1292 lines
35 KiB
C
Raw Normal View History

2017-04-07 10:10:26 +02:00
///////////////////////////////////////////////////////////////////////////////////
//-------------------------------------------------------------------------------//
//-------------------------------------------------------------------------------//
//-----------H----H--X----X-----CCCCC----22222----0000-----0000------11----------//
//----------H----H----X-X-----C--------------2---0----0---0----0--1--1-----------//
//---------HHHHHH-----X------C----------22222---0----0---0----0-----1------------//
//--------H----H----X--X----C----------2-------0----0---0----0-----1-------------//
//-------H----H---X-----X---CCCCC-----222222----0000-----0000----1111------------//
//-------------------------------------------------------------------------------//
//----------------------------------------------------- http://hxc2001.free.fr --//
///////////////////////////////////////////////////////////////////////////////////
// File : hxcmod.c
// Contains: a tiny mod player
//
// Written by: Jean Fran<61>ois DEL NERO
//
// You are free to do what you want with this code.
// A credit is always appreciated if you include it into your prod :)
//
// This file include some parts of the Noisetracker/Soundtracker/Protracker
// Module Format documentation written by Andrew Scott (Adrenalin Software)
// (modformat.txt)
//
// The core (hxcmod.c/hxcmod.h) is designed to have the least external dependency.
// So it should be usable on almost all OS and systems.
// Please also note that no dynamic allocation is done into the HxCMOD core.
//
// Change History (most recent first):
///////////////////////////////////////////////////////////////////////////////////
// HxCMOD Core API:
// -------------------------------------------
// int hxcmod_init(modcontext * modctx)
//
// - Initialize the modcontext buffer. Must be called before doing anything else.
// Return 1 if success. 0 in case of error.
// -------------------------------------------
// int hxcmod_load( modcontext * modctx, void * mod_data, int mod_data_size )
//
// - "Load" a MOD from memory (from "mod_data" with size "mod_data_size").
// Return 1 if success. 0 in case of error.
// -------------------------------------------
// void hxcmod_fillbuffer( modcontext * modctx, unsigned short * outbuffer, unsigned long nbsample, tracker_buffer_state * trkbuf )
//
// - Generate and return the next samples chunk to outbuffer.
// nbsample specify the number of stereo 16bits samples you want.
// The output format is signed 44100Hz 16-bit Stereo PCM samples.
// The output buffer size in byte must be equal to ( nbsample * 2 * 2 ).
// The optional trkbuf parameter can be used to get detailed status of the player. Put NULL/0 is unused.
// -------------------------------------------
// void hxcmod_unload( modcontext * modctx )
// - "Unload" / clear the player status.
// -------------------------------------------
///////////////////////////////////////////////////////////////////////////////////
#include "hxcmod.h"
///////////////////////////////////////////////////////////////////////////////////
// Effects list
#define EFFECT_ARPEGGIO 0x0 // Supported
#define EFFECT_PORTAMENTO_UP 0x1 // Supported
#define EFFECT_PORTAMENTO_DOWN 0x2 // Supported
#define EFFECT_TONE_PORTAMENTO 0x3 // Supported
#define EFFECT_VIBRATO 0x4 // Supported
#define EFFECT_VOLSLIDE_TONEPORTA 0x5 // Supported
#define EFFECT_VOLSLIDE_VIBRATO 0x6 // Supported
#define EFFECT_VOLSLIDE_TREMOLO 0x7 // - TO BE DONE -
#define EFFECT_SET_PANNING 0x8 // - TO BE DONE -
#define EFFECT_SET_OFFSET 0x9 // Supported
#define EFFECT_VOLUME_SLIDE 0xA // Supported
#define EFFECT_JUMP_POSITION 0xB // Supported
#define EFFECT_SET_VOLUME 0xC // Supported
#define EFFECT_PATTERN_BREAK 0xD // Supported
#define EFFECT_EXTENDED 0xE
#define EFFECT_E_FINE_PORTA_UP 0x1 // Supported
#define EFFECT_E_FINE_PORTA_DOWN 0x2 // Supported
#define EFFECT_E_GLISSANDO_CTRL 0x3 // - TO BE DONE -
#define EFFECT_E_VIBRATO_WAVEFORM 0x4 // - TO BE DONE -
