1713 lines
64 KiB
C
Raw Normal View History

2014-01-05 19:21:33 +00:00
/*
* Copyright (C) 2011-2012 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at contact@bluekitchen-gmbh.com
*
*/
#include <stdio.h>
#include <strings.h>
#include "debug.h"
#include "hci.h"
#include "l2cap.h"
#include "central_device_db.h"
2014-01-05 20:13:37 +00:00
#include "sm.h"
#include "gap_le.h"
2014-01-05 19:21:33 +00:00
//
// SM internal types and globals
//
typedef enum {
SM_STATE_IDLE,
SM_STATE_SEND_SECURITY_REQUEST,
SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY,
// Phase 1: Pairing Feature Exchange
SM_STATE_PH1_SEND_PAIRING_RESPONSE,
SM_STATE_PH1_W4_PAIRING_CONFIRM,
SM_STATE_PH1_W4_USER_RESPONSE,
SM_STATE_SEND_PAIRING_FAILED,
SM_STATE_SEND_PAIRING_RANDOM,
// Phase 2: Authenticating and Encrypting
// get random number for TK if we show it
SM_STATE_PH2_GET_RANDOM_TK,
SM_STATE_PH2_W4_RANDOM_TK,
// calculate confirm values for local and remote connection
SM_STATE_PH2_C1_GET_RANDOM_A,
SM_STATE_PH2_C1_W4_RANDOM_A,
SM_STATE_PH2_C1_GET_RANDOM_B,
SM_STATE_PH2_C1_W4_RANDOM_B,
SM_STATE_PH2_C1_GET_ENC_A,
SM_STATE_PH2_C1_W4_ENC_A,
SM_STATE_PH2_C1_GET_ENC_B,
SM_STATE_PH2_C1_W4_ENC_B,
SM_STATE_PH2_C1_SEND_PAIRING_CONFIRM,
SM_STATE_PH2_W4_PAIRING_RANDOM,
SM_STATE_PH2_C1_GET_ENC_C,
SM_STATE_PH2_C1_W4_ENC_C,
SM_STATE_PH2_C1_GET_ENC_D,
SM_STATE_PH2_C1_W4_ENC_D,
// calc STK
SM_STATE_PH2_CALC_STK,
SM_STATE_PH2_W4_STK,
SM_STATE_PH2_SEND_STK,
SM_STATE_PH2_W4_LTK_REQUEST,
SM_STATE_PH2_W4_CONNECTION_ENCRYPTED,
// Phase 3: Transport Specific Key Distribution
// calculate DHK, Y, EDIV, and LTK
SM_STATE_PH3_GET_RANDOM,
SM_STATE_PH3_W4_RANDOM,
SM_STATE_PH3_GET_DIV,
SM_STATE_PH3_W4_DIV,
SM_STATE_PH3_Y_GET_ENC,
SM_STATE_PH3_Y_W4_ENC,
SM_STATE_PH3_LTK_GET_ENC,
SM_STATE_PH3_LTK_W4_ENC,
//
SM_STATE_DISTRIBUTE_KEYS,
// re establish previously distribued LTK
SM_STATE_PH4_Y_GET_ENC,
SM_STATE_PH4_Y_W4_ENC,
SM_STATE_PH4_LTK_GET_ENC,
SM_STATE_PH4_LTK_W4_ENC,
SM_STATE_PH4_SEND_LTK,
SM_STATE_TIMEOUT, // no other security messages are exchanged
} security_manager_state_t;
typedef enum {
DKG_W4_WORKING,
DKG_CALC_IRK,
DKG_W4_IRK,
DKG_CALC_DHK,
DKG_W4_DHK,
DKG_READY
} derived_key_generation_t;
typedef enum {
RAU_IDLE,
RAU_GET_RANDOM,
RAU_W4_RANDOM,
RAU_GET_ENC,
RAU_W4_ENC,
RAU_SET_ADDRESS,
} random_address_update_t;
typedef enum {
CMAC_IDLE,
CMAC_CALC_SUBKEYS,
CMAC_W4_SUBKEYS,
CMAC_CALC_MI,
CMAC_W4_MI,
CMAC_CALC_MLAST,
CMAC_W4_MLAST
} cmac_state_t;
typedef enum {
JUST_WORKS,
PK_RESP_INPUT, // Initiator displays PK, initiator inputs PK
PK_INIT_INPUT, // Responder displays PK, responder inputs PK
OK_BOTH_INPUT, // Only input on both, both input PK
OOB // OOB available on both sides
} stk_generation_method_t;
typedef enum {
SM_USER_RESPONSE_IDLE,
SM_USER_RESPONSE_PENDING,
SM_USER_RESPONSE_CONFIRM,
SM_USER_RESPONSE_PASSKEY,
SM_USER_RESPONSE_DECLINE
} sm_user_response_t;
//
// GLOBAL DATA
//
// Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
static sm_key_t sm_persistent_er;
static sm_key_t sm_persistent_ir;
// derived from sm_persistent_ir
static sm_key_t sm_persistent_dhk;
static sm_key_t sm_persistent_irk;
// derived from sm_persistent_er
// ..
static uint8_t sm_accepted_stk_generation_methods;
static uint8_t sm_max_encryption_key_size;
static uint8_t sm_min_encryption_key_size;
static uint8_t sm_encryption_key_size;
static uint8_t sm_s_auth_req = 0;
static uint8_t sm_s_io_capabilities = IO_CAPABILITY_UNKNOWN;
static uint8_t sm_s_request_security = 0;
//
static derived_key_generation_t dkg_state = DKG_W4_WORKING;
// random address update
static random_address_update_t rau_state = RAU_IDLE;
static bd_addr_t sm_random_address;
// resolvable private address lookup
static int sm_central_device_test;
static int sm_central_device_matched;
static int sm_central_ah_calculation_active;
//
static uint8_t sm_s_addr_type;
static bd_addr_t sm_s_address;
// PER INSTANCE DATA
static security_manager_state_t sm_state_responding = SM_STATE_IDLE;
static uint16_t sm_response_handle = 0;
static uint8_t sm_pairing_failed_reason = 0;
// SM timeout
static timer_source_t sm_timeout;
// data to send to aes128 crypto engine, see sm_aes128_set_key and sm_aes128_set_plaintext
static sm_key_t sm_aes128_key;
static sm_key_t sm_aes128_plaintext;
static uint8_t sm_aes128_active;
// generation method and temporary key for STK - STK is stored in sm_s_ltk
static stk_generation_method_t sm_stk_generation_method;
static sm_key_t sm_tk;
// user response
static uint8_t sm_user_response;
// defines which keys will be send after connection is encrypted
static int sm_key_distribution_send_set;
static int sm_key_distribution_received_set;
//
// Volume 3, Part H, Chapter 24
// "Security shall be initiated by the Security Manager in the device in the master role.
