Fix gif format encoding

This commit is contained in:
Gaspar Capello 2020-03-25 14:32:43 -03:00 committed by David Capello
parent 2af6a0493e
commit 7ed83c10cc
8 changed files with 414 additions and 121 deletions

View File

@ -320,6 +320,7 @@
<option id="show_alert" type="bool" default="true" />
<option id="interlaced" type="bool" default="false" />
<option id="loop" type="bool" default="true" />
<option id="preserve_palette_order" type="bool" default="true" />
</section>
<section id="jpeg">
<option id="show_alert" type="bool" default="true" />

View File

@ -672,6 +672,7 @@ title = GIF Options
general_options = General Options:
interlaced = &Interlaced
animation_loop = Animation &Loop
preserve_palette_order = &Preserve palette order
ok = &OK
cancel = &Cancel

View File

@ -1,11 +1,13 @@
<!-- Aseprite -->
<!-- Copyright (C) 2014-2018 by David Capello -->
<!-- Copyright (C) 2020 Igara Studio S.A. -->
<!-- Copyright (C) 2014-2018 David Capello -->
<gui>
<window id="gif_options" text="@.title">
<vbox>
<separator text="@.general_options" left="true" horizontal="true" />
<check text="@.interlaced" id="interlaced" />
<check text="@.animation_loop" id="loop" />
<check text="@.preserve_palette_order" id="preserve_palette_order" />
<separator horizontal="true" />

