mirror of
https://github.com/aseprite/aseprite.git
synced 2025-01-03 23:41:56 +00:00
ed6090bc36
This was done to avoid mixed files (CRLF & LF) in the repository.
929 lines
35 KiB
C
929 lines
35 KiB
C
/*
|
|
* transupp.c
|
|
*
|
|
* Copyright (C) 1997, Thomas G. Lane.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* This file contains image transformation routines and other utility code
|
|
* used by the jpegtran sample application. These are NOT part of the core
|
|
* JPEG library. But we keep these routines separate from jpegtran.c to
|
|
* ease the task of maintaining jpegtran-like programs that have other user
|
|
* interfaces.
|
|
*/
|
|
|
|
/* Although this file really shouldn't have access to the library internals,
|
|
* it's helpful to let it call jround_up() and jcopy_block_row().
|
|
*/
|
|
#define JPEG_INTERNALS
|
|
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
#include "transupp.h" /* My own external interface */
|
|
|
|
|
|
#if TRANSFORMS_SUPPORTED
|
|
|
|
/*
|
|
* Lossless image transformation routines. These routines work on DCT
|
|
* coefficient arrays and thus do not require any lossy decompression
|
|
* or recompression of the image.
|
|
* Thanks to Guido Vollbeding for the initial design and code of this feature.
|
|
*
|
|
* Horizontal flipping is done in-place, using a single top-to-bottom
|
|
* pass through the virtual source array. It will thus be much the
|
|
* fastest option for images larger than main memory.
|
|
*
|
|
* The other routines require a set of destination virtual arrays, so they
|
|
* need twice as much memory as jpegtran normally does. The destination
|
|
* arrays are always written in normal scan order (top to bottom) because
|
|
* the virtual array manager expects this. The source arrays will be scanned
|
|
* in the corresponding order, which means multiple passes through the source
|
|
* arrays for most of the transforms. That could result in much thrashing
|
|
* if the image is larger than main memory.
|
|
*
|
|
* Some notes about the operating environment of the individual transform
|
|
* routines:
|
|
* 1. Both the source and destination virtual arrays are allocated from the
|
|
* source JPEG object, and therefore should be manipulated by calling the
|
|
* source's memory manager.
|
|
* 2. The destination's component count should be used. It may be smaller
|
|
* than the source's when forcing to grayscale.
|
|
* 3. Likewise the destination's sampling factors should be used. When
|
|
* forcing to grayscale the destination's sampling factors will be all 1,
|
|
* and we may as well take that as the effective iMCU size.
|
|
* 4. When "trim" is in effect, the destination's dimensions will be the
|
|
* trimmed values but the source's will be untrimmed.
|
|
* 5. All the routines assume that the source and destination buffers are
|
|
* padded out to a full iMCU boundary. This is true, although for the
|
|
* source buffer it is an undocumented property of jdcoefct.c.
|
|
* Notes 2,3,4 boil down to this: generally we should use the destination's
|
|
* dimensions and ignore the source's.
|
|
*/
|
|
|
|
|
|
LOCAL(void)
|
|
do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays)
|
|
/* Horizontal flip; done in-place, so no separate dest array is required */
|
|
{
|
|
JDIMENSION MCU_cols, comp_width, blk_x, blk_y;
|
|
int ci, k, offset_y;
|
|
JBLOCKARRAY buffer;
|
|
JCOEFPTR ptr1, ptr2;
|
|
JCOEF temp1, temp2;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Horizontal mirroring of DCT blocks is accomplished by swapping
|
|
* pairs of blocks in-place. Within a DCT block, we perform horizontal
|
|
* mirroring by changing the signs of odd-numbered columns.
|
|
* Partial iMCUs at the right edge are left untouched.
|
|
*/
|
|
MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
for (blk_y = 0; blk_y < compptr->height_in_blocks;
|
|
blk_y += compptr->v_samp_factor) {
|
|
buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
|
|
ptr1 = buffer[offset_y][blk_x];
|
|
ptr2 = buffer[offset_y][comp_width - blk_x - 1];
|
|
/* this unrolled loop doesn't need to know which row it's on... */
|
|
for (k = 0; k < DCTSIZE2; k += 2) {
|
|
temp1 = *ptr1; /* swap even column */
|
|
temp2 = *ptr2;
|
|
*ptr1++ = temp2;
|
|
*ptr2++ = temp1;
|
|
temp1 = *ptr1; /* swap odd column with sign change */
|
|
temp2 = *ptr2;
|
|
*ptr1++ = -temp2;
|
|
*ptr2++ = -temp1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* Vertical flip */
|
|
{
|
|
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
|
|
int ci, i, j, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JBLOCKROW src_row_ptr, dst_row_ptr;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* We output into a separate array because we can't touch different
|
|
* rows of the source virtual array simultaneously. Otherwise, this
|
|
* is a pretty straightforward analog of horizontal flip.