#define EFFECT_E_SET_FINETUNE 0x5 // - TO BE DONE -
#define EFFECT_E_PATTERN_LOOP 0x6 // Supported
#define EFFECT_E_TREMOLO_WAVEFORM 0x7 // - TO BE DONE -
#define EFFECT_E_SET_PANNING_2 0x8 // - TO BE DONE -
#define EFFECT_E_RETRIGGER_NOTE 0x9 // - TO BE DONE -
#define EFFECT_E_FINE_VOLSLIDE_UP 0xA // Supported
#define EFFECT_E_FINE_VOLSLIDE_DOWN 0xB // Supported
#define EFFECT_E_NOTE_CUT 0xC // Supported
#define EFFECT_E_NOTE_DELAY 0xD // - TO BE DONE -
#define EFFECT_E_PATTERN_DELAY 0xE // Supported
#define EFFECT_E_INVERT_LOOP 0xF // - TO BE DONE -
#define EFFECT_SET_SPEED 0xF0 // Supported
#define EFFECT_SET_TEMPO 0xF2 // Supported
#define PERIOD_TABLE_LENGTH MAXNOTES
#define FULL_PERIOD_TABLE_LENGTH ( PERIOD_TABLE_LENGTH * 8 )
2017-05-23 11:50:08 +02:00
static void memcopy( void * dest, void *source, unsigned long size );
2017-04-07 10:10:26 +02:00
static const short periodtable[]=
{
27392, 25856, 24384, 23040, 21696, 20480, 19328, 18240, 17216, 16256, 15360, 14496,
13696, 12928, 12192, 11520, 10848, 10240, 9664, 9120, 8606, 8128, 7680, 7248,
6848, 6464, 6096, 5760, 5424, 5120, 4832, 4560, 4304, 4064, 3840, 3624,
3424, 3232, 3048, 2880, 2712, 2560, 2416, 2280, 2152, 2032, 1920, 1812,
1712, 1616, 1524, 1440, 1356, 1280, 1208, 1140, 1076, 1016, 960, 906,
856, 808, 762, 720, 678, 640, 604, 570, 538, 508, 480, 453,
428, 404, 381, 360, 339, 320, 302, 285, 269, 254, 240, 226,
214, 202, 190, 180, 170, 160, 151, 143, 135, 127, 120, 113,
107, 101, 95, 90, 85, 80, 75, 71, 67, 63, 60, 56,
53, 50, 47, 45, 42, 40, 37, 35, 33, 31, 30, 28,
27, 25, 24, 22, 21, 20, 19, 18, 17, 16, 15, 14,
13, 13, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7
};
static const short sintable[]={
0, 24, 49, 74, 97, 120, 141,161,
180, 197, 212, 224, 235, 244, 250,253,
255, 253, 250, 244, 235, 224, 212,197,
180, 161, 141, 120, 97, 74, 49, 24
};
typedef struct modtype_
{
unsigned char signature[5];
int numberofchannels;
}modtype;
modtype modlist[]=
{
{ "M!K!",4},
{ "M.K.",4},
{ "FLT4",4},
{ "FLT8",8},
{ "4CHN",4},
{ "6CHN",6},
{ "8CHN",8},
{ "10CH",10},
{ "12CH",12},
{ "14CH",14},
{ "16CH",16},
{ "18CH",18},
{ "20CH",20},
{ "22CH",22},
{ "24CH",24},
{ "26CH",26},
{ "28CH",28},
{ "30CH",30},
{ "32CH",32},
{ "",0}
};
///////////////////////////////////////////////////////////////////////////////////
static void memcopy( void * dest, void *source, unsigned long size )
{
unsigned long i;
unsigned char * d,*s;
d=(unsigned char*)dest;
s=(unsigned char*)source;
for(i=0;i<size;i++)
{
d[i]=s[i];
}
}
static void memclear( void * dest, unsigned char value, unsigned long size )
{
unsigned long i;
unsigned char * d;
d=(unsigned char*)dest;
for(i=0;i<size;i++)
{
d[i]=value;
}
}
static int memcompare( unsigned char * buf1, unsigned char * buf2, unsigned int size )
{
unsigned int i;
i = 0;
while(i<size)
{
if(buf1[i] != buf2[i])
{
return 0;
}
i++;
}
return 1;
}
static int getnote( modcontext * mod, unsigned short period, int finetune )
{
2017-04-07 10:12:36 +02:00
(void) finetune;
2017-04-07 10:10:26 +02:00
int i;
for(i = 0; i < FULL_PERIOD_TABLE_LENGTH; i++)
{
if(period >= mod->fullperiod[i])
{
return i;
}
}
return MAXNOTES;
}
static void worknote( note * nptr, hxcmod_channel * cptr,char t,modcontext * mod )
2017-04-07 10:10:26 +02:00
{
2017-04-07 10:12:36 +02:00
(void) t;
2017-05-22 12:32:53 +02:00
muint _sample, period, effect, operiod;
2017-04-07 10:10:26 +02:00
muint curnote, arpnote;
2017-05-22 12:32:53 +02:00
_sample = (nptr->sampperiod & 0xF0) | (nptr->sampeffect >> 4);
2017-04-07 10:10:26 +02:00
period = ((nptr->sampperiod & 0xF) << 8) | nptr->period;
effect = ((nptr->sampeffect & 0xF) << 8) | nptr->effect;
operiod = cptr->period;
2017-05-22 12:32:53 +02:00
if ( period || _sample )
2017-04-07 10:10:26 +02:00
{
2017-05-22 12:32:53 +02:00
if( _sample && _sample<32 )
2017-04-07 10:10:26 +02:00
{
2017-05-22 12:32:53 +02:00
cptr->sampnum = _sample - 1;
2017-04-07 10:10:26 +02:00
}
2017-05-22 12:32:53 +02:00
if( period || _sample )
2017-04-07 10:10:26 +02:00
{