View File

@ -901,10 +901,36 @@ public:
, m_document(fop->document())
, m_sprite(fop->document()->sprite())
, m_spriteBounds(m_sprite->bounds())
, m_hasBackground(m_sprite->backgroundLayer() ? true: false)
, m_hasBackground(m_sprite->isOpaque())
, m_bitsPerPixel(1)
, m_globalColormap(nullptr)
, m_globalColormapPalette(*(m_sprite->palette(0)))
, m_quantizeColormaps(false) {
const auto gifOptions = std::static_pointer_cast<GifOptions>(fop->formatOptions());
LOG("GIF: Saving with options: interlaced=%d loop=%d\n",
gifOptions->interlaced(), gifOptions->loop());
m_interlaced = gifOptions->interlaced();
m_loop = (gifOptions->loop() ? 0: -1);
if (m_sprite->pixelFormat() == PixelFormat::IMAGE_INDEXED) {
if (m_hasBackground) {
m_preservePaletteOrder = true;
}
// Only for transparent-indexed images we can select if we
// preserve or not the palette order.
else {
m_preservePaletteOrder = gifOptions->preservePaletteOrder();
}
}
else
m_preservePaletteOrder = false;
m_lastFrameBounds = m_spriteBounds;
m_lastDisposal = DisposalMethod::NONE;
if (m_sprite->pixelFormat() == IMAGE_INDEXED) {
for (Palette* palette : m_sprite->getPalettes()) {
int bpp = GifBitSizeLimited(palette->size());
@ -931,7 +957,7 @@ public:
}
if (!m_quantizeColormaps) {
m_globalColormap = createColorMap(m_sprite->palette(0));
m_globalColormap = createColorMap(&m_globalColormapPalette);
m_bgIndex = m_sprite->transparentColor();
}
else
@ -944,18 +970,39 @@ public:
m_transparentIndex = (m_hasBackground ? -1: m_bgIndex);
if (m_hasBackground)
m_clearColor = m_sprite->palette(0)->getEntry(m_bgIndex);
else
m_clearColor = rgba(0, 0, 0, 0);
const auto gifOptions = std::static_pointer_cast<GifOptions>(fop->formatOptions());
LOG("GIF: Saving with options: interlaced=%d loop=%d\n",
gifOptions->interlaced(), gifOptions->loop());
m_interlaced = gifOptions->interlaced();
m_loop = (gifOptions->loop() ? 0: -1);
// INDEXED image without Background case: we need to know if 0 color is loaded in the palette:
// Color 0 will be used in the gif file composition when disposal method is DO_NOT_DISPOSE.
// You may think, "Why we do that? In INDEXED we never surpass 256 colors, and we
// simply replacing the entire frame with RESTORE_BGCOLOR is enought".
// Answer: because we want a tiny file size, replacing the entire frame, every frame
// can result in large file sizes. So, we will include the transparent color in
// the final palette, in our case, always the color zero (0).
if (m_globalColormap) {
Palette newPalette(*m_sprite->palette(0));
bool maskColorFounded = false;
for (int i=0; i<newPalette.size(); i++) {
if (newPalette.getEntry(i) == 0) {
maskColorFounded = true;
m_transparentIndex = i;
break;
}
}
if (!maskColorFounded && !m_preservePaletteOrder && !m_hasBackground) {
Palette(0, 255).copyColorsTo(&newPalette);
render::create_palette_from_sprite(m_sprite,
0,
totalFrames()-1,
false,
&newPalette,
nullptr,
m_fop->newBlend(),
false);
newPalette.addEntry(0);
newPalette.copyColorsTo(&m_globalColormapPalette);
m_transparentIndex = m_globalColormapPalette.size() - 1;
m_globalColormap = createColorMap(&m_globalColormapPalette);
}
}
for (int i=0; i<3; ++i)
m_images[i].reset(Image::create(IMAGE_RGB,
@ -1004,25 +1051,22 @@ public:
if (gifFrame+1 < nframes)
renderFrame(*frame_it, m_nextImage);
gfx::Rect frameBounds;
DisposalMethod disposal;
calculateBestDisposalMethod(gifFrame, frameBounds, disposal);
gfx::Rect frameBounds(0, 0, m_spriteBounds.w, m_spriteBounds.h);
DisposalMethod disposal = DisposalMethod::DO_NOT_DISPOSE;
// TODO We could join both frames in a longer one (with more duration)