|
|
* Within a DCT block, vertical mirroring is done by changing the signs
|
|
* of odd-numbered rows.
|
|
* Partial iMCUs at the bottom edge are copied verbatim.
|
|
*/
|
|
MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
if (dst_blk_y < comp_height) {
|
|
/* Row is within the mirrorable area. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
} else {
|
|
/* Bottom-edge blocks will be copied verbatim. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
}
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
if (dst_blk_y < comp_height) {
|
|
/* Row is within the mirrorable area. */
|
|
dst_row_ptr = dst_buffer[offset_y];
|
|
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x++) {
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
src_ptr = src_row_ptr[dst_blk_x];
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
|
/* copy even row */
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
*dst_ptr++ = *src_ptr++;
|
|
/* copy odd row with sign change */
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
*dst_ptr++ = - *src_ptr++;
|
|
}
|
|
}
|
|
} else {
|
|
/* Just copy row verbatim. */
|
|
jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y],
|
|
compptr->width_in_blocks);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* Transpose source into destination */
|
|
{
|
|
JDIMENSION dst_blk_x, dst_blk_y;
|
|
int ci, i, j, offset_x, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Transposing pixels within a block just requires transposing the
|
|
* DCT coefficients.
|
|
* Partial iMCUs at the edges require no special treatment; we simply
|
|
* process all the available DCT blocks for every component.
|
|
*/
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x += compptr->h_samp_factor) {
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
for (i = 0; i < DCTSIZE; i++)
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* 90 degree rotation is equivalent to
|
|
* 1. Transposing the image;
|
|
* 2. Horizontal mirroring.
|
|
* These two steps are merged into a single processing routine.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
|
|
int ci, i, j, offset_x, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Because of the horizontal mirror step, we can't process partial iMCUs
|
|
* at the (output) right edge properly. They just get transposed and
|
|
* not mirrored.
|
|
*/
|
|
MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x += compptr->h_samp_factor) {
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
|
|
if (dst_blk_x < comp_width) {
|
|
/* Block is within the mirrorable area. */
|
|
dst_ptr = dst_buffer[offset_y]
|
|
[comp_width - dst_blk_x - offset_x - 1];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
i++;
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
} else {
|
|
/* Edge blocks are transposed but not mirrored. */
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
for (i = 0; i < DCTSIZE; i++)
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* 270 degree rotation is equivalent to
|
|
* 1. Horizontal mirroring;
|
|
* 2. Transposing the image.
|
|
* These two steps are merged into a single processing routine.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
|
|
int ci, i, j, offset_x, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Because of the horizontal mirror step, we can't process partial iMCUs
|
|
* at the (output) bottom edge properly. They just get transposed and
|
|
* not mirrored.
|
|
*/
|
|
MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x += compptr->h_samp_factor) {
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
if (dst_blk_y < comp_height) {
|
|
/* Block is within the mirrorable area. */
|
|
src_ptr = src_buffer[offset_x]
|
|
[comp_height - dst_blk_y - offset_y - 1];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++) {
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
j++;
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
} else {
|
|
/* Edge blocks are transposed but not mirrored. */
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
|
|
for (i = 0; i < DCTSIZE; i++)
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* 180 degree rotation is equivalent to
|
|
* 1. Vertical mirroring;
|
|
* 2. Horizontal mirroring.