cptr->sampdata = mod->sampledata[cptr->sampnum];
2017-04-07 10:10:26 +02:00
cptr->length = mod->song.samples[cptr->sampnum].length;
cptr->reppnt = mod->song.samples[cptr->sampnum].reppnt;
cptr->replen = mod->song.samples[cptr->sampnum].replen;
cptr->finetune = (mod->song.samples[cptr->sampnum].finetune)&0xF;
if(effect>>8!=4 && effect>>8!=6)
{
cptr->vibraperiod=0;
cptr->vibrapointeur=0;
}
}
2017-05-22 12:32:53 +02:00
if( (_sample != 0) && ( (effect>>8) != EFFECT_VOLSLIDE_TONEPORTA ) )
2017-04-07 10:10:26 +02:00
{
cptr->volume = mod->song.samples[cptr->sampnum].volume;
cptr->volumeslide = 0;
}
if( ( (effect>>8) != EFFECT_TONE_PORTAMENTO && (effect>>8)!=EFFECT_VOLSLIDE_TONEPORTA) )
{
if (period!=0)
cptr->samppos = 0;
}
cptr->decalperiod=0;
if( period )
{
if(cptr->finetune)
{
if( cptr->finetune <= 7 )
{
period = mod->fullperiod[getnote(mod,period,0) + cptr->finetune];
}
else
{
period = mod->fullperiod[getnote(mod,period,0) - (16 - (cptr->finetune)) ];
}
}
cptr->period = period;
}
}
cptr->effect = 0;
cptr->parameffect = 0;
cptr->effect_code = effect;
switch (effect >> 8)
{
case EFFECT_ARPEGGIO:
/*
[0]: Arpeggio
Where [0][x][y] means "play note, note+x semitones, note+y
semitones, then return to original note". The fluctuations are
carried out evenly spaced in one pattern division. They are usually
used to simulate chords, but this doesn't work too well. They are
also used to produce heavy vibrato. A major chord is when x=4, y=7.
A minor chord is when x=3, y=7.
*/
if(effect&0xff)
{
cptr->effect = EFFECT_ARPEGGIO;
cptr->parameffect = effect&0xff;
cptr->ArpIndex = 0;
curnote = getnote(mod,cptr->period,cptr->finetune);
cptr->Arpperiods[0] = cptr->period;
arpnote = curnote + (((cptr->parameffect>>4)&0xF)*8);
if( arpnote >= FULL_PERIOD_TABLE_LENGTH )
arpnote = FULL_PERIOD_TABLE_LENGTH - 1;
cptr->Arpperiods[1] = mod->fullperiod[arpnote];
arpnote = curnote + (((cptr->parameffect)&0xF)*8);
if( arpnote >= FULL_PERIOD_TABLE_LENGTH )
arpnote = FULL_PERIOD_TABLE_LENGTH - 1;
cptr->Arpperiods[2] = mod->fullperiod[arpnote];
}
break;
case EFFECT_PORTAMENTO_UP:
/*
[1]: Slide up
Where [1][x][y] means "smoothly decrease the period of current
sample by x*16+y after each tick in the division". The
ticks/division are set with the 'set speed' effect (see below). If
the period of the note being played is z, then the final period
will be z - (x*16 + y)*(ticks - 1). As the slide rate depends on
the speed, changing the speed will change the slide. You cannot
slide beyond the note B3 (period 113).
*/
cptr->effect = EFFECT_PORTAMENTO_UP;
cptr->parameffect = effect&0xff;
break;
case EFFECT_PORTAMENTO_DOWN:
/*
[2]: Slide down
Where [2][x][y] means "smoothly increase the period of current
sample by x*16+y after each tick in the division". Similar to [1],
but lowers the pitch. You cannot slide beyond the note C1 (period
856).
*/
cptr->effect = EFFECT_PORTAMENTO_DOWN;
cptr->parameffect = effect&0xff;
break;
case EFFECT_TONE_PORTAMENTO:
/*
[3]: Slide to note
Where [3][x][y] means "smoothly change the period of current sample
by x*16+y after each tick in the division, never sliding beyond
current period". The period-length in this channel's division is a
parameter to this effect, and hence is not played. Sliding to a
note is similar to effects [1] and [2], but the slide will not go
beyond the given period, and the direction is implied by that
period. If x and y are both 0, then the old slide will continue.
*/
cptr->effect = EFFECT_TONE_PORTAMENTO;
if( (effect&0xff) != 0 )
{
cptr->portaspeed = (short)(effect&0xff);
}
if(period!=0)
{
cptr->portaperiod = period;
cptr->period = operiod;
}
break;
case EFFECT_VIBRATO:
/*
[4]: Vibrato
Where [4][x][y] means "oscillate the sample pitch using a
particular waveform with amplitude y/16 semitones, such that (x *
ticks)/64 cycles occur in the division". The waveform is set using
effect [14][4]. By placing vibrato effects on consecutive
divisions, the vibrato effect can be maintained. If either x or y
are 0, then the old vibrato values will be used.