// The device in the slave role shall be the responding device."
// -> master := initiator, slave := responder
//
static uint8_t sm_m_io_capabilities;
static uint8_t sm_m_have_oob_data;
static uint8_t sm_m_auth_req;
static uint8_t sm_m_max_encryption_key_size;
static uint8_t sm_m_key_distribution;
static uint8_t sm_m_preq[7];
static sm_key_t sm_m_random;
static sm_key_t sm_m_confirm;
static sm_key_t sm_s_random;
static sm_key_t sm_s_confirm;
static uint8_t sm_s_pres[7];
// key distribution, slave sends
static sm_key_t sm_s_ltk;
static uint16_t sm_s_y;
static uint16_t sm_s_div;
static uint16_t sm_s_ediv;
static uint8_t sm_s_rand[8];
static sm_key_t sm_s_csrk;
// key distribution, received from master
static sm_key_t sm_m_ltk;
static uint16_t sm_m_ediv;
static uint8_t sm_m_rand[8];
static uint8_t sm_m_addr_type;
static bd_addr_t sm_m_address;
static sm_key_t sm_m_csrk;
static sm_key_t sm_m_irk;
// CMAC calculation
static cmac_state_t sm_cmac_state;
static sm_key_t sm_cmac_k;
static uint16_t sm_cmac_message_len;
static uint8_t * sm_cmac_message;
static sm_key_t sm_cmac_m_last;
static sm_key_t sm_cmac_x;
static uint8_t sm_cmac_block_current;
static uint8_t sm_cmac_block_count;
static void (*sm_cmac_done_handler)(uint8_t hash[8]);
// @returns 1 if oob data is available
// stores oob data in provided 16 byte buffer if not null
static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t * addr, uint8_t * oob_data) = NULL;
// used to notify applicationss that user interaction is neccessary, see sm_notify_t below
static btstack_packet_handler_t sm_client_packet_handler = NULL;
// horizontal: initiator capabilities
// vertial: responder capabilities
static const stk_generation_method_t stk_generation_method[5][5] = {
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
{ PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT },
{ JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS },
{ PK_RESP_INPUT, PK_RESP_INPUT, PK_INIT_INPUT, JUST_WORKS, PK_RESP_INPUT },
};
static void sm_run();
/// CMAC Suppport
static void sm_cmac_handle_encryption_result(sm_key_t data);
static void sm_cmac_handle_aes_engine_ready();
// Utils
static inline void swapX(uint8_t *src, uint8_t *dst, int len){
int i;
for (i = 0; i < len; i++)
dst[len - 1 - i] = src[i];
}
static inline void swap24(uint8_t src[3], uint8_t dst[3]){
swapX(src, dst, 3);
}
static inline void swap56(uint8_t src[7], uint8_t dst[7]){
swapX(src, dst, 7);
}
static inline void swap64(uint8_t src[8], uint8_t dst[8]){
swapX(src, dst, 8);
}
static inline void swap128(uint8_t src[16], uint8_t dst[16]){
swapX(src, dst, 16);
}
static void print_hex16(const char * name, uint16_t value){
printf("%-6s 0x%04x\n", name, value);
}
// @returns 1 if all bytes are 0
static int sm_is_null_random(uint8_t random[8]){
int i;
for (i=0; i < 8 ; i++){
if (random[i]) return 0;
}
return 1;
}
// Key utils
static void sm_reset_tk(){
int i;
for (i=0;i<16;i++){
sm_tk[i] = 0;
}
}
// "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
// and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
static void sm_truncate_key(sm_key_t key, int max_encryption_size){
int i;
for (i = max_encryption_size ; i < 16 ; i++){
key[15-i] = 0;
}
}
// SMP Timeout implementation
// Upon transmission of the Pairing Request command or reception of the Pairing Request command,
// the Security Manager Timer shall be reset and started.
//
// The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
//
// If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
// and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
// Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
// established.
static void sm_timeout_handler(timer_source_t * timer){
printf("SM timeout");
sm_state_responding = SM_STATE_TIMEOUT;
}
static void sm_timeout_start(){
run_loop_set_timer_handler(&sm_timeout, sm_timeout_handler);
run_loop_set_timer(&sm_timeout, 30000); // 30 seconds sm timeout
run_loop_add_timer(&sm_timeout);
}
static void sm_timeout_stop(){
run_loop_remove_timer(&sm_timeout);
}
static void sm_timeout_reset(){
sm_timeout_stop();
sm_timeout_start();
}
// end of sm timeout
// GAP Random Address updates
static gap_random_address_type_t gap_random_adress_type;
static timer_source_t gap_random_address_update_timer;
static uint32_t gap_random_adress_update_period;
static void gap_random_address_update_handler(timer_source_t * timer){
printf("GAP Random Address Update due\n");
run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
run_loop_add_timer(&gap_random_address_update_timer);
if (rau_state != RAU_IDLE) return;
rau_state = RAU_GET_RANDOM;
sm_run();
}
static void gap_random_address_update_start(){
run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
run_loop_add_timer(&gap_random_address_update_timer);
}
static void gap_random_address_update_stop(){
run_loop_remove_timer(&gap_random_address_update_timer);
}
static inline void sm_aes128_set_key(sm_key_t key){
memcpy(sm_aes128_key, key, 16);
}
static inline void sm_aes128_set_plaintext(sm_key_t plaintext){
memcpy(sm_aes128_plaintext, plaintext, 16);
}
// asserts: sm_aes128_active == 0, hci_can_send_command == 1
static void sm_aes128_start(sm_key_t key, sm_key_t plaintext){
sm_aes128_active = 1;
sm_key_t key_flipped, plaintext_flipped;
swap128(key, key_flipped);
swap128(plaintext, plaintext_flipped);
hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
}
static void sm_ah_r_prime(uint8_t r[3], sm_key_t d1_prime){
// r'= padding || r
memset(d1_prime, 0, 16);
memcpy(&d1_prime[13], r, 3);
}
static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
// d'= padding || r || d
memset(d1_prime, 0, 16);
net_store_16(d1_prime, 12, r);
net_store_16(d1_prime, 14, d);
}
static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
// r = padding || r
memset(r_prime, 0, 16);
memcpy(&r_prime[8], r, 8);
}
// calculate arguments for first AES128 operation in C1 function
static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
// p1 = pres || preq || rat || iat
// "The octet of iat becomes the least significant octet of p1 and the most signifi-
// cant octet of pres becomes the most significant octet of p1.