|
|
* These two steps are merged into a single processing routine.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
|
|
int ci, i, j, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JBLOCKROW src_row_ptr, dst_row_ptr;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
|
|
MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
if (dst_blk_y < comp_height) {
|
|
/* Row is within the vertically mirrorable area. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci],
|
|
comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
} else {
|
|
/* Bottom-edge rows are only mirrored horizontally. */
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
}
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
if (dst_blk_y < comp_height) {
|
|
/* Row is within the mirrorable area. */
|
|
dst_row_ptr = dst_buffer[offset_y];
|
|
src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
|
|
/* Process the blocks that can be mirrored both ways. */
|
|
for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
|
/* For even row, negate every odd column. */
|
|
for (j = 0; j < DCTSIZE; j += 2) {
|
|
*dst_ptr++ = *src_ptr++;
|
|
*dst_ptr++ = - *src_ptr++;
|
|
}
|
|
/* For odd row, negate every even column. */
|
|
for (j = 0; j < DCTSIZE; j += 2) {
|
|
*dst_ptr++ = - *src_ptr++;
|
|
*dst_ptr++ = *src_ptr++;
|
|
}
|
|
}
|
|
}
|
|
/* Any remaining right-edge blocks are only mirrored vertically. */
|
|
for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
src_ptr = src_row_ptr[dst_blk_x];
|
|
for (i = 0; i < DCTSIZE; i += 2) {
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
*dst_ptr++ = *src_ptr++;
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
*dst_ptr++ = - *src_ptr++;
|
|
}
|
|
}
|
|
} else {
|
|
/* Remaining rows are just mirrored horizontally. */
|
|
dst_row_ptr = dst_buffer[offset_y];
|
|
src_row_ptr = src_buffer[offset_y];
|
|
/* Process the blocks that can be mirrored. */
|
|
for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
|
|
for (i = 0; i < DCTSIZE2; i += 2) {
|
|
*dst_ptr++ = *src_ptr++;
|
|
*dst_ptr++ = - *src_ptr++;
|
|
}
|
|
}
|
|
/* Any remaining right-edge blocks are only copied. */
|
|
for (; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
|
|
dst_ptr = dst_row_ptr[dst_blk_x];
|
|
src_ptr = src_row_ptr[dst_blk_x];
|
|
for (i = 0; i < DCTSIZE2; i++)
|
|
*dst_ptr++ = *src_ptr++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jvirt_barray_ptr *dst_coef_arrays)
|
|
/* Transverse transpose is equivalent to
|
|
* 1. 180 degree rotation;
|
|
* 2. Transposition;
|
|
* or
|
|
* 1. Horizontal mirroring;
|
|
* 2. Transposition;
|
|
* 3. Horizontal mirroring.
|
|
* These steps are merged into a single processing routine.
|
|
*/
|
|
{
|
|
JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
|
|
int ci, i, j, offset_x, offset_y;
|
|
JBLOCKARRAY src_buffer, dst_buffer;
|
|
JCOEFPTR src_ptr, dst_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
|
|
MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
|
|
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
comp_width = MCU_cols * compptr->h_samp_factor;
|
|
comp_height = MCU_rows * compptr->v_samp_factor;
|
|
for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
|
|
dst_blk_y += compptr->v_samp_factor) {
|
|
dst_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
|
|
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
|
|
for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
|
|
dst_blk_x += compptr->h_samp_factor) {
|
|
src_buffer = (*srcinfo->mem->access_virt_barray)
|
|
((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
|
|
(JDIMENSION) compptr->h_samp_factor, FALSE);
|
|
for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
|
|
if (dst_blk_y < comp_height) {
|
|
src_ptr = src_buffer[offset_x]
|
|
[comp_height - dst_blk_y - offset_y - 1];
|
|
if (dst_blk_x < comp_width) {
|
|
/* Block is within the mirrorable area. */
|
|
dst_ptr = dst_buffer[offset_y]
|
|
[comp_width - dst_blk_x - offset_x - 1];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++) {
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
j++;
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
i++;
|
|
for (j = 0; j < DCTSIZE; j++) {
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
j++;
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
} else {
|
|
/* Right-edge blocks are mirrored in y only */
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++) {
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
j++;
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
|
|
if (dst_blk_x < comp_width) {
|
|
/* Bottom-edge blocks are mirrored in x only */
|
|
dst_ptr = dst_buffer[offset_y]
|
|
[comp_width - dst_blk_x - offset_x - 1];
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
i++;
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
|
|
}
|
|
} else {
|
|
/* At lower right corner, just transpose, no mirroring */
|
|
dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
|
|
for (i = 0; i < DCTSIZE; i++)
|
|
for (j = 0; j < DCTSIZE; j++)
|
|
dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Request any required workspace.
|
|
*
|
|
* We allocate the workspace virtual arrays from the source decompression
|
|
* object, so that all the arrays (both the original data and the workspace)
|
|
* will be taken into account while making memory management decisions.