*/
cptr->effect = EFFECT_VIBRATO;
if( ( effect & 0x0F ) != 0 ) // Depth continue or change ?
cptr->vibraparam = (cptr->vibraparam & 0xF0) | ( effect & 0x0F );
if( ( effect & 0xF0 ) != 0 ) // Speed continue or change ?
cptr->vibraparam = (cptr->vibraparam & 0x0F) | ( effect & 0xF0 );
break;
case EFFECT_VOLSLIDE_TONEPORTA:
/*
[5]: Continue 'Slide to note', but also do Volume slide
Where [5][x][y] means "either slide the volume up x*(ticks - 1) or
slide the volume down y*(ticks - 1), at the same time as continuing
the last 'Slide to note'". It is illegal for both x and y to be
non-zero. You cannot slide outside the volume range 0..64. The
period-length in this channel's division is a parameter to this
effect, and hence is not played.
*/
if( period != 0 )
{
cptr->portaperiod = period;
cptr->period = operiod;
}
cptr->effect = EFFECT_VOLSLIDE_TONEPORTA;
if( ( effect & 0xFF ) != 0 )
cptr->volumeslide = ( effect & 0xFF );
break;
case EFFECT_VOLSLIDE_VIBRATO:
/*
[6]: Continue 'Vibrato', but also do Volume slide
Where [6][x][y] means "either slide the volume up x*(ticks - 1) or
slide the volume down y*(ticks - 1), at the same time as continuing
the last 'Vibrato'". It is illegal for both x and y to be non-zero.
You cannot slide outside the volume range 0..64.
*/
cptr->effect = EFFECT_VOLSLIDE_VIBRATO;
if( (effect & 0xFF) != 0 )
cptr->volumeslide = (effect & 0xFF);
break;
case EFFECT_SET_OFFSET:
/*
[9]: Set sample offset
Where [9][x][y] means "play the sample from offset x*4096 + y*256".
The offset is measured in words. If no sample is given, yet one is
still playing on this channel, it should be retriggered to the new
offset using the current volume.
*/
cptr->samppos = ((effect>>4) * 4096) + ((effect&0xF)*256);
break;
case EFFECT_VOLUME_SLIDE:
/*
[10]: Volume slide
Where [10][x][y] means "either slide the volume up x*(ticks - 1) or
slide the volume down y*(ticks - 1)". If both x and y are non-zero,
then the y value is ignored (assumed to be 0). You cannot slide
outside the volume range 0..64.
*/
cptr->effect = EFFECT_VOLUME_SLIDE;
cptr->volumeslide = (effect & 0xFF);
break;
case EFFECT_JUMP_POSITION:
/*
[11]: Position Jump
Where [11][x][y] means "stop the pattern after this division, and
continue the song at song-position x*16+y". This shifts the
'pattern-cursor' in the pattern table (see above). Legal values for
x*16+y are from 0 to 127.
*/
mod->tablepos = (effect & 0xFF);
if(mod->tablepos >= mod->song.length)
mod->tablepos = 0;
mod->patternpos = 0;
mod->jump_loop_effect = 1;
break;
case EFFECT_SET_VOLUME:
/*
[12]: Set volume
Where [12][x][y] means "set current sample's volume to x*16+y".
Legal volumes are 0..64.
*/
cptr->volume = (effect & 0xFF);
break;
case EFFECT_PATTERN_BREAK:
/*
[13]: Pattern Break
Where [13][x][y] means "stop the pattern after this division, and
continue the song at the next pattern at division x*10+y" (the 10
is not a typo). Legal divisions are from 0 to 63 (note Protracker
exception above).
*/
mod->patternpos = ( ((effect>>4)&0xF)*10 + (effect&0xF) ) * mod->number_of_channels;
mod->jump_loop_effect = 1;
mod->tablepos++;
if(mod->tablepos >= mod->song.length)
mod->tablepos = 0;
break;
case EFFECT_EXTENDED:
switch( (effect>>4) & 0xF )
{
case EFFECT_E_FINE_PORTA_UP:
/*
[14][1]: Fineslide up
Where [14][1][x] means "decrement the period of the current sample
by x". The incrementing takes place at the beginning of the
division, and hence there is no actual sliding. You cannot slide
beyond the note B3 (period 113).
*/
cptr->period -= (effect & 0xF);
if( cptr->period < 113 )
cptr->period = 113;
break;
case EFFECT_E_FINE_PORTA_DOWN:
/*
[14][2]: Fineslide down
Where [14][2][x] means "increment the period of the current sample
by x". Similar to [14][1] but shifts the pitch down. You cannot
slide beyond the note C1 (period 856).
*/
cptr->period += (effect & 0xF);
if( cptr->period > 856 )
cptr->period = 856;
break;
case EFFECT_E_FINE_VOLSLIDE_UP:
/*
[14][10]: Fine volume slide up
Where [14][10][x] means "increment the volume of the current sample
by x". The incrementing takes place at the beginning of the
division, and hence there is no sliding. You cannot slide beyond
volume 64.