// For example, if the 8-bit iat is 0x01, the 8-bit rat is 0x00, the 56-bit preq
// is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
// p1 is 0x05000800000302070710000001010001."
sm_key_t p1;
swap56(pres, &p1[0]);
swap56(preq, &p1[7]);
p1[14] = rat;
p1[15] = iat;
print_key("p1", p1);
print_key("r", r);
// t1 = r xor p1
int i;
for (i=0;i<16;i++){
t1[i] = r[i] ^ p1[i];
}
print_key("t1", t1);
}
// calculate arguments for second AES128 operation in C1 function
static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
// p2 = padding || ia || ra
// "The least significant octet of ra becomes the least significant octet of p2 and
// the most significant octet of padding becomes the most significant octet of p2.
// For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
// 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
sm_key_t p2;
memset(p2, 0, 16);
memcpy(&p2[4], ia, 6);
memcpy(&p2[10], ra, 6);
print_key("p2", p2);
// c1 = e(k, t2_xor_p2)
int i;
for (i=0;i<16;i++){
t3[i] = t2[i] ^ p2[i];
}
print_key("t3", t3);
}
static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
print_key("r1", r1);
print_key("r2", r2);
memcpy(&r_prime[8], &r2[8], 8);
memcpy(&r_prime[0], &r1[8], 8);
}
2014-01-05 19:42:21 +00:00
static void sm_notify_client_identity_resolving(uint8_t type, uint16_t index){
sm_event_identity_resolving_t event;
event.type = type;
event.central_device_db_index = index;
// dummy implementation
log_info("sm_notify_client_identity_resolving: event 0x%02x, index %u", type, index);
if (!sm_client_packet_handler) return;
sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(sm_event_identity_resolving_t));
}
static void sm_notify_client_bonding(uint8_t type, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
2014-01-05 19:21:33 +00:00
2014-01-05 19:42:21 +00:00
sm_event_bonding_t event;
2014-01-05 19:21:33 +00:00
event.type = type;
event.addr_type = addr_type;
BD_ADDR_COPY(event.address, address);
event.passkey = passkey;
// dummy implementation
2014-01-05 19:42:21 +00:00
log_info("sm_notify_client_bonding: event 0x%02x, addres_type %u, address (), num '%06u'", event.type, event.addr_type, event.passkey);
2014-01-05 19:21:33 +00:00
if (!sm_client_packet_handler) return;
2014-01-05 19:42:21 +00:00
sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(sm_event_bonding_t));
2014-01-05 19:21:33 +00:00
}
// decide on stk generation based on
// - pairing request
// - io capabilities
// - OOB data availability
static void sm_tk_setup(){
// default: just works
sm_stk_generation_method = JUST_WORKS;
sm_reset_tk();
// If both devices have out of band authentication data, then the Authentication
// Requirements Flags shall be ignored when selecting the pairing method and the
// Out of Band pairing method shall be used.
if (sm_m_have_oob_data && (*sm_get_oob_data)(sm_m_addr_type, &sm_m_address, sm_tk)){
sm_stk_generation_method = OOB;
return;
}
// If both devices have not set the MITM option in the Authentication Requirements
// Flags, then the IO capabilities shall be ignored and the Just Works association
// model shall be used.
if ( ((sm_m_auth_req & SM_AUTHREQ_MITM_PROTECTION) == 0x00) && ((sm_s_auth_req & SM_AUTHREQ_MITM_PROTECTION) == 0)){
return;
}
// Also use just works if unknown io capabilites
if ((sm_m_io_capabilities > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_m_io_capabilities > IO_CAPABILITY_KEYBOARD_DISPLAY)){
return;
}
// Otherwise the IO capabilities of the devices shall be used to determine the
// pairing method as defined in Table 2.4.
sm_stk_generation_method = stk_generation_method[sm_m_io_capabilities][sm_s_io_capabilities];
}
static int sm_key_distribution_flags_for_set(uint8_t key_set){
int flags = 0;
if (key_set & SM_KEYDIST_ENC_KEY){
flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
}
if (key_set & SM_KEYDIST_ID_KEY){
flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
}
if (key_set & SM_KEYDIST_SIGN){
flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
}
return flags;
}
static void sm_setup_key_distribution(uint8_t key_set){
// TODO: handle initiator case here
// distribute keys as requested by initiator
sm_key_distribution_received_set = 0;
sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
}
// CMAC Implementation using AES128 engine
static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
int i;
int carry = 0;
for (i=len-1; i >= 0 ; i--){
int new_carry = data[i] >> 7;
data[i] = data[i] << 1 | carry;
carry = new_carry;
}
}
static int sm_cmac_last_block_complete(){
if (sm_cmac_message_len == 0) return 0;
return (sm_cmac_message_len & 0x0f) == 0;
}
void sm_cmac_start(sm_key_t k, uint16_t message_len, uint8_t * message, void (*done_handler)(uint8_t hash[8])){
memcpy(sm_cmac_k, k, 16);
sm_cmac_message_len = message_len;
sm_cmac_message = message;
sm_cmac_done_handler = done_handler;
sm_cmac_block_current = 0;
memset(sm_cmac_x, 0, 16);
// step 2: n := ceil(len/const_Bsize);
sm_cmac_block_count = (message_len + 15) / 16;
// step 3: ..