if (frameBounds.isEmpty())
frameBounds = gfx::Rect(0, 0, 1, 1);
// Creation of the deltaImage (difference image result respect to
// current VS previous frame image).
// At the same time we must scan the next image,
// to check if some pixel turns to transparent (0),
// if the case, we need to force disposal method of the current image to RESTORE_BG.
// Further, at the same time, we must check if we can go without color zero (0).
calculateDeltaImageFrameBoundsDisposal(gifFrame, frameBounds, disposal);
writeImage(gifFrame, frame, frameBounds, disposal,
// Only the last frame in the animation needs the fix
(fix_last_frame_duration && gifFrame == nframes-1));
// Dispose/clear frame content
process_disposal_method(m_previousImage,
m_currentImage,
disposal,
frameBounds,
m_clearColor);
m_fop->setProgress(double(gifFrame+1) / double(nframes));
}
return true;
@ -1030,6 +1074,122 @@ public:
private:
void calculateDeltaImageFrameBoundsDisposal(gifframe_t gifFrame,
gfx::Rect& frameBounds,
DisposalMethod& disposal) {
if (gifFrame == 0) {
m_deltaImage.reset(Image::createCopy(m_currentImage));
frameBounds = gfx::Rect(0, 0, m_spriteBounds.w, m_spriteBounds.h);
// The first frame (frame 0) is good to force to disposal = DO_NOT_DISPOSE,
// but when the next frame (frame 1) has a pixel clearing,
// we must change disposal to RESTORE_BGCOLOR.
// Pixel clearing detection:
if (!m_hasBackground) {
const LockImageBits<RgbTraits> bits2(m_currentImage);
const LockImageBits<RgbTraits> bits3(m_nextImage);
typename LockImageBits<RgbTraits>::const_iterator it2, it3, end2, end3;
int i = 0;
for (it2 = bits2.begin(), end2 = bits2.end(),
it3 = bits3.begin(), end3 = bits3.end();
it2 != end2 && it3 != end3; ++it2, ++it3) {
if (*it2 != 0 && *it3 == 0) {
disposal = DisposalMethod::RESTORE_BGCOLOR;
break;
}
i++;
}
}
}
else {
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
// When m_lastDisposal was RESTORE_BGBOLOR it implies
// we will have to cover with colors the entire previous frameBounds plus
// the current frameBounds due to color changes, so we must start with
// a frameBounds equal to the previous frame iteration (saved in m_lastFrameBounds).
// Then we must cover all the resultant frameBounds with full color
// in m_currentImage, the output image will be saved in deltaImage.
if (m_lastDisposal == DisposalMethod::RESTORE_BGCOLOR) {
x1 = m_lastFrameBounds.x;
y1 = m_lastFrameBounds.y;
x2 = m_lastFrameBounds.x + m_lastFrameBounds.w - 1;
y2 = m_lastFrameBounds.y + m_lastFrameBounds.h - 1;
}
else {
x1 = m_spriteBounds.w - 1;
y1 = m_spriteBounds.h - 1;
}
int i = 0;
int x, y;
const LockImageBits<RgbTraits> bits1(m_previousImage);
const LockImageBits<RgbTraits> bits2(m_currentImage);
const LockImageBits<RgbTraits> bits3(m_nextImage);
m_deltaImage.reset(Image::create(PixelFormat::IMAGE_RGB, m_spriteBounds.w, m_spriteBounds.h));
clear_image(m_deltaImage.get(), 0);
LockImageBits<RgbTraits> deltaBits(m_deltaImage.get());
typename LockImageBits<RgbTraits>::iterator deltaIt;
typename LockImageBits<RgbTraits>::const_iterator it1, it2, it3, end1, end2, end3, deltaEnd;
for (it1 = bits1.begin(), end1 = bits1.end(),
it2 = bits2.begin(), end2 = bits2.end(),
it3 = bits3.begin(), end2 = bits3.end(),
deltaIt = deltaBits.begin();
it1 != end1 && it2 != end2; ++it1, ++it2, ++it3, ++deltaIt, ++i) {
x = i % m_spriteBounds.w;
y = i / m_spriteBounds.w;
// While we are checking color differences,
// we enlarge the frameBounds where the color differences take place
if (*it1 != *it2 || *it3 == 0) {
*deltaIt = *it2;
if (x<x1)
x1 = x;
if (x>x2)