*/
cptr->volume += (effect & 0xF);
if( cptr->volume>64 )
cptr->volume = 64;
break;
case EFFECT_E_FINE_VOLSLIDE_DOWN:
/*
[14][11]: Fine volume slide down
Where [14][11][x] means "decrement the volume of the current sample
by x". Similar to [14][10] but lowers volume. You cannot slide
beyond volume 0.
*/
cptr->volume -= (effect & 0xF);
if( cptr->volume > 200 )
cptr->volume = 0;
break;
case EFFECT_E_PATTERN_LOOP:
/*
[14][6]: Loop pattern
Where [14][6][x] means "set the start of a loop to this division if
x is 0, otherwise after this division, jump back to the start of a
loop and play it another x times before continuing". If the start
of the loop was not set, it will default to the start of the
current pattern. Hence 'loop pattern' cannot be performed across
multiple patterns. Note that loops do not support nesting, and you
may generate an infinite loop if you try to nest 'loop pattern's.
*/
if( effect & 0xF )
{
if( cptr->patternloopcnt )
{
cptr->patternloopcnt--;
if( cptr->patternloopcnt )
{
mod->patternpos = cptr->patternloopstartpoint;
mod->jump_loop_effect = 1;
}
else
{
cptr->patternloopstartpoint = mod->patternpos ;
}
}
else
{
cptr->patternloopcnt = (effect & 0xF);
mod->patternpos = cptr->patternloopstartpoint;
mod->jump_loop_effect = 1;
}
}
else // Start point
{
cptr->patternloopstartpoint = mod->patternpos;
}
break;
case EFFECT_E_PATTERN_DELAY:
/*
[14][14]: Delay pattern
Where [14][14][x] means "after this division there will be a delay
equivalent to the time taken to play x divisions after which the
pattern will be resumed". The delay only relates to the
interpreting of new divisions, and all effects and previous notes
continue during delay.
*/
mod->patterndelay = (effect & 0xF);
break;
case EFFECT_E_NOTE_CUT:
/*
[14][12]: Cut sample
Where [14][12][x] means "after the current sample has been played
for x ticks in this division, its volume will be set to 0". This
implies that if x is 0, then you will not hear any of the sample.
If you wish to insert "silence" in a pattern, it is better to use a
"silence"-sample (see above) due to the lack of proper support for
this effect.
*/
cptr->effect = EFFECT_E_NOTE_CUT;
cptr->cut_param = (effect & 0xF);
if(!cptr->cut_param)
cptr->volume = 0;
break;
default:
break;
}
break;
case 0xF:
/*
[15]: Set speed
Where [15][x][y] means "set speed to x*16+y". Though it is nowhere
near that simple. Let z = x*16+y. Depending on what values z takes,
different units of speed are set, there being two: ticks/division
and beats/minute (though this one is only a label and not strictly
true). If z=0, then what should technically happen is that the
module stops, but in practice it is treated as if z=1, because
there is already a method for stopping the module (running out of
patterns). If z<=32, then it means "set ticks/division to z"
otherwise it means "set beats/minute to z" (convention says that
this should read "If z<32.." but there are some composers out there
that defy conventions). Default values are 6 ticks/division, and
125 beats/minute (4 divisions = 1 beat). The beats/minute tag is
only meaningful for 6 ticks/division. To get a more accurate view
of how things work, use the following formula:
24 * beats/minute
divisions/minute = -----------------
ticks/division
Hence divisions/minute range from 24.75 to 6120, eg. to get a value
of 2000 divisions/minute use 3 ticks/division and 250 beats/minute.
If multiple "set speed" effects are performed in a single division,
the ones on higher-numbered channels take precedence over the ones
on lower-numbered channels. This effect has a large number of
different implementations, but the one described here has the
widest usage.
*/
if( (effect&0xFF) < 0x21 )
{
if( effect&0xFF )
{
mod->song.speed = effect&0xFF;
mod->patternticksaim = (long)mod->song.speed * ((mod->playrate * 5 ) / (((long)2 * (long)mod->bpm)));
}
}
if( (effect&0xFF) >= 0x21 )
{
/// HZ = 2 * BPM / 5
mod->bpm = effect&0xFF;
mod->patternticksaim = (long)mod->song.speed * ((mod->playrate * 5 ) / (((long)2 * (long)mod->bpm)));
}
break;
default:
// Unsupported effect
break;
}
}
static void workeffect( note * nptr, hxcmod_channel * cptr )
2017-04-07 10:10:26 +02:00
{
2017-04-07 10:12:36 +02:00
(void) nptr;
2017-04-07 10:10:26 +02:00
switch(cptr->effect)
{
case EFFECT_ARPEGGIO:
if( cptr->parameffect )
{
cptr->decalperiod = cptr->period - cptr->Arpperiods[cptr->ArpIndex];
cptr->ArpIndex++;
if( cptr->ArpIndex>2 )
cptr->ArpIndex = 0;
}
break;
case EFFECT_PORTAMENTO_UP:
if(cptr->period)
{
cptr->period -= cptr->parameffect;
if( cptr->period < 113 || cptr->period > 20000 )
cptr->period = 113;
}
break;
case EFFECT_PORTAMENTO_DOWN:
if(cptr->period)
{
cptr->period += cptr->parameffect;
if( cptr->period > 20000 )
cptr->period = 20000;
}
break;
case EFFECT_VOLSLIDE_TONEPORTA:
case EFFECT_TONE_PORTAMENTO:
if( cptr->period && ( cptr->period != cptr->portaperiod ) && cptr->portaperiod )
{
if( cptr->period > cptr->portaperiod )
{
if( cptr->period - cptr->portaperiod >= cptr->portaspeed )
{
cptr->period -= cptr->portaspeed;
}
else
{
cptr->period = cptr->portaperiod;
}
}
else
{
if( cptr->portaperiod - cptr->period >= cptr->portaspeed )
{
cptr->period += cptr->portaspeed;
}
else
{
cptr->period = cptr->portaperiod;
}
}
if( cptr->period == cptr->portaperiod )
{
// If the slide is over, don't let it to be retriggered.