if (sm_cmac_block_count==0){
sm_cmac_block_count = 1;
}
// first, we need to compute l for k1, k2, and m_last
sm_cmac_state = CMAC_CALC_SUBKEYS;
// let's go
sm_run();
}
int sm_cmac_ready(){
return sm_cmac_state == CMAC_IDLE;
}
static void sm_cmac_handle_aes_engine_ready(){
switch (sm_cmac_state){
case CMAC_CALC_SUBKEYS:
{
sm_key_t const_zero;
memset(const_zero, 0, 16);
sm_aes128_start(sm_cmac_k, const_zero);
sm_cmac_state++;
break;
}
case CMAC_CALC_MI: {
int j;
sm_key_t y;
for (j=0;j<16;j++){
y[j] = sm_cmac_x[j] ^ sm_cmac_message[sm_cmac_block_current*16 + j];
}
sm_cmac_block_current++;
sm_aes128_start(sm_cmac_k, y);
sm_cmac_state++;
break;
}
case CMAC_CALC_MLAST: {
int i;
sm_key_t y;
for (i=0;i<16;i++){
y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
}
print_key("Y", y);
sm_cmac_block_current++;
sm_aes128_start(sm_cmac_k, y);
sm_cmac_state++;
break;
}
default:
printf("sm_cmac_handle_aes_engine_ready called in state %u\n", sm_cmac_state);
break;
}
}
static void sm_cmac_handle_encryption_result(sm_key_t data){
switch (sm_cmac_state){
case CMAC_W4_SUBKEYS: {
sm_key_t k1;
memcpy(k1, data, 16);
sm_shift_left_by_one_bit_inplace(16, k1);
if (data[0] & 0x80){
k1[15] ^= 0x87;
}
sm_key_t k2;
memcpy(k2, k1, 16);
sm_shift_left_by_one_bit_inplace(16, k2);
if (k1[0] & 0x80){
k2[15] ^= 0x87;
}
print_key("k", sm_cmac_k);
print_key("k1", k1);
print_key("k2", k2);
// step 4: set m_last
if (sm_cmac_last_block_complete()){
int i;
for (i=0;i<16;i++){
sm_cmac_m_last[i] = sm_cmac_message[sm_cmac_message_len - 16 + i] ^ k1[i];
}
} else {
int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
int i;
for (i=0;i<16;i++){
if (i < valid_octets_in_last_block){
sm_cmac_m_last[i] = sm_cmac_message[(sm_cmac_message_len & 0xfff0) + i] ^ k2[i];
continue;
}
if (i == valid_octets_in_last_block){
sm_cmac_m_last[i] = 0x80 ^ k2[i];
continue;
}
sm_cmac_m_last[i] = k2[i];
}
}
// next
sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
break;
}
case CMAC_W4_MI:
memcpy(sm_cmac_x, data, 16);
sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
break;
case CMAC_W4_MLAST:
// done
print_key("CMAC", data);
sm_cmac_done_handler(data);
break;
default:
printf("sm_cmac_handle_encryption_result called in state %u\n", sm_cmac_state);
break;
}
}
static int sm_key_distribution_done(){
if (sm_key_distribution_send_set) return 0;
int recv_flags = sm_key_distribution_flags_for_set(sm_m_key_distribution);
return recv_flags == sm_key_distribution_received_set;
}
static void sm_pdu_received_in_wrong_state(){
sm_pairing_failed_reason = SM_REASON_UNSPECIFIED_REASON;
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
}
static void sm_run(void){
// assert that we can send either one
if (!hci_can_send_packet_now(HCI_COMMAND_DATA_PACKET)) return;
if (!hci_can_send_packet_now(HCI_ACL_DATA_PACKET)) return;
// distributed key generation
switch (dkg_state){
case DKG_CALC_IRK:
// already busy?
if (sm_aes128_active) break;
{
// IRK = d1(IR, 1, 0)
sm_key_t d1_prime;
sm_d1_d_prime(1, 0, d1_prime); // plaintext
sm_aes128_start(sm_persistent_ir, d1_prime);
dkg_state++;
}
case DKG_CALC_DHK:
// already busy?
if (sm_aes128_active) break;
{
// DHK = d1(IR, 3, 0)
sm_key_t d1_prime;
sm_d1_d_prime(3, 0, d1_prime); // plaintext
sm_aes128_start(sm_persistent_ir, d1_prime);
dkg_state++;
}
return;
default:
break;
}
// random address updates
switch (rau_state){
case RAU_GET_RANDOM:
hci_send_cmd(&hci_le_rand);
rau_state++;
return;
case RAU_GET_ENC:
// already busy?
if (sm_aes128_active) break;
{
sm_key_t r_prime;
sm_ah_r_prime(sm_random_address, r_prime);
sm_aes128_start(sm_persistent_irk, r_prime);
rau_state++;
return;
}
case RAU_SET_ADDRESS:
printf("New random address: ");
print_bd_addr(sm_random_address);
printf("\n");
hci_send_cmd(&hci_le_set_random_address, sm_random_address);
rau_state = RAU_IDLE;
return;
default:
break;
}
// CSRK device lookup by public or resolvable private address
if (sm_central_device_test >= 0){
printf("Central Device Lookup: device %u/%u\n", sm_central_device_test, central_device_db_count());
while (sm_central_device_test < central_device_db_count()){
int addr_type;
bd_addr_t addr;
sm_key_t irk;
central_device_db_info(sm_central_device_test, &addr_type, addr, irk);
printf("device type %u, addr: ", addr_type);
print_bd_addr(addr);
printf("\n");
if (sm_m_addr_type == addr_type && memcmp(addr, sm_m_address, 6) == 0){
printf("Central Device Lookup: found CSRK by { addr_type, address} \n");
sm_central_device_matched = sm_central_device_test;
sm_central_device_test = -1;
central_device_db_csrk(sm_central_device_matched, sm_m_csrk);
2014-01-05 19:42:21 +00:00
sm_notify_client_identity_resolving(SM_IDENTITY_RESOLVING_SUCCEEDED, sm_central_device_matched);
2014-01-05 19:21:33 +00:00
break;
}
if (sm_m_addr_type == 0){
sm_central_device_test++;
continue;
}
if (sm_aes128_active) break;
printf("Central Device Lookup: calculate AH\n");
print_key("IRK", irk);
sm_key_t r_prime;
sm_ah_r_prime(sm_m_address, r_prime);
sm_aes128_start(irk, r_prime);
sm_central_ah_calculation_active = 1;
return;
}
if (sm_central_device_test >= central_device_db_count()){
printf("Central Device Lookup: not found\n");
sm_central_device_test = -1;
2014-01-05 19:42:21 +00:00
sm_notify_client_identity_resolving(SM_IDENTITY_RESOLVING_FAILED, 0);
2014-01-05 19:21:33 +00:00
}
}
// cmac
switch (sm_cmac_state){
case CMAC_CALC_SUBKEYS:
case CMAC_CALC_MI:
case CMAC_CALC_MLAST:
// already busy?