x2 = x;
if (y<y1)
y1 = y;
if (y>y2)
y2 = y;
}
// We need to change disposal mode DO_NOT_DISPOSE to RESTORE_BGCOLOR only
// if we found a pixel clearing in the next Image. RESTORE_BGCOLOR is
// our way to clear pixels.
if (*it2 != 0 && *it3 == 0) {
disposal = DisposalMethod::RESTORE_BGCOLOR;
}
}
if (m_preservePaletteOrder)
disposal = DisposalMethod::RESTORE_BGCOLOR;
frameBounds = gfx::Rect(x1, y1, x2-x1+1, y2-y1+1);
// We need to conditionate the deltaImage to the next step: 'writeImage()'
// To do it, we need to crop deltaImage in frameBounds.
// If disposal method changed to RESTORE_BGCOLOR deltaImage we need to reproduce ALL the colors of m_currentImage
// contained in frameBounds (so, we will overwrite delta image with a cropped current image).
// In the other hand, if disposal is still DO_NOT_DISPOSAL, delta image will be a cropped image
// from itself in frameBounds.
if (disposal == DisposalMethod::RESTORE_BGCOLOR || m_lastDisposal == DisposalMethod::RESTORE_BGCOLOR) {
m_deltaImage.reset(crop_image(m_currentImage, frameBounds, 0));
m_lastFrameBounds = frameBounds;
}
else {
m_deltaImage.reset(crop_image(m_deltaImage.get(), frameBounds, 0));
disposal = DisposalMethod::DO_NOT_DISPOSE;
}
}
// TODO We could join both frames in a longer one (with more duration)
if (frameBounds.isEmpty())
frameBounds = gfx::Rect(0, 0, 1, 1);
m_lastDisposal = disposal;
};
doc::frame_t totalFrames() const {
return m_fop->roi().frames();
}
@ -1122,99 +1282,46 @@ private:
return frameBounds;
}
void calculateBestDisposalMethod(gifframe_t gifFrame, gfx::Rect& frameBounds,
DisposalMethod& disposal) {
if (m_hasBackground) {
disposal = DisposalMethod::DO_NOT_DISPOSE;
}
else {
disposal = DisposalMethod::RESTORE_BGCOLOR;
}
if (gifFrame == 0) {
frameBounds = m_spriteBounds;
}
else {
gfx::Rect prev, next;
if (gifFrame-1 >= 0)
prev = calculateFrameBounds(m_currentImage, m_previousImage);
if (!m_hasBackground &&
gifFrame+1 < totalFrames())
next = calculateFrameBounds(m_currentImage, m_nextImage);
frameBounds = prev.createUnion(next);
// Special case were it's better to restore the previous frame
// when we dispose the current one than clearing with the bg
// color.
if (m_hasBackground && !prev.isEmpty()) {
gfx::Rect prevNext = calculateFrameBounds(m_previousImage, m_nextImage);
if (!prevNext.isEmpty() &&
frameBounds.contains(prevNext) &&
prevNext.w*prevNext.h < frameBounds.w*frameBounds.h) {
disposal = DisposalMethod::RESTORE_PREVIOUS;
}
}
GIF_TRACE("GIF: frameBounds=%d %d %d %d prev=%d %d %d %d next=%d %d %d %d\n",
frameBounds.x, frameBounds.y, frameBounds.w, frameBounds.h,
prev.x, prev.y, prev.w, prev.h,
next.x, next.y, next.w, next.h);
}
}
void writeImage(const gifframe_t gifFrame,
const frame_t frame,
const gfx::Rect& frameBounds,
const DisposalMethod disposal,
const bool fixDuration) {
std::unique_ptr<Palette> framePaletteRef;
std::unique_ptr<RgbMap> rgbmapRef;
Palette* framePalette = m_sprite->palette(frame);
RgbMap* rgbmap = m_sprite->rgbMap(frame);
// Create optimized palette for RGB/Grayscale images
if (m_quantizeColormaps) {
framePaletteRef.reset(createOptimizedPalette(frameBounds));
framePalette = framePaletteRef.get();
Palette framePalette(*m_sprite->palette(0));
RgbMap* rgbmap(m_sprite->rgbMap(0));
if (m_globalColormap) {
m_globalColormapPalette.copyColorsTo(&framePalette);
rgbmapRef.reset(new RgbMap);
rgbmap = rgbmapRef.get();
rgbmap->regenerate(framePalette, m_transparentIndex);
rgbmapRef.get()->regenerate(&framePalette, m_transparentIndex);
}
else
m_sprite->palette(frame)->copyColorsTo(&framePalette);
if (m_quantizeColormaps) {