cptr->portaperiod = 0;
}
}
if( cptr->effect == EFFECT_VOLSLIDE_TONEPORTA )
{
if( cptr->volumeslide > 0x0F )
{
cptr->volume = cptr->volume + (cptr->volumeslide>>4);
if(cptr->volume>63)
cptr->volume = 63;
}
else
{
cptr->volume = cptr->volume - (cptr->volumeslide);
if(cptr->volume>63)
cptr->volume=0;
}
}
break;
case EFFECT_VOLSLIDE_VIBRATO:
case EFFECT_VIBRATO:
cptr->vibraperiod = ( (cptr->vibraparam&0xF) * sintable[cptr->vibrapointeur&0x1F] )>>7;
if( cptr->vibrapointeur > 31 )
cptr->vibraperiod = -cptr->vibraperiod;
cptr->vibrapointeur = (cptr->vibrapointeur+(((cptr->vibraparam>>4))&0xf)) & 0x3F;
if( cptr->effect == EFFECT_VOLSLIDE_VIBRATO )
{
if( cptr->volumeslide > 0xF )
{
cptr->volume = cptr->volume+(cptr->volumeslide>>4);
if( cptr->volume > 64 )
cptr->volume = 64;
}
else
{
cptr->volume = cptr->volume - cptr->volumeslide;
if( cptr->volume > 64 )
cptr->volume = 0;
}
}
break;
case EFFECT_VOLUME_SLIDE:
if( cptr->volumeslide > 0xF )
{
cptr->volume += (cptr->volumeslide>>4);
if( cptr->volume > 64 )
cptr->volume = 64;
}
else
{
cptr->volume -= (cptr->volumeslide&0xf);
if( cptr->volume > 64 )
cptr->volume = 0;
}
break;
case EFFECT_E_NOTE_CUT:
if(cptr->cut_param)
cptr->cut_param--;
if(!cptr->cut_param)
cptr->volume = 0;
break;
default:
break;
}
}
///////////////////////////////////////////////////////////////////////////////////
int hxcmod_init(modcontext * modctx)
{
muint i,j;
if( modctx )
{
memclear(modctx,0,sizeof(modcontext));
modctx->playrate = 44100;
modctx->stereo = 1;
modctx->stereo_separation = 1;
modctx->bits = 16;
modctx->filter = 1;
for(i=0;i<PERIOD_TABLE_LENGTH - 1;i++)
{
for(j=0;j<8;j++)
{
modctx->fullperiod[(i*8) + j] = periodtable[i] - ((( periodtable[i] - periodtable[i+1] ) / 8) * j);
}
}
return 1;
}
return 0;
}
int hxcmod_setcfg(modcontext * modctx, int samplerate, int bits, int stereo, int stereo_separation, int filter)
{
if( modctx )
{
modctx->playrate = samplerate;
if( stereo )
modctx->stereo = 1;
else
modctx->stereo = 0;
if(stereo_separation < 4)
{
modctx->stereo_separation = stereo_separation;
}
if( bits == 8 || bits == 16 )
{
modctx->bits = bits;
}
if( filter )
modctx->filter = 1;
else
modctx->filter = 0;
return 1;
}
return 0;
}
int hxcmod_load( modcontext * modctx, void * mod_data, int mod_data_size )
{
muint i, max;
unsigned short t;
sample *sptr;
unsigned char * modmemory,* endmodmemory;
modmemory = (unsigned char *)mod_data;
endmodmemory = modmemory + mod_data_size;
if(modmemory)
{
if( modctx )
{
memcopy(&(modctx->song.title),modmemory,1084);
i = 0;
modctx->number_of_channels = 0;
while(modlist[i].numberofchannels)
{
if(memcompare(modctx->song.signature,modlist[i].signature,4))
{
modctx->number_of_channels = modlist[i].numberofchannels;
}
i++;
}
if( !modctx->number_of_channels )
{
// 15 Samples modules support
// Shift the whole datas to make it look likes a standard 4 channels mod.