if (sm_aes128_active) break;
sm_cmac_handle_aes_engine_ready();
return;
default:
break;
}
// responding state
switch (sm_state_responding){
case SM_STATE_SEND_SECURITY_REQUEST: {
uint8_t buffer[2];
buffer[0] = SM_CODE_SECURITY_REQUEST;
buffer[1] = SM_AUTHREQ_BONDING;
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_state_responding = SM_STATE_IDLE;
return;
}
case SM_STATE_PH1_SEND_PAIRING_RESPONSE: {
uint8_t buffer[7];
memcpy(buffer, sm_m_preq, 7);
buffer[0] = SM_CODE_PAIRING_RESPONSE;
buffer[1] = sm_s_io_capabilities;
buffer[2] = sm_stk_generation_method == OOB ? 1 : 0;
buffer[3] = sm_s_auth_req;
buffer[4] = sm_max_encryption_key_size;
memcpy(sm_s_pres, buffer, 7);
// for validate
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_reset();
// notify client for: JUST WORKS confirm, PASSKEY display or input
sm_user_response = SM_USER_RESPONSE_IDLE;
switch (sm_stk_generation_method){
case PK_RESP_INPUT:
sm_user_response = SM_USER_RESPONSE_PENDING;
2014-01-05 19:42:21 +00:00
sm_notify_client_bonding(SM_PASSKEY_INPUT_NUMBER, sm_m_addr_type, sm_m_address, 0);
2014-01-05 19:21:33 +00:00
break;
case PK_INIT_INPUT:
2014-01-05 19:42:21 +00:00
sm_notify_client_bonding(SM_PASSKEY_DISPLAY_NUMBER, sm_m_addr_type, sm_m_address, READ_NET_32(sm_tk, 12));
2014-01-05 19:21:33 +00:00
break;
case JUST_WORKS:
switch (sm_s_io_capabilities){
case IO_CAPABILITY_KEYBOARD_DISPLAY:
case IO_CAPABILITY_DISPLAY_YES_NO:
sm_user_response = SM_USER_RESPONSE_PENDING;
2014-01-05 19:42:21 +00:00
sm_notify_client_bonding(SM_JUST_WORKS_REQUEST, sm_m_addr_type, sm_m_address, READ_NET_32(sm_tk, 12));
2014-01-05 19:21:33 +00:00
break;
default:
// cannot ask user
break;
}
break;
default:
break;
}
sm_state_responding = SM_STATE_PH1_W4_PAIRING_CONFIRM;
return;
}
case SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_response_handle);
sm_state_responding = SM_STATE_IDLE;
return;
case SM_STATE_SEND_PAIRING_FAILED: {
uint8_t buffer[2];
buffer[0] = SM_CODE_PAIRING_FAILED;
buffer[1] = sm_pairing_failed_reason;
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_stop();
sm_state_responding = SM_STATE_IDLE;
break;
}
case SM_STATE_SEND_PAIRING_RANDOM: {
uint8_t buffer[17];
buffer[0] = SM_CODE_PAIRING_RANDOM;
swap128(sm_s_random, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_reset();
sm_state_responding = SM_STATE_PH2_W4_LTK_REQUEST;
break;
}
case SM_STATE_PH2_GET_RANDOM_TK:
case SM_STATE_PH2_C1_GET_RANDOM_A:
case SM_STATE_PH2_C1_GET_RANDOM_B:
case SM_STATE_PH3_GET_RANDOM:
case SM_STATE_PH3_GET_DIV:
hci_send_cmd(&hci_le_rand);
sm_state_responding++;
return;
case SM_STATE_PH2_C1_GET_ENC_A:
case SM_STATE_PH2_C1_GET_ENC_B:
case SM_STATE_PH2_C1_GET_ENC_C:
case SM_STATE_PH2_C1_GET_ENC_D:
case SM_STATE_PH2_CALC_STK:
case SM_STATE_PH3_Y_GET_ENC:
case SM_STATE_PH3_LTK_GET_ENC:
case SM_STATE_PH4_Y_GET_ENC:
case SM_STATE_PH4_LTK_GET_ENC:
// already busy?
if (sm_aes128_active) break;
sm_aes128_start(sm_aes128_key, sm_aes128_plaintext);
sm_state_responding++;
return;
case SM_STATE_PH2_C1_SEND_PAIRING_CONFIRM: {
uint8_t buffer[17];
buffer[0] = SM_CODE_PAIRING_CONFIRM;
swap128(sm_s_confirm, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_reset();
sm_state_responding = SM_STATE_PH2_W4_PAIRING_RANDOM;
return;
}
case SM_STATE_PH2_SEND_STK: {
sm_key_t stk_flipped;
swap128(sm_s_ltk, stk_flipped);
hci_send_cmd(&hci_le_long_term_key_request_reply, sm_response_handle, stk_flipped);
sm_state_responding = SM_STATE_PH2_W4_CONNECTION_ENCRYPTED;
return;
}
case SM_STATE_PH4_SEND_LTK: {
sm_key_t ltk_flipped;
swap128(sm_s_ltk, ltk_flipped);
hci_send_cmd(&hci_le_long_term_key_request_reply, sm_response_handle, ltk_flipped);
sm_state_responding = SM_STATE_IDLE;
return;
}
case SM_STATE_DISTRIBUTE_KEYS:
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
uint8_t buffer[17];
buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
swap128(sm_s_ltk, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_reset();
return;
}
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
uint8_t buffer[11];
buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
bt_store_16(buffer, 1, sm_s_ediv);
swap64(sm_s_rand, &buffer[3]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_reset();
return;
}
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
uint8_t buffer[17];
buffer[0] = SM_CODE_IDENTITY_INFORMATION;
swap128(sm_persistent_irk, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_reset();
return;
}
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
uint8_t buffer[8];
buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
buffer[1] = sm_s_addr_type;
bt_flip_addr(&buffer[2], sm_s_address);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_reset();
return;
}
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
uint8_t buffer[17];
buffer[0] = SM_CODE_SIGNING_INFORMATION;
swap128(sm_s_csrk, &buffer[1]);
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
sm_timeout_reset();
return;
}
if (sm_key_distribution_done()){
sm_timeout_stop();
sm_state_responding = SM_STATE_IDLE;
}
break;
default:
break;
}
}
static void sm_packet_handler(uint8_t packet_type, uint16_t handle, uint8_t *packet, uint16_t size){
if (packet_type != SM_DATA_PACKET) return;
if (handle != sm_response_handle){
printf("sm_packet_handler: packet from handle %u, but expecting from %u\n", handle, sm_response_handle);
return;
}
if (packet[0] == SM_CODE_PAIRING_FAILED){
sm_state_responding = SM_STATE_IDLE;
return;
}
switch (sm_state_responding){
// a sm timeout requries a new physical connection
case SM_STATE_TIMEOUT:
return;
case SM_STATE_IDLE: {
if (packet[0] != SM_CODE_PAIRING_REQUEST){
sm_pdu_received_in_wrong_state();
break;;
}
// store key distribtion request
sm_m_io_capabilities = packet[1];
sm_m_have_oob_data = packet[2];
sm_m_auth_req = packet[3];
sm_m_max_encryption_key_size = packet[4];
// assert max encryption size above our minimum
if (sm_m_max_encryption_key_size < sm_min_encryption_key_size){
sm_pairing_failed_reason = SM_REASON_ENCRYPTION_KEY_SIZE;
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
break;
}
// min{}
sm_encryption_key_size = sm_max_encryption_key_size;
if (sm_m_max_encryption_key_size < sm_max_encryption_key_size){
sm_encryption_key_size = sm_m_max_encryption_key_size;
}
// setup key distribution
sm_m_key_distribution = packet[5];
sm_setup_key_distribution(packet[6]);
// for validate
memcpy(sm_m_preq, packet, 7);
// start SM timeout
sm_timeout_start();
// decide on STK generation method
sm_tk_setup();
// check if STK generation method is acceptable by client
int ok = 0;
switch (sm_stk_generation_method){
case JUST_WORKS:
ok = (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
break;
case PK_RESP_INPUT:
case PK_INIT_INPUT:
case OK_BOTH_INPUT:
ok = (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
break;
case OOB:
ok = (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
break;
}
if (!ok){
sm_pairing_failed_reason = SM_REASON_AUTHENTHICATION_REQUIREMENTS;
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
break;
}
// generate random number first, if we need to show passkey
if (sm_stk_generation_method == PK_INIT_INPUT){
sm_state_responding = SM_STATE_PH2_GET_RANDOM_TK;
break;
}
sm_state_responding = SM_STATE_PH1_SEND_PAIRING_RESPONSE;
break;
}
case SM_STATE_PH1_W4_PAIRING_CONFIRM:
if (packet[0] != SM_CODE_PAIRING_CONFIRM){
sm_pdu_received_in_wrong_state();
break;;
}
// received confirm value
swap128(&packet[1], sm_m_confirm);
// notify client to hide shown passkey
if (sm_stk_generation_method == PK_INIT_INPUT){
2014-01-05 19:42:21 +00:00
sm_notify_client_bonding(SM_PASSKEY_DISPLAY_CANCEL, sm_m_addr_type, sm_m_address, 0);
2014-01-05 19:21:33 +00:00
}
// handle user cancel pairing?