calculatePalette(frameBounds, disposal).copyColorsTo(&framePalette);
rgbmapRef.reset(new RgbMap);
rgbmapRef.get()->regenerate(&framePalette, m_transparentIndex);
}
// We will store the frameBounds pixels in frameImage, with the
// indexes that must be stored in the GIF file for this specific
// frame.
if (!m_frameImageBuf)
m_frameImageBuf.reset(new ImageBuffer);
rgbmap = rgbmapRef.get();
ImageRef frameImage(Image::create(IMAGE_INDEXED,
frameBounds.w,
frameBounds.h,
m_frameImageBuf));
// Convert the frameBounds area of m_currentImage (RGB) to frameImage (Indexed)
// bool needsTransparent = false;
PalettePicks usedColors(framePalette->size());
// If the sprite needs a transparent color we mark it as used so
// the palette includes a spot for it. It doesn't matter if the
// image doesn't use the transparent index, if the sprite isn't
// opaque we need the transparent index anyway.
if (m_transparentIndex >= 0) {
int i = m_transparentIndex;
if (i >= usedColors.size())
usedColors.resize(i+1);
usedColors[i] = true;
}
// Every frame might use a small portion of the global palette,
// to optimize the gif file size, we will analize which colors
// will be used in each processed frame.
PalettePicks usedColors(framePalette.size());
{
const LockImageBits<RgbTraits> srcBits(m_currentImage, frameBounds);
LockImageBits<IndexedTraits> dstBits(
frameImage.get(), gfx::Rect(0, 0, frameBounds.w, frameBounds.h));
const LockImageBits<RgbTraits> srcBits(m_deltaImage.get());
LockImageBits<IndexedTraits> dstBits(frameImage.get());
auto srcIt = srcBits.begin();
auto dstIt = dstBits.begin();
@ -1228,7 +1335,7 @@ private:
int i;
if (rgba_geta(color) >= 128) {
i = framePalette->findExactMatch(
i = framePalette.findExactMatch(
rgba_getr(color),
rgba_getg(color),
rgba_getb(color),
@ -1241,7 +1348,6 @@ private:
255);
}
else {
ASSERT(m_transparentIndex >= 0);
if (m_transparentIndex >= 0)
i = m_transparentIndex;
else
@ -1273,9 +1379,9 @@ private:
if (!colormap) {
Palette reducedPalette(0, usedNColors);
for (int i=0, j=0; i<framePalette->size(); ++i) {
for (int i=0, j=0; i<framePalette.size(); ++i) {
if (usedColors[i]) {
reducedPalette.setEntry(j, framePalette->getEntry(i));
reducedPalette.setEntry(j, framePalette.getEntry(i));
remap.map(i, j);
++j;
}
@ -1337,20 +1443,168 @@ private:
GifFreeMapObject(colormap);
}
Palette* createOptimizedPalette(const gfx::Rect& frameBounds) {
Palette calculatePalette(const gfx::Rect& frameBounds, DisposalMethod disposal) {
// First, we must check the palette color count in m_deltaImage (our best shot
// to find the smaller palette color count)
Palette pal(createOptimizedPalette(m_deltaImage.get(), m_deltaImage->bounds(), 257));
if (pal.size() == 256) {
// Here, the palette has 256 colors, there is no place to include the 0 color ( remember,
// createOptimizedPalette do not create entry for it).
//
// We have two paths:
// 1- Giving a try to palette generation on m_currentImage in frameBouns limits.
// 2- If the previous step is not possible (color count > 256), we will to start
// to approximate colors from m_deltaImage with some criterion. Final target:
// to approximate the palette to 255 colors + clear color (0)).
// 1- Giving a try to palette generation on m_currentImage in frameBouns limits.
// if disposal == RESTORE_BGCOLOR m_deltaImage already is a cropped copy of m_currentImage.
Palette auxPalette(pal);
if (disposal == DisposalMethod::DO_NOT_DISPOSE)
createOptimizedPalette(m_currentImage, frameBounds, 257).copyColorsTo(&auxPalette);
if (auxPalette.size() <= 256) {