2017-05-23 11:50:08 +02:00
memcopy(&(modctx->song.signature), (void*)"M.K.", 4);
2017-04-07 10:10:26 +02:00
memcopy(&(modctx->song.length), &(modctx->song.samples[15]), 130);
memclear(&(modctx->song.samples[15]), 0, 480);
modmemory += 600;
modctx->number_of_channels = 4;
}
else
{
modmemory += 1084;
}
if( modmemory >= endmodmemory )
return 0; // End passed ? - Probably a bad file !
// Patterns loading
for (i = max = 0; i < 128; i++)
{
while (max <= modctx->song.patterntable[i])
{
modctx->patterndata[max] = (note*)modmemory;
modmemory += (256*modctx->number_of_channels);
max++;
if( modmemory >= endmodmemory )
return 0; // End passed ? - Probably a bad file !
}
}
for (i = 0; i < 31; i++)
modctx->sampledata[i]=0;
// Samples loading
for (i = 0, sptr = modctx->song.samples; i <31; i++, sptr++)
{
t= (sptr->length &0xFF00)>>8 | (sptr->length &0xFF)<<8;
sptr->length = t*2;
t= (sptr->reppnt &0xFF00)>>8 | (sptr->reppnt &0xFF)<<8;
sptr->reppnt = t*2;
t= (sptr->replen &0xFF00)>>8 | (sptr->replen &0xFF)<<8;
sptr->replen = t*2;
if (sptr->length == 0) continue;
modctx->sampledata[i] = (mchar*)modmemory;
2017-04-07 10:10:26 +02:00
modmemory += sptr->length;
if (sptr->replen + sptr->reppnt > sptr->length)
sptr->replen = sptr->length - sptr->reppnt;
if( modmemory > endmodmemory )
return 0; // End passed ? - Probably a bad file !
}
// States init
modctx->tablepos = 0;
modctx->patternpos = 0;
modctx->song.speed = 6;
modctx->bpm = 125;
modctx->samplenb = 0;
modctx->patternticks = (((long)modctx->song.speed * modctx->playrate * 5)/ (2 * modctx->bpm)) + 1;
modctx->patternticksaim = ((long)modctx->song.speed * modctx->playrate * 5) / (2 * modctx->bpm);
modctx->sampleticksconst = 3546894UL / modctx->playrate; //8448*428/playrate;
for(i=0; i < modctx->number_of_channels; i++)
{
modctx->channels[i].volume = 0;
modctx->channels[i].period = 0;
}
modctx->mod_loaded = 1;
return 1;
}
}
return 0;
}
void hxcmod_fillbuffer( modcontext * modctx, unsigned short * outbuffer, unsigned long nbsample, tracker_buffer_state * trkbuf )
{
unsigned long i, j;
unsigned long k;
unsigned char c;
unsigned int state_remaining_steps;
int l,r;
int ll,lr;
int tl,tr;
short finalperiod;
note *nptr;
hxcmod_channel *cptr;
2017-04-07 10:10:26 +02:00
if( modctx && outbuffer )
{
if(modctx->mod_loaded)
{
state_remaining_steps = 0;
if( trkbuf )
{
trkbuf->cur_rd_index = 0;
memcopy(trkbuf->name,modctx->song.title,sizeof(modctx->song.title));
for(i=0;i<31;i++)
{
memcopy(trkbuf->instruments[i].name,modctx->song.samples[i].name,sizeof(trkbuf->instruments[i].name));
}
}
ll = modctx->last_l_sample;
lr = modctx->last_r_sample;
for (i = 0; i < nbsample; i++)
{
//---------------------------------------
if( modctx->patternticks++ > modctx->patternticksaim )
{
if( !modctx->patterndelay )
{
nptr = modctx->patterndata[modctx->song.patterntable[modctx->tablepos]];
nptr = nptr + modctx->patternpos;
cptr = modctx->channels;
modctx->patternticks = 0;
modctx->patterntickse = 0;
for(c=0;c<modctx->number_of_channels;c++)
{
worknote((note*)(nptr+c), (hxcmod_channel*)(cptr+c),(char)(c+1),modctx);
2017-04-07 10:10:26 +02:00
}
if( !modctx->jump_loop_effect )
modctx->patternpos += modctx->number_of_channels;
else
modctx->jump_loop_effect = 0;
if( modctx->patternpos == 64*modctx->number_of_channels )
{
modctx->tablepos++;
modctx->patternpos = 0;
if(modctx->tablepos >= modctx->song.length)
modctx->tablepos = 0;
}
}
else
{
modctx->patterndelay--;
modctx->patternticks = 0;
modctx->patterntickse = 0;
}
}
if( modctx->patterntickse++ > (modctx->patternticksaim/modctx->song.speed) )
{
nptr = modctx->patterndata[modctx->song.patterntable[modctx->tablepos]];
nptr = nptr + modctx->patternpos;
cptr = modctx->channels;
for(c=0;c<modctx->number_of_channels;c++)
{
workeffect(nptr+c, cptr+c);
}
modctx->patterntickse = 0;
}
//---------------------------------------
if( trkbuf && !state_remaining_steps )
{
if( trkbuf->nb_of_state < trkbuf->nb_max_of_state )