if (sm_user_response == SM_USER_RESPONSE_DECLINE){
sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
break;
}
// wait for user action?
if (sm_user_response == SM_USER_RESPONSE_PENDING){
sm_state_responding = SM_STATE_PH1_W4_USER_RESPONSE;
break;
}
// calculate and send s_confirm
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A;
break;
case SM_STATE_PH2_W4_PAIRING_RANDOM:
if (packet[0] != SM_CODE_PAIRING_RANDOM){
sm_pdu_received_in_wrong_state();
break;;
}
// received random value
swap128(&packet[1], sm_m_random);
// use aes128 engine
// calculate m_confirm using aes128 engine - step 1
sm_aes128_set_key(sm_tk);
sm_c1_t1(sm_m_random, sm_m_preq, sm_s_pres, sm_m_addr_type, sm_s_addr_type, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH2_C1_GET_ENC_C;
break;
case SM_STATE_DISTRIBUTE_KEYS:
switch(packet[0]){
case SM_CODE_ENCRYPTION_INFORMATION:
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
swap128(&packet[1], sm_m_ltk);
break;
case SM_CODE_MASTER_IDENTIFICATION:
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
sm_m_ediv = READ_BT_16(packet, 1);
swap64(&packet[3], sm_m_rand);
break;
case SM_CODE_IDENTITY_INFORMATION:
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
swap128(&packet[1], sm_m_irk);
break;
case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
sm_m_addr_type = packet[1];
BD_ADDR_COPY(sm_m_address, &packet[2]);
break;
case SM_CODE_SIGNING_INFORMATION:
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
swap128(&packet[1], sm_m_csrk);
// store, if: it's a public address, or, we got an IRK
if (sm_m_addr_type == 0 || (sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION)) {
sm_central_device_matched = central_device_db_add(sm_m_addr_type, sm_m_address, sm_m_irk, sm_m_csrk);
break;
}
break;
default:
// Unexpected PDU
printf("Unexpected PDU %u in SM_STATE_DISTRIBUTE_KEYS\n", packet[0]);
break;
}
// done with key distribution?
if (sm_key_distribution_done()){
sm_timeout_stop();
sm_state_responding = SM_STATE_IDLE;
}
break;
default:
// Unexpected PDU
printf("Unexpected PDU %u in state %u\n", packet[0], sm_state_responding);
break;
}
// try to send preparared packet
sm_run();
}
static void sm_event_packet_handler (void * connection, uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
sm_run();
switch (packet_type) {
case HCI_EVENT_PACKET:
switch (packet[0]) {
case BTSTACK_EVENT_STATE:
// bt stack activated, get started
if (packet[2] == HCI_STATE_WORKING) {
printf("HCI Working!\n");
dkg_state = DKG_CALC_IRK;
sm_run();
2014-01-05 19:54:00 +00:00
return; // don't notify app packet handler just yet
2014-01-05 19:21:33 +00:00
}
break;
case HCI_EVENT_LE_META:
switch (packet[2]) {
case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
// only single connection for peripheral
if (sm_response_handle){
printf("Already connected, ignoring incoming connection\n");
return;
}
sm_response_handle = READ_BT_16(packet, 4);
sm_m_addr_type = packet[7];
bt_flip_addr(sm_m_address, &packet[8]);
sm_reset_tk();
hci_le_advertisement_address(&sm_s_addr_type, &sm_s_address);
printf("Incoming connection, own address ");
print_bd_addr(sm_s_address);
// request security
if (sm_s_request_security){
sm_state_responding = SM_STATE_SEND_SECURITY_REQUEST;
}
// try to lookup device
sm_central_device_test = 0;
sm_central_device_matched = -1;
sm_notify_client_identity_resolving(SM_IDENTITY_RESOLVING_STARTED, 0);
2014-01-05 19:21:33 +00:00
break;
case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
log_info("LTK Request: state %u", sm_state_responding);
if (sm_state_responding == SM_STATE_PH2_W4_LTK_REQUEST){
// calculate STK
log_info("LTK Request: calculating STK");
sm_aes128_set_key(sm_tk);
sm_s1_r_prime(sm_s_random, sm_m_random, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH2_CALC_STK;
break;
}
// re-establish previously used LTK using Rand and EDIV
swap64(&packet[5], sm_s_rand);
sm_s_ediv = READ_BT_16(packet, 13);
// assume that we don't have a LTK for ediv == 0 and random == null
if (sm_s_ediv == 0 && sm_is_null_random(sm_s_rand)){
printf("LTK Request: ediv & random are empty\n");
sm_state_responding = SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
break;
}
// re-establish used key encryption size
if (sm_max_encryption_key_size == sm_min_encryption_key_size){
sm_encryption_key_size = sm_max_encryption_key_size;
} else {
// no db for encryption size hack: encryption size is stored in lowest nibble of sm_s_rand
sm_encryption_key_size = (sm_s_rand[7] & 0x0f) + 1;
}
log_info("LTK Request: recalculating with ediv 0x%04x", sm_s_ediv);
// dhk = d1(IR, 3, 0) - enc
// y = dm(dhk, rand) - enc
// div = y xor ediv
// ltk = d1(ER, div, 0) - enc
// Y = dm(DHK, Rand)
sm_aes128_set_key(sm_persistent_dhk);
sm_dm_r_prime(sm_s_rand, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH4_Y_GET_ENC;
// sm_s_div = sm_div(sm_persistent_dhk, sm_s_rand, sm_s_ediv);
// sm_s_ltk(sm_persistent_er, sm_s_div, sm_s_ltk);