// We are fine with color count in m_currentImage contained in frameBouns (we got 256 or less colors):
m_transparentIndex = -1;
auxPalette.copyColorsTo(&pal);
if (disposal == DisposalMethod::DO_NOT_DISPOSE)
m_deltaImage.reset(crop_image(m_currentImage, frameBounds, 0));
}
else {
// 2- If the previous step fails, we will to start to approximate colors from m_deltaImage
// with some criterion:
// Final target: to approximate the palette to 255 colors + clear color (0)).
// CRITERION:
// TODO: develop a better criterion, based on big color areas, or the opposite: do not take count of lone pixels.
// Find a palette of high precision 220 colors in the inner border square
// into m_deltaImage, then find 35 more truncated colors in the center square.
//
// m_currentImage__ __ m_deltaImage (same rectangle size as frameBounds)
// | |
// --------------*----|------------
// | | |
// | --------------*- |
// | | ________ | |
// | | | | | |
// | | | | *---------------inner border square (we will collect
// | | |________| | | high precision colors from this area)
// | |________________| |
// | |
// |_______________________________|
//
int thicknessTop = m_deltaImage->bounds().h / 4;
int thicknessLeft = m_deltaImage->bounds().w / 4;
int lastThicknessTop = thicknessTop;
int lastThicknessLeft = thicknessLeft;
while (true) {
render::PaletteOptimizer optimizer;
gfx::Rect auxRect(0, 0, m_deltaImage->bounds().w, thicknessTop);
optimizer.feedWithImage(Image::createCopy(crop_image(m_deltaImage.get(), auxRect, m_transparentIndex)), false);
// ----------------
// |________________|
// | | | |
// | | | |
// | |________| |
// |________________|
auxRect = gfx::Rect(0, m_deltaImage->bounds().h - thicknessTop, m_deltaImage->bounds().w, thicknessTop);
optimizer.feedWithImage(Image::createCopy(crop_image(m_deltaImage.get(), auxRect, m_transparentIndex)), false);
// ----------------
// | ________ |
// | | | |
// | | | |
// |___|________|___|
// |________________|
auxRect = gfx::Rect(0, thicknessTop, thicknessLeft, m_deltaImage->bounds().h - 2 * thicknessTop);
optimizer.feedWithImage(Image::createCopy(crop_image(m_deltaImage.get(), auxRect, m_transparentIndex)), false);
// ----------------
// |____________ |
// | | | |
// | | | |
// |___|________| |
// |________________|
auxRect = gfx::Rect(m_deltaImage->bounds().w - thicknessLeft, thicknessTop, thicknessLeft, m_deltaImage->bounds().h - 2 * thicknessTop);
optimizer.feedWithImage(Image::createCopy(crop_image(m_deltaImage.get(), auxRect, m_transparentIndex)), false);
// ----------------
// | _____________|
// | | | |
// | | | |
// | |________|___|
// |________________|
if (optimizer.isHighPrecision()) {
if (optimizer.highPrecisionSize() >= 220) { // 220 colors is an arbitrary number
lastThicknessTop = thicknessTop;
lastThicknessLeft = thicknessLeft;
// Put the high precision colors to the palette:
optimizer.calculate(&pal, 0);
break;
}
else if (m_deltaImage->bounds().h - thicknessTop * 2 <= m_deltaImage->bounds().h / 4 ||
m_deltaImage->bounds().w - thicknessLeft * 2 <= m_deltaImage->bounds().w / 4) {
// Put the high precision colors to the palette:
optimizer.calculate(&pal, 0);
break;
}
thicknessTop += thicknessTop / 2;
thicknessLeft += thicknessLeft / 2;
}
else {
if (thicknessTop <= m_deltaImage->bounds().h / 16 ||
thicknessLeft <= m_deltaImage->bounds().w / 16) {
// TODO: we need to catch this LAST posibility.
// Put the high precision colors to the palette:
optimizer.calculate(&pal, 0);
break;
}
thicknessTop -= thicknessTop / 2;
thicknessLeft -= thicknessLeft / 2;
}
lastThicknessTop = thicknessTop;