{
memclear(&trkbuf->track_state_buf[trkbuf->nb_of_state],0,sizeof(tracker_state));
}
}
l=0;
r=0;
for(j =0, cptr = modctx->channels; j < modctx->number_of_channels ; j++, cptr++)
{
if( cptr->period != 0 )
{
finalperiod = cptr->period - cptr->decalperiod - cptr->vibraperiod;
if( finalperiod )
{
cptr->samppos += ( (modctx->sampleticksconst<<10) / finalperiod );
}
cptr->ticks++;
if( cptr->replen<=2 )
{
if( (cptr->samppos>>10) >= (cptr->length) )
{
cptr->length = 0;
cptr->reppnt = 0;
if( cptr->length )
cptr->samppos = cptr->samppos % (((unsigned long)cptr->length)<<10);
else
cptr->samppos = 0;
}
}
else
{
if( (cptr->samppos>>10) >= (unsigned long)(cptr->replen+cptr->reppnt) )
{
cptr->samppos = ((unsigned long)(cptr->reppnt)<<10) + (cptr->samppos % ((unsigned long)(cptr->replen+cptr->reppnt)<<10));
}
}
k = cptr->samppos >> 10;
if( cptr->sampdata!=0 && ( ((j&3)==1) || ((j&3)==2) ) )
{
r += ( cptr->sampdata[k] * cptr->volume );
}
if( cptr->sampdata!=0 && ( ((j&3)==0) || ((j&3)==3) ) )
{
l += ( cptr->sampdata[k] * cptr->volume );
}
if( trkbuf && !state_remaining_steps )
{
if( trkbuf->nb_of_state < trkbuf->nb_max_of_state )
{
trkbuf->track_state_buf[trkbuf->nb_of_state].number_of_tracks = modctx->number_of_channels;
trkbuf->track_state_buf[trkbuf->nb_of_state].buf_index = i;
trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern = modctx->song.patterntable[modctx->tablepos];
trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern_pos = modctx->patternpos / modctx->number_of_channels;
trkbuf->track_state_buf[trkbuf->nb_of_state].cur_pattern_table_pos = modctx->tablepos;
trkbuf->track_state_buf[trkbuf->nb_of_state].bpm = modctx->bpm;
trkbuf->track_state_buf[trkbuf->nb_of_state].speed = modctx->song.speed;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_effect = cptr->effect_code;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_parameffect = cptr->parameffect;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_period = finalperiod;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].cur_volume = cptr->volume;
trkbuf->track_state_buf[trkbuf->nb_of_state].tracks[j].instrument_number = (unsigned char)cptr->sampnum;
}
}
}
}
if( trkbuf && !state_remaining_steps )
{
state_remaining_steps = trkbuf->sample_step;
if(trkbuf->nb_of_state < trkbuf->nb_max_of_state)
trkbuf->nb_of_state++;
}
else
{
state_remaining_steps--;
}
tl = (short)l;
tr = (short)r;
if ( modctx->filter )
{
// Filter
l = (l+ll)>>1;
r = (r+lr)>>1;
}
if ( modctx->stereo_separation == 1 )
{
// Left & Right Stereo panning
l = (l+(r>>1));
r = (r+(l>>1));
}
// Level limitation
if( l > 32767 ) l = 32767;
if( l < -32768 ) l = -32768;
if( r > 32767 ) r = 32767;
if( r < -32768 ) r = -32768;
// Store the final sample.
outbuffer[(i*2)] = l;
outbuffer[(i*2)+1] = r;
ll = tl;
lr = tr;
}
modctx->last_l_sample = ll;
modctx->last_r_sample = lr;
modctx->samplenb = modctx->samplenb+nbsample;
}
else
{
for (i = 0; i < nbsample; i++)
{
// Mod not loaded. Return blank buffer.
outbuffer[(i*2)] = 0;
outbuffer[(i*2)+1] = 0;
}
if(trkbuf)
{
trkbuf->nb_of_state = 0;
trkbuf->cur_rd_index = 0;
trkbuf->name[0] = 0;
memclear(trkbuf->track_state_buf,0,sizeof(tracker_state) * trkbuf->nb_max_of_state);
memclear(trkbuf->instruments,0,sizeof(trkbuf->instruments));
}
}
}
}
void hxcmod_unload( modcontext * modctx )
{
if(modctx)
{
memclear(&modctx->song,0,sizeof(modctx->song));
memclear(&modctx->sampledata,0,sizeof(modctx->sampledata));
memclear(&modctx->patterndata,0,sizeof(modctx->patterndata));
modctx->tablepos = 0;
modctx->patternpos = 0;
modctx->patterndelay = 0;
modctx->jump_loop_effect = 0;
modctx->bpm = 0;
modctx->patternticks = 0;
modctx->patterntickse = 0;
modctx->patternticksaim = 0;
modctx->sampleticksconst = 0;
modctx->samplenb = 0;
memclear(modctx->channels,0,sizeof(modctx->channels));
modctx->number_of_channels = 0;
modctx->mod_loaded = 0;
modctx->last_r_sample = 0;
modctx->last_l_sample = 0;
}
}