mirror of
https://github.com/aseprite/aseprite.git
synced 2024-12-28 15:20:15 +00:00
194 lines
4.9 KiB
C
194 lines
4.9 KiB
C
|
/* Libart_LGPL - library of basic graphic primitives
|
||
|
* Copyright (C) 1998-2000 Raph Levien
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Library General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Library General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Library General Public
|
||
|
* License along with this library; if not, write to the
|
||
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 02111-1307, USA.
|
||
|
*/
|
||
|
|
||
|
/* "Unsort" a sorted vector path into an ordinary vector path. */
|
||
|
|
||
|
#include <stdio.h> /* for printf - debugging */
|
||
|
#include "art_misc.h"
|
||
|
|
||
|
#include "art_vpath.h"
|
||
|
#include "art_svp.h"
|
||
|
#include "art_vpath_svp.h"
|
||
|
|
||
|
typedef struct _ArtVpathSVPEnd ArtVpathSVPEnd;
|
||
|
|
||
|
struct _ArtVpathSVPEnd {
|
||
|
int seg_num;
|
||
|
int which; /* 0 = top, 1 = bottom */
|
||
|
double x, y;
|
||
|
};
|
||
|
|
||
|
#define EPSILON 1e-6
|
||
|
|
||
|
static int
|
||
|
art_vpath_svp_point_compare (double x1, double y1, double x2, double y2)
|
||
|
{
|
||
|
if (y1 - EPSILON > y2) return 1;
|
||
|
if (y1 + EPSILON < y2) return -1;
|
||
|
if (x1 - EPSILON > x2) return 1;
|
||
|
if (x1 + EPSILON < x2) return -1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
art_vpath_svp_compare (const void *s1, const void *s2)
|
||
|
{
|
||
|
const ArtVpathSVPEnd *e1 = s1;
|
||
|
const ArtVpathSVPEnd *e2 = s2;
|
||
|
|
||
|
return art_vpath_svp_point_compare (e1->x, e1->y, e2->x, e2->y);
|
||
|
}
|
||
|
|
||
|
/* Convert from sorted vector path representation into regular
|
||
|
vector path representation.
|
||
|
|
||
|
Status of this routine:
|
||
|
|
||
|
Basic correctness: Only works with closed paths.
|
||
|
|
||
|
Numerical stability: Not known to work when more than two segments
|
||
|
meet at a point.
|
||
|
|
||
|
Speed: Should be pretty good.
|
||
|
|
||
|
Precision: Does not degrade precision.
|
||
|
|
||
|
*/
|
||
|
/**
|
||
|
* art_vpath_from_svp: Convert from svp to vpath form.
|
||
|
* @svp: Original #ArtSVP.
|
||
|
*
|
||
|
* Converts the sorted vector path @svp into standard vpath form.
|
||
|
*
|
||
|
* Return value: the newly allocated vpath.