lastThicknessLeft = thicknessLeft;
}
gfx::Rect centerRect(lastThicknessLeft,
lastThicknessTop,
m_deltaImage->bounds().w - 1 - lastThicknessLeft,
m_deltaImage->bounds().h - 1 - lastThicknessTop);
// Find the center colors (aproximation colors)
Palette centerPalette(createOptimizedPalette(m_deltaImage.get(), centerRect, 255 - pal.size()));
// Adding the center colors to pal
for (int i=0; i < centerPalette.size(); i++)
pal.addEntry(centerPalette.getEntry(i));
// Add the transparent color:
pal.addEntry(0);
m_transparentIndex = pal.size() - 1;
}
}
// We are fine, we got 255 or less:
else if (pal.size() <= 255) {
pal.addEntry(0);
m_transparentIndex = pal.size() - 1;
}
return pal;
}
Palette createOptimizedPalette(Image* image, gfx::Rect bounds, int ncolors = 256) {
render::PaletteOptimizer optimizer;
// Feed the palette optimizer with pixels inside frameBounds
for (const auto& color : LockImageBits<RgbTraits>(m_currentImage, frameBounds)) {
if (rgba_geta(color) >= 128)
for (const auto& color : LockImageBits<RgbTraits>(image, bounds)) {
if (rgba_geta(color) >= 128) // Note: the mask color won't be part of the final palette
optimizer.feedWithRgbaColor(
rgba(rgba_getr(color),
rgba_getg(color),
rgba_getb(color), 255));
}
Palette* palette = new Palette(0, 256);
optimizer.calculate(palette, m_transparentIndex);
Palette palette(0, ncolors);
optimizer.calculate(&palette, -1);
return palette;
}
@ -1359,7 +1613,7 @@ private:
render.setNewBlend(m_fop->newBlend());
render.setBgType(render::BgType::NONE);
clear_image(dst, m_clearColor);
clear_image(dst, 0);
render.renderSprite(dst, m_sprite, frame);
}
@ -1397,18 +1651,22 @@ private:
gfx::Rect m_spriteBounds;
bool m_hasBackground;
int m_bgIndex;
color_t m_clearColor;
int m_transparentIndex;
int m_bitsPerPixel;
ColorMapObject* m_globalColormap;
Palette m_globalColormapPalette;
bool m_quantizeColormaps;
bool m_interlaced;
int m_loop;
bool m_preservePaletteOrder;
gfx::Rect m_lastFrameBounds;
DisposalMethod m_lastDisposal;
ImageBufferPtr m_frameImageBuf;
ImageRef m_images[3];
Image* m_previousImage;
Image* m_currentImage;
Image* m_nextImage;
std::unique_ptr<Image> m_deltaImage;
};
bool GifFormat::onSave(FileOp* fop)
@ -1447,21 +1705,37 @@ FormatOptionsPtr GifFormat::onAskUserForFormatOptions(FileOp* fop)
opts->setInterlaced(pref.gif.interlaced());
if (pref.isSet(pref.gif.loop))
opts->setLoop(pref.gif.loop());
if (pref.isSet(pref.gif.preservePaletteOrder))
opts->setPreservePaletteOrder(pref.gif.preservePaletteOrder());
if (pref.gif.showAlert()) {
app::gen::GifOptions win;
win.interlaced()->setSelected(opts->interlaced());
win.loop()->setSelected(opts->loop());
win.preservePaletteOrder()->setSelected(opts->preservePaletteOrder());
if (fop->document()->sprite()->pixelFormat() == PixelFormat::IMAGE_INDEXED &&
!fop->document()->sprite()->isOpaque())
win.preservePaletteOrder()->setEnabled(true);
else {
win.preservePaletteOrder()->setEnabled(false);
if (fop->document()->sprite()->pixelFormat() == PixelFormat::IMAGE_INDEXED && fop->document()->sprite()->isOpaque())
win.preservePaletteOrder()->setSelected(true);
else
win.preservePaletteOrder()->setSelected(false);
}
win.openWindowInForeground();
if (win.closer() == win.ok()) {
pref.gif.interlaced(win.interlaced()->isSelected());
pref.gif.loop(win.loop()->isSelected());
pref.gif.preservePaletteOrder(win.preservePaletteOrder()->isSelected());
pref.gif.showAlert(!win.dontShow()->isSelected());
opts->setInterlaced(pref.gif.interlaced());
opts->setLoop(pref.gif.loop());
opts->setPreservePaletteOrder(pref.gif.preservePaletteOrder());
}
else {
opts.reset();