|
|
* Hence, this routine must be called after jpeg_read_header (which reads
|
|
* the image dimensions) and before jpeg_read_coefficients (which realizes
|
|
* the source's virtual arrays).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jtransform_request_workspace (j_decompress_ptr srcinfo,
|
|
jpeg_transform_info *info)
|
|
{
|
|
jvirt_barray_ptr *coef_arrays = NULL;
|
|
jpeg_component_info *compptr;
|
|
int ci;
|
|
|
|
if (info->force_grayscale &&
|
|
srcinfo->jpeg_color_space == JCS_YCbCr &&
|
|
srcinfo->num_components == 3) {
|
|
/* We'll only process the first component */
|
|
info->num_components = 1;
|
|
} else {
|
|
/* Process all the components */
|
|
info->num_components = srcinfo->num_components;
|
|
}
|
|
|
|
switch (info->transform) {
|
|
case JXFORM_NONE:
|
|
case JXFORM_FLIP_H:
|
|
/* Don't need a workspace array */
|
|
break;
|
|
case JXFORM_FLIP_V:
|
|
case JXFORM_ROT_180:
|
|
/* Need workspace arrays having same dimensions as source image.
|
|
* Note that we allocate arrays padded out to the next iMCU boundary,
|
|
* so that transform routines need not worry about missing edge blocks.
|
|
*/
|
|
coef_arrays = (jvirt_barray_ptr *)
|
|
(*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
|
|
SIZEOF(jvirt_barray_ptr) * info->num_components);
|
|
for (ci = 0; ci < info->num_components; ci++) {
|
|
compptr = srcinfo->comp_info + ci;
|
|
coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
|
|
((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
|
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
|
(long) compptr->h_samp_factor),
|
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
|
(long) compptr->v_samp_factor),
|
|
(JDIMENSION) compptr->v_samp_factor);
|
|
}
|
|
break;
|
|
case JXFORM_TRANSPOSE:
|
|
case JXFORM_TRANSVERSE:
|
|
case JXFORM_ROT_90:
|
|
case JXFORM_ROT_270:
|
|
/* Need workspace arrays having transposed dimensions.
|
|
* Note that we allocate arrays padded out to the next iMCU boundary,
|
|
* so that transform routines need not worry about missing edge blocks.
|
|
*/
|
|
coef_arrays = (jvirt_barray_ptr *)
|
|
(*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
|
|
SIZEOF(jvirt_barray_ptr) * info->num_components);
|
|
for (ci = 0; ci < info->num_components; ci++) {
|
|
compptr = srcinfo->comp_info + ci;
|
|
coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
|
|
((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
|
|
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
|
(long) compptr->v_samp_factor),
|
|
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
|
(long) compptr->h_samp_factor),
|
|
(JDIMENSION) compptr->h_samp_factor);
|
|
}
|
|
break;
|
|
}
|
|
info->workspace_coef_arrays = coef_arrays;
|
|
}
|
|
|
|
|
|
/* Transpose destination image parameters */
|
|
|
|
LOCAL(void)
|
|
transpose_critical_parameters (j_compress_ptr dstinfo)
|
|
{
|
|
int tblno, i, j, ci, itemp;
|
|
jpeg_component_info *compptr;
|
|
JQUANT_TBL *qtblptr;
|
|
JDIMENSION dtemp;
|
|
UINT16 qtemp;
|
|
|
|
/* Transpose basic image dimensions */
|
|
dtemp = dstinfo->image_width;
|
|
dstinfo->image_width = dstinfo->image_height;
|
|
dstinfo->image_height = dtemp;
|
|
|
|
/* Transpose sampling factors */
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
compptr = dstinfo->comp_info + ci;
|
|
itemp = compptr->h_samp_factor;
|
|
compptr->h_samp_factor = compptr->v_samp_factor;
|
|
compptr->v_samp_factor = itemp;
|
|
}
|
|
|
|
/* Transpose quantization tables */
|
|
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
|
|
qtblptr = dstinfo->quant_tbl_ptrs[tblno];
|
|
if (qtblptr != NULL) {
|
|
for (i = 0; i < DCTSIZE; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
qtemp = qtblptr->quantval[i*DCTSIZE+j];
|
|
qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
|
|
qtblptr->quantval[j*DCTSIZE+i] = qtemp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Trim off any partial iMCUs on the indicated destination edge */
|
|
|
|
LOCAL(void)
|
|
trim_right_edge (j_compress_ptr dstinfo)
|
|
{
|
|
int ci, max_h_samp_factor;
|
|
JDIMENSION MCU_cols;
|
|
|
|
/* We have to compute max_h_samp_factor ourselves,
|
|
* because it hasn't been set yet in the destination
|
|
* (and we don't want to use the source's value).
