmd_buffer, LIBUSB_REQUEST_TYPE_CLASS | LIBUSB_RECIPIENT_INTERFACE, 0, 0, 0, size);
memcpy(hci_cmd_buffer + LIBUSB_CONTROL_SETUP_SIZE, packet, size);
2013-03-06 18:06:22 +00:00
// prepare transfer
2013-03-06 18:06:22 +00:00
int completed = 0;
libusb_fill_control_transfer(command_out_transfer, handle, hci_cmd_buffer, async_callback, &completed, 0);
2013-03-06 18:06:22 +00:00
command_out_transfer->flags = LIBUSB_TRANSFER_FREE_BUFFER;
// update stata before submitting transfer
usb_command_active = 1;
// submit transfer
2013-03-06 18:06:22 +00:00
r = libusb_submit_transfer(command_out_transfer);
if (r < 0) {
usb_command_active = 0;
log_error("Error submitting cmd transfer %d", r);
2013-03-06 18:06:22 +00:00
return -1;
}
2013-03-06 17:47:50 +00:00
return 0;
}
2009-07-06 21:40:30 +00:00
static int usb_send_acl_packet(uint8_t *packet, int size){
2013-03-06 17:47:50 +00:00
int r;
2013-03-06 13:24:04 +00:00
if (libusb_state != LIB_USB_TRANSFERS_ALLOCATED) return -1;
2013-03-06 13:24:04 +00:00
2013-03-06 17:47:50 +00:00
// log_info("usb_send_acl_packet enter, size %u", size);
// prepare transfer
2013-03-06 13:24:04 +00:00
int completed = 0;
libusb_fill_bulk_transfer(acl_out_transfer, handle, acl_out_addr, packet, size,
2013-03-06 13:24:04 +00:00
async_callback, &completed, 0);
acl_out_transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
2013-03-06 13:24:04 +00:00
// update stata before submitting transfer
usb_acl_out_active = 1;
r = libusb_submit_transfer(acl_out_transfer);
2013-03-06 13:24:04 +00:00
if (r < 0) {
usb_acl_out_active = 0;
log_error("Error submitting acl transfer, %d", r);
2013-03-06 17:47:50 +00:00
return -1;
2009-10-18 21:06:57 +00:00
}
return 0;
}
2009-07-06 21:40:30 +00:00
2013-03-06 18:06:22 +00:00
static int usb_can_send_packet_now(uint8_t packet_type){
switch (packet_type){
case HCI_COMMAND_DATA_PACKET:
return !usb_command_active;
case HCI_ACL_DATA_PACKET:
return !usb_acl_out_active;
#ifdef ENABLE_SCO_OVER_HCI
case HCI_SCO_DATA_PACKET:
return sco_ring_have_space();
2016-01-27 15:30:31 +01:00
#endif
2013-03-06 18:06:22 +00:00
default:
return 0;
}
}
2010-09-21 17:18:50 +00:00
static int usb_send_packet(uint8_t packet_type, uint8_t * packet, int size){
switch (packet_type){
case HCI_COMMAND_DATA_PACKET:
return usb_send_cmd_packet(packet, size);
case HCI_ACL_DATA_PACKET:
return usb_send_acl_packet(packet, size);
#ifdef ENABLE_SCO_OVER_HCI
case HCI_SCO_DATA_PACKET:
return usb_send_sco_packet(packet, size);
2016-01-27 15:30:31 +01:00
#endif
default:
return -1;
}
}
#ifdef ENABLE_SCO_OVER_HCI
static void usb_set_sco_config(uint16_t voice_setting, int num_connections){
log_info("usb_set_sco_config: voice settings 0x%04x, num connections %u", voice_setting, num_connections);
if (num_connections != sco_num_connections){
sco_voice_setting = voice_setting;
if (sco_num_connections){
usb_sco_stop();
}
sco_num_connections = num_connections;
if (num_connections){
usb_sco_start();
}
}
}
#endif
2010-09-21 17:18:50 +00:00
static void usb_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){
log_info("registering packet handler");
2010-09-21 17:18:50 +00:00
packet_handler = handler;
}
2010-09-21 17:18:50 +00:00
static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){
2016-12-22 22:16:16 +01:00
UNUSED(packet_type);
UNUSED(packet);
UNUSED(size);
}
// get usb singleton
2016-03-28 11:44:30 +02:00
const hci_transport_t * hci_transport_usb_instance(void) {
if (!hci_transport_usb) {
2013-05-21 12:40:09 +00:00
hci_transport_usb = (hci_transport_t*) malloc( sizeof(hci_transport_t));
2016-01-27 15:30:31 +01:00
memset(hci_transport_usb, 0, sizeof(hci_transport_t));
hci_transport_usb->name = "H2_LIBUSB";
hci_transport_usb->open = usb_open;
hci_transport_usb->close = usb_close;
2010-09-21 17:18:50 +00:00
hci_transport_usb->register_packet_handler = usb_register_packet_handler;
2013-03-06 13:24:04 +00:00
hci_transport_usb->can_send_packet_now = usb_can_send_packet_now;
2016-01-27 15:30:31 +01:00
hci_transport_usb->send_packet = usb_send_packet;
#ifdef ENABLE_SCO_OVER_HCI
hci_transport_usb->set_sco_config = usb_set_sco_config;
#endif
}
return hci_transport_usb;
2011-10-08 16:58:36 +00:00
}