View File

@ -1,4 +1,5 @@
// Aseprite
// Copyright (C) 2020 Igara Studio S.A.
// Copyright (C) 2001-2017 David Capello
//
// This program is distributed under the terms of
@ -18,20 +19,25 @@ namespace app {
public:
GifOptions(
bool interlaced = false,
bool loop = true)
bool loop = true,
bool preservePaletteOrder = true)
: m_interlaced(interlaced)
, m_loop(loop) {
, m_loop(loop)
, m_preservePaletteOrder(preservePaletteOrder) {
}
bool interlaced() const { return m_interlaced; }
bool loop() const { return m_loop; }
bool preservePaletteOrder() const { return m_preservePaletteOrder; }
void setInterlaced(bool interlaced) { m_interlaced = interlaced; }
void setLoop(bool loop) { m_loop = loop; }
void setPreservePaletteOrder(bool preservePaletteOrder) {m_preservePaletteOrder = preservePaletteOrder; }
private:
bool m_interlaced;
bool m_loop;
bool m_preservePaletteOrder;
};
} // namespace app

View File

@ -1,4 +1,5 @@
// Aseprite Render Library
// Copyright (c) 2020 Igara Studio S.A.
// Copyright (c) 2001-2015 David Capello
//
// This file is released under the terms of the MIT license.
@ -102,6 +103,9 @@ namespace render {
}
}
bool isHighPrecision() { return m_useHighPrecision; }
int highPrecisionSize() { return m_highPrecision.size(); }
private:
// Converts input color in a index for the histogram. It reduces
// each 8-bit component to the resolution given in the template

View File

@ -44,7 +44,8 @@ Palette* create_palette_from_sprite(
const bool withAlpha,
Palette* palette,
TaskDelegate* delegate,
const bool newBlend)
const bool newBlend,
const bool calculateWithTransparent)
{
PaletteOptimizer optimizer;
@ -75,8 +76,9 @@ Palette* create_palette_from_sprite(
optimizer.calculate(
palette,
// Transparent color is needed if we have transparent layers
(sprite->backgroundLayer() &&
sprite->allLayersCount() == 1 ? -1: sprite->transparentColor()));
((sprite->backgroundLayer() &&
sprite->allLayersCount() == 1) ||
!calculateWithTransparent)? -1: sprite->transparentColor());
return palette;
}

View File

@ -1,5 +1,5 @@
// Aseprite Rener Library
// Copyright (c) 2019 Igara Studio S.A.
// Copyright (c) 2019-2020 Igara Studio S.A.
// Copyright (c) 2001-2017 David Capello
//
// This file is released under the terms of the MIT license.
@ -31,6 +31,8 @@ namespace render {
void feedWithImage(doc::Image* image, bool withAlpha);
void feedWithRgbaColor(doc::color_t color);
void calculate(doc::Palette* palette, int maskIndex);
bool isHighPrecision() { return m_histogram.isHighPrecision(); }
int highPrecisionSize() { return m_histogram.highPrecisionSize(); }
private:
render::ColorHistogram<5, 6, 5, 5> m_histogram;
@ -45,7 +47,8 @@ namespace render {
const bool withAlpha,
doc::Palette* newPalette, // Can be NULL to create a new palette
TaskDelegate* delegate,
const bool newBlend);
const bool newBlend,
const bool calculateWithTransparent = true);
// Changes the image pixel format. The dithering method is used only
// when you want to convert from RGB to Indexed.