|
|
*/
|
|
max_h_samp_factor = 1;
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor;
|
|
max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor);
|
|
}
|
|
MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE);
|
|
if (MCU_cols > 0) /* can't trim to 0 pixels */
|
|
dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE);
|
|
}
|
|
|
|
LOCAL(void)
|
|
trim_bottom_edge (j_compress_ptr dstinfo)
|
|
{
|
|
int ci, max_v_samp_factor;
|
|
JDIMENSION MCU_rows;
|
|
|
|
/* We have to compute max_v_samp_factor ourselves,
|
|
* because it hasn't been set yet in the destination
|
|
* (and we don't want to use the source's value).
|
|
*/
|
|
max_v_samp_factor = 1;
|
|
for (ci = 0; ci < dstinfo->num_components; ci++) {
|
|
int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor;
|
|
max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor);
|
|
}
|
|
MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE);
|
|
if (MCU_rows > 0) /* can't trim to 0 pixels */
|
|
dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE);
|
|
}
|
|
|
|
|
|
/* Adjust output image parameters as needed.
|
|
*
|
|
* This must be called after jpeg_copy_critical_parameters()
|
|
* and before jpeg_write_coefficients().
|
|
*
|
|
* The return value is the set of virtual coefficient arrays to be written
|
|
* (either the ones allocated by jtransform_request_workspace, or the
|
|
* original source data arrays). The caller will need to pass this value
|
|
* to jpeg_write_coefficients().
|
|
*/
|
|
|
|
GLOBAL(jvirt_barray_ptr *)
|
|
jtransform_adjust_parameters (j_decompress_ptr srcinfo,
|
|
j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jpeg_transform_info *info)
|
|
{
|
|
/* If force-to-grayscale is requested, adjust destination parameters */
|
|
if (info->force_grayscale) {
|
|
/* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
|
|
* properly. Among other things, the target h_samp_factor & v_samp_factor
|
|
* will get set to 1, which typically won't match the source.
|
|
* In fact we do this even if the source is already grayscale; that
|
|
* provides an easy way of coercing a grayscale JPEG with funny sampling
|
|
* factors to the customary 1,1. (Some decoders fail on other factors.)
|
|
*/
|
|
if ((dstinfo->jpeg_color_space == JCS_YCbCr &&
|
|
dstinfo->num_components == 3) ||
|
|
(dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
|
|
dstinfo->num_components == 1)) {
|
|
/* We have to preserve the source's quantization table number. */
|
|
int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
|
|
jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
|
|
dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
|
|
} else {
|
|
/* Sorry, can't do it */
|
|
ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
|
|
}
|
|
}
|
|
|
|
/* Correct the destination's image dimensions etc if necessary */
|
|
switch (info->transform) {
|
|
case JXFORM_NONE:
|
|
/* Nothing to do */
|
|
break;
|
|
case JXFORM_FLIP_H:
|
|
if (info->trim)
|
|
trim_right_edge(dstinfo);
|
|
break;
|
|
case JXFORM_FLIP_V:
|
|
if (info->trim)
|
|
trim_bottom_edge(dstinfo);
|
|
break;
|
|
case JXFORM_TRANSPOSE:
|
|
transpose_critical_parameters(dstinfo);
|
|
/* transpose does NOT have to trim anything */
|
|
break;
|
|
case JXFORM_TRANSVERSE:
|
|
transpose_critical_parameters(dstinfo);
|
|
if (info->trim) {
|
|
trim_right_edge(dstinfo);
|
|
trim_bottom_edge(dstinfo);
|
|
}
|
|
break;
|
|
case JXFORM_ROT_90:
|
|
transpose_critical_parameters(dstinfo);
|
|
if (info->trim)
|
|
trim_right_edge(dstinfo);
|
|
break;
|
|
case JXFORM_ROT_180:
|
|
if (info->trim) {
|
|
trim_right_edge(dstinfo);
|
|
trim_bottom_edge(dstinfo);
|
|
}
|
|
break;
|
|
case JXFORM_ROT_270:
|
|
transpose_critical_parameters(dstinfo);
|
|
if (info->trim)
|
|
trim_bottom_edge(dstinfo);
|
|
break;
|
|
}
|
|
|
|
/* Return the appropriate output data set */
|
|
if (info->workspace_coef_arrays != NULL)
|
|
return info->workspace_coef_arrays;
|
|
return src_coef_arrays;
|
|
}
|
|
|
|
|
|
/* Execute the actual transformation, if any.
|
|
*
|
|
* This must be called *after* jpeg_write_coefficients, because it depends
|
|
* on jpeg_write_coefficients to have computed subsidiary values such as
|
|
* the per-component width and height fields in the destination object.
|
|
*
|
|
* Note that some transformations will modify the source data arrays!