break;
default:
break;
}
break;
case HCI_EVENT_ENCRYPTION_CHANGE:
log_info("Connection encrypted");
if (sm_state_responding == SM_STATE_PH2_W4_CONNECTION_ENCRYPTED) {
sm_state_responding = SM_STATE_PH3_GET_RANDOM;
}
break;
case HCI_EVENT_DISCONNECTION_COMPLETE:
sm_state_responding = SM_STATE_IDLE;
sm_response_handle = 0;
break;
case HCI_EVENT_COMMAND_COMPLETE:
if (COMMAND_COMPLETE_EVENT(packet, hci_le_encrypt)){
sm_aes128_active = 0;
if (sm_central_ah_calculation_active){
sm_central_ah_calculation_active = 0;
// compare calulated address against connecting device
uint8_t hash[3];
swap24(&packet[6], hash);
if (memcmp(&sm_m_address[3], hash, 3) == 0){
// found
sm_central_device_matched = sm_central_device_test;
sm_central_device_test = -1;
central_device_db_csrk(sm_central_device_matched, sm_m_csrk);
2014-01-05 19:42:21 +00:00
sm_notify_client_identity_resolving(SM_IDENTITY_RESOLVING_SUCCEEDED, sm_central_device_matched);
log_info("Central Device Lookup: matched resolvable private address");
2014-01-05 19:21:33 +00:00
break;
}
// no match
sm_central_device_test++;
break;
}
switch (dkg_state){
case DKG_W4_IRK:
swap128(&packet[6], sm_persistent_irk);
print_key("irk", sm_persistent_irk);
dkg_state++;
break;
case DKG_W4_DHK:
swap128(&packet[6], sm_persistent_dhk);
print_key("dhk", sm_persistent_dhk);
dkg_state ++;
// SM INIT FINISHED, start application code - TODO untangle that
if (sm_client_packet_handler)
{
uint8_t event[] = { BTSTACK_EVENT_STATE, 0, HCI_STATE_WORKING };
sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) event, sizeof(event));
}
break;
default:
break;
}
switch (rau_state){
case RAU_W4_ENC:
swap24(&packet[6], &sm_random_address[3]);
rau_state++;
break;
default:
break;
}
switch (sm_cmac_state){
case CMAC_W4_SUBKEYS:
case CMAC_W4_MI:
case CMAC_W4_MLAST:
{
sm_key_t t;
swap128(&packet[6], t);
sm_cmac_handle_encryption_result(t);
}
break;
default:
break;
}
switch (sm_state_responding){
case SM_STATE_PH2_C1_W4_ENC_A:
case SM_STATE_PH2_C1_W4_ENC_C:
{
sm_aes128_set_key(sm_tk);
sm_key_t t2;
swap128(&packet[6], t2);
sm_c1_t3(t2, sm_m_address, sm_s_address, sm_aes128_plaintext);
}
sm_state_responding++;
break;
case SM_STATE_PH2_C1_W4_ENC_B:
swap128(&packet[6], sm_s_confirm);
print_key("c1!", sm_s_confirm);
sm_state_responding++;
break;
case SM_STATE_PH2_C1_W4_ENC_D:
{
sm_key_t m_confirm_test;
swap128(&packet[6], m_confirm_test);
print_key("c1!", m_confirm_test);
if (memcmp(sm_m_confirm, m_confirm_test, 16) == 0){
// send s_random
sm_state_responding = SM_STATE_SEND_PAIRING_RANDOM;
break;
}
sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
}
break;
case SM_STATE_PH2_W4_STK:
swap128(&packet[6], sm_s_ltk);
sm_truncate_key(sm_s_ltk, sm_encryption_key_size);
print_key("stk", sm_s_ltk);
sm_state_responding = SM_STATE_PH2_SEND_STK;
break;
case SM_STATE_PH3_Y_W4_ENC:{
sm_key_t y128;
swap128(&packet[6], y128);
sm_s_y = READ_NET_16(y128, 14);
print_hex16("y", sm_s_y);
// PH3B3 - calculate EDIV
sm_s_ediv = sm_s_y ^ sm_s_div;
print_hex16("ediv", sm_s_ediv);
// PH3B4 - calculate LTK - enc
// LTK = d1(ER, DIV, 0))
sm_aes128_set_key(sm_persistent_er);
sm_d1_d_prime(sm_s_div, 0, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH3_LTK_GET_ENC;
break;
}
case SM_STATE_PH4_Y_W4_ENC:{
sm_key_t y128;
swap128(&packet[6], y128);
sm_s_y = READ_NET_16(y128, 14);
print_hex16("y", sm_s_y);
// PH3B3 - calculate DIV
sm_s_div = sm_s_y ^ sm_s_ediv;
print_hex16("ediv", sm_s_ediv);
// PH3B4 - calculate LTK - enc
// LTK = d1(ER, DIV, 0))
sm_aes128_set_key(sm_persistent_er);
sm_d1_d_prime(sm_s_div, 0, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH4_LTK_GET_ENC;
break;
}
case SM_STATE_PH3_LTK_W4_ENC:
swap128(&packet[6], sm_s_ltk);
print_key("ltk", sm_s_ltk);
// distribute keys
sm_state_responding = SM_STATE_DISTRIBUTE_KEYS;
break;
case SM_STATE_PH4_LTK_W4_ENC:
swap128(&packet[6], sm_s_ltk);
sm_truncate_key(sm_s_ltk, sm_encryption_key_size);
print_key("ltk", sm_s_ltk);
sm_state_responding = SM_STATE_PH4_SEND_LTK;
break;
default:
break;
}
}
if (COMMAND_COMPLETE_EVENT(packet, hci_le_rand)){
switch (rau_state){
case RAU_W4_RANDOM:
// non-resolvable vs. resolvable
switch (gap_random_adress_type){
case GAP_RANDOM_ADDRESS_RESOLVABLE:
// resolvable: use random as prand and calc address hash
// "The two most significant bits of prand shall be equal to 0 and 1"
memcpy(sm_random_address, &packet[6], 3);
sm_random_address[0] &= 0x3f;
sm_random_address[0] |= 0x40;
rau_state = RAU_GET_ENC;
break;
case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
default:
// "The two most significant bits of the address shall be equal to 0""
memcpy(sm_random_address, &packet[6], 6);
sm_random_address[0] &= 0x3f;
rau_state = RAU_SET_ADDRESS;
break;
}
break;
default:
break;
}
switch (sm_state_responding){
case SM_STATE_PH2_W4_RANDOM_TK:
{
// map random to 0-999999 without speding much cycles on a modulus operation
uint32_t tk = * (uint32_t*) &packet[6]; // random endianess