|
||
|
**/
|
||
|
ArtVpath *
|
||
|
art_vpath_from_svp (const ArtSVP *svp)
|
||
|
{
|
||
|
int n_segs = svp->n_segs;
|
||
|
ArtVpathSVPEnd *ends;
|
||
|
ArtVpath *new;
|
||
|
int *visited;
|
||
|
int n_new, n_new_max;
|
||
|
int i, j, k;
|
||
|
int seg_num;
|
||
|
int first;
|
||
|
double last_x, last_y;
|
||
|
int n_points;
|
||
|
int pt_num;
|
||
|
|
||
|
last_x = 0; /* to eliminate "uninitialized" warning */
|
||
|
last_y = 0;
|
||
|
|
||
|
ends = art_new (ArtVpathSVPEnd, n_segs * 2);
|
||
|
for (i = 0; i < svp->n_segs; i++)
|
||
|
{
|
||
|
int lastpt;
|
||
|
|
||
|
ends[i * 2].seg_num = i;
|
||
|
ends[i * 2].which = 0;
|
||
|
ends[i * 2].x = svp->segs[i].points[0].x;
|
||
|
ends[i * 2].y = svp->segs[i].points[0].y;
|
||
|
|
||
|
lastpt = svp->segs[i].n_points - 1;
|
||
|
ends[i * 2 + 1].seg_num = i;
|
||
|
ends[i * 2 + 1].which = 1;
|
||
|
ends[i * 2 + 1].x = svp->segs[i].points[lastpt].x;
|
||
|
ends[i * 2 + 1].y = svp->segs[i].points[lastpt].y;
|
||
|
}
|
||
|
qsort (ends, n_segs * 2, sizeof (ArtVpathSVPEnd), art_vpath_svp_compare);
|
||
|
|
||
|
n_new = 0;
|
||
|
n_new_max = 16; /* I suppose we _could_ estimate this from traversing
|
||
|
the svp, so we don't have to reallocate */
|
||
|
new = art_new (ArtVpath, n_new_max);
|
||
|
|
||
|
visited = art_new (int, n_segs);
|
||
|
for (i = 0; i < n_segs; i++)
|
||
|
visited[i] = 0;
|
||
|
|
||
|
first = 1;
|
||
|
for (i = 0; i < n_segs; i++)
|
||
|
{
|
||
|
if (!first)
|
||
|
{
|
||
|
/* search for the continuation of the existing subpath */
|
||
|
/* This could be a binary search (which is why we sorted, above) */
|
||
|
for (j = 0; j < n_segs * 2; j++)
|
||
|
{
|
||
|
if (!visited[ends[j].seg_num] &&
|
||
|
art_vpath_svp_point_compare (last_x, last_y,
|
||
|
ends[j].x, ends[j].y) == 0)
|
||
|
break;
|
||
|
}
|
||
|
if (j == n_segs * 2)
|
||
|
first = 1;
|
||
|
}
|
||
|
if (first)
|
||
|
{
|
||
|
/* start a new subpath */
|
||
|
for (j = 0; j < n_segs * 2; j++)
|
||
|
if (!visited[ends[j].seg_num])
|
||
|
break;
|
||
|
}
|
||
|
if (j == n_segs * 2)
|
||
|
{
|
||
|
printf ("failure\n");
|
||
|
}
|
||
|
seg_num = ends[j].seg_num;
|
||
|
n_points = svp->segs[seg_num].n_points;
|
||
|
for (k = 0; k < n_points; k++)
|
||
|
{
|
||
|
pt_num = svp->segs[seg_num].dir ? k : n_points - (1 + k);
|
||
|
if (k == 0)
|
||
|
{
|
||
|
if (first)
|
||
|
{
|
||
|
art_vpath_add_point (&new, &n_new, &n_new_max,
|
||
|
ART_MOVETO,
|
||
|
svp->segs[seg_num].points[pt_num].x,
|
||
|
svp->segs[seg_num].points[pt_num].y);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
art_vpath_add_point (&new, &n_new, &n_new_max,
|
||
|
ART_LINETO,
|
||
|
svp->segs[seg_num].points[pt_num].x,
|
||
|
svp->segs[seg_num].points[pt_num].y);
|
||
|
if (k == n_points - 1)
|
||
|
{
|
||
|
last_x = svp->segs[seg_num].points[pt_num].x;
|
||
|
last_y = svp->segs[seg_num].points[pt_num].y;
|
||
|
/* to make more robust, check for meeting first_[xy],
|
||
|
set first if so */
|
||
|
}
|
||
|
}
|
||
|
first = 0;
|
||
|
}
|
||
|
visited[seg_num] = 1;
|
||
|
}
|
||
|
|
||
|
art_vpath_add_point (&new, &n_new, &n_new_max,
|
||
|
ART_END, 0, 0);
|
||
|
art_free (visited);
|
||
|
art_free (ends);
|
||
|
return new;
|
||
|
}
|