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jtransform_execute_transformation (j_decompress_ptr srcinfo,
|
|
j_compress_ptr dstinfo,
|
|
jvirt_barray_ptr *src_coef_arrays,
|
|
jpeg_transform_info *info)
|
|
{
|
|
jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
|
|
|
|
switch (info->transform) {
|
|
case JXFORM_NONE:
|
|
break;
|
|
case JXFORM_FLIP_H:
|
|
do_flip_h(srcinfo, dstinfo, src_coef_arrays);
|
|
break;
|
|
case JXFORM_FLIP_V:
|
|
do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_TRANSPOSE:
|
|
do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_TRANSVERSE:
|
|
do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_ROT_90:
|
|
do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_ROT_180:
|
|
do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
case JXFORM_ROT_270:
|
|
do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#endif /* TRANSFORMS_SUPPORTED */
|
|
|
|
|
|
/* Setup decompression object to save desired markers in memory.
|
|
* This must be called before jpeg_read_header() to have the desired effect.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
|
|
{
|
|
#ifdef SAVE_MARKERS_SUPPORTED
|
|
int m;
|
|
|
|
/* Save comments except under NONE option */
|
|
if (option != JCOPYOPT_NONE) {
|
|
jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
|
|
}
|
|
/* Save all types of APPn markers iff ALL option */
|
|
if (option == JCOPYOPT_ALL) {
|
|
for (m = 0; m < 16; m++)
|
|
jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
|
|
}
|
|
#endif /* SAVE_MARKERS_SUPPORTED */
|
|
}
|
|
|
|
/* Copy markers saved in the given source object to the destination object.
|
|
* This should be called just after jpeg_start_compress() or
|
|
* jpeg_write_coefficients().
|
|
* Note that those routines will have written the SOI, and also the
|
|
* JFIF APP0 or Adobe APP14 markers if selected.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
|
JCOPY_OPTION option)
|
|
{
|
|
jpeg_saved_marker_ptr marker;
|
|
|
|
/* In the current implementation, we don't actually need to examine the
|
|
* option flag here; we just copy everything that got saved.
|
|
* But to avoid confusion, we do not output JFIF and Adobe APP14 markers
|
|
* if the encoder library already wrote one.
|
|
*/
|
|
for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
|
|
if (dstinfo->write_JFIF_header &&
|
|
marker->marker == JPEG_APP0 &&
|
|
marker->data_length >= 5 &&
|
|
GETJOCTET(marker->data[0]) == 0x4A &&
|
|
GETJOCTET(marker->data[1]) == 0x46 &&
|
|
GETJOCTET(marker->data[2]) == 0x49 &&
|
|
GETJOCTET(marker->data[3]) == 0x46 &&
|
|
GETJOCTET(marker->data[4]) == 0)
|
|
continue; /* reject duplicate JFIF */
|
|
if (dstinfo->write_Adobe_marker &&
|
|
marker->marker == JPEG_APP0+14 &&
|
|
marker->data_length >= 5 &&
|
|
GETJOCTET(marker->data[0]) == 0x41 &&
|
|
GETJOCTET(marker->data[1]) == 0x64 &&
|
|
GETJOCTET(marker->data[2]) == 0x6F &&
|
|
GETJOCTET(marker->data[3]) == 0x62 &&
|
|
GETJOCTET(marker->data[4]) == 0x65)
|
|
continue; /* reject duplicate Adobe */
|
|
#ifdef NEED_FAR_POINTERS
|
|
/* We could use jpeg_write_marker if the data weren't FAR... */
|
|
{
|
|
unsigned int i;
|
|
jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
|
|
for (i = 0; i < marker->data_length; i++)
|
|
jpeg_write_m_byte(dstinfo, marker->data[i]);
|
|
}
|
|
#else
|
|
jpeg_write_marker(dstinfo, marker->marker,
|
|
marker->data, marker->data_length);
|
|
#endif
|
|
}
|
|
}
|