tk = tk & 0xfffff; // 1048575
if (tk >= 999999){
tk = tk - 999999;
}
sm_reset_tk();
net_store_32(sm_tk, 12, tk);
// continue with phase 1
sm_state_responding = SM_STATE_PH1_SEND_PAIRING_RESPONSE;
break;
}
case SM_STATE_PH2_C1_W4_RANDOM_A:
memcpy(&sm_s_random[0], &packet[6], 8); // random endinaness
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_B;
break;
case SM_STATE_PH2_C1_W4_RANDOM_B:
memcpy(&sm_s_random[8], &packet[6], 8); // random endinaness
// calculate s_confirm manually
// sm_c1(sm_tk, sm_s_random, sm_m_preq, sm_s_pres, sm_m_addr_type, sm_s_addr_type, sm_m_address, sm_s_address, sm_s_confirm);
// calculate s_confirm using aes128 engine - step 1
sm_aes128_set_key(sm_tk);
sm_c1_t1(sm_s_random, sm_m_preq, sm_s_pres, sm_m_addr_type, sm_s_addr_type, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH2_C1_GET_ENC_A;
break;
case SM_STATE_PH3_W4_RANDOM:
swap64(&packet[6], sm_s_rand);
// no db for encryption size hack: encryption size is stored in lowest nibble of sm_s_rand
sm_s_rand[7] = (sm_s_rand[7] & 0xf0) + (sm_encryption_key_size - 1);
sm_state_responding = SM_STATE_PH3_GET_DIV;
break;
case SM_STATE_PH3_W4_DIV:
// use 16 bit from random value as div
sm_s_div = READ_NET_16(packet, 6);
print_hex16("div", sm_s_div);
// PH3B2 - calculate Y from - enc
// Y = dm(DHK, Rand)
sm_aes128_set_key(sm_persistent_dhk);
sm_dm_r_prime(sm_s_rand, sm_aes128_plaintext);
sm_state_responding = SM_STATE_PH3_Y_GET_ENC;
break;
default:
break;
}
break;
}
}
2014-01-05 19:54:00 +00:00
// forward packet to higher layer
2014-01-05 19:21:33 +00:00
if (sm_client_packet_handler){
sm_client_packet_handler(packet_type, 0, packet, size);
}
}
sm_run();
}
void sm_set_er(sm_key_t er){
memcpy(sm_persistent_er, er, 16);
}
void sm_set_ir(sm_key_t ir){
memcpy(sm_persistent_ir, ir, 16);
// sm_dhk(sm_persistent_ir, sm_persistent_dhk);
// sm_irk(sm_persistent_ir, sm_persistent_irk);
}
void sm_init(){
// set some (BTstack default) ER and IR
int i;
sm_key_t er;
sm_key_t ir;
for (i=0;i<16;i++){
er[i] = 0x30 + i;
ir[i] = 0x90 + i;
}
sm_set_er(er);
sm_set_ir(ir);
sm_state_responding = SM_STATE_IDLE;
// defaults
sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
| SM_STK_GENERATION_METHOD_OOB
| SM_STK_GENERATION_METHOD_PASSKEY;
sm_max_encryption_key_size = 16;
sm_min_encryption_key_size = 7;
sm_aes128_active = 0;
sm_cmac_state = CMAC_IDLE;
sm_central_device_test = -1; // no private address to resolve yet
sm_central_ah_calculation_active = 0;
gap_random_adress_update_period = 15 * 60 * 1000;
// attach to lower layers
l2cap_register_fixed_channel(sm_packet_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
l2cap_register_packet_handler(sm_event_packet_handler);
}
// GAP LE API
void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
gap_random_address_update_stop();
gap_random_adress_type = random_address_type;
if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
gap_random_address_update_start();
}
void gap_random_address_set_update_period(int period_ms){
gap_random_adress_update_period = period_ms;
if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
gap_random_address_update_stop();
gap_random_address_update_start();
}
int sm_get_connection(uint8_t addr_type, bd_addr_t address){
// TODO compare to current connection
return 1;
}
void sm_bonding_decline(uint8_t addr_type, bd_addr_t address){
if (!sm_get_connection(addr_type, address)) return; // wrong connection
sm_user_response = SM_USER_RESPONSE_DECLINE;
if (sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){
sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
}
sm_run();
}
void sm_just_works_confirm(uint8_t addr_type, bd_addr_t address){
if (!sm_get_connection(addr_type, address)) return; // wrong connection
sm_user_response = SM_USER_RESPONSE_CONFIRM;
if (sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A;
}
sm_run();
}
void sm_passkey_input(uint8_t addr_type, bd_addr_t address, uint32_t passkey){
if (!sm_get_connection(addr_type, address)) return; // wrong connection
sm_reset_tk();
net_store_32(sm_tk, 12, passkey);
sm_user_response = SM_USER_RESPONSE_PASSKEY;
if (sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A;
}
sm_run();
}
// Security Manager Client API
void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t * addr, uint8_t * oob_data)){
sm_get_oob_data = get_oob_data_callback;
}
void sm_register_packet_handler(btstack_packet_handler_t handler){
sm_client_packet_handler = handler;
}
void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
}
void sm_set_encrypted_key_size_range(uint8_t min_size, uint8_t max_size){
sm_min_encryption_key_size = min_size;
sm_max_encryption_key_size = max_size;
}
void sm_set_authentication_requirements(uint8_t auth_req){
sm_s_auth_req = auth_req;
}
void sm_set_io_capabilities(io_capability_t io_capability){
sm_s_io_capabilities = io_capability;
}
void sm_set_request_security(int enable){
sm_s_request_security = enable;
}