mirror of
https://github.com/libretro/RetroArch
synced 2025-01-06 01:02:15 +00:00
262 lines
9.1 KiB
C
262 lines
9.1 KiB
C
/* Copyright (C) 2010-2020 The RetroArch team
|
|
*
|
|
* ---------------------------------------------------------------------------------------
|
|
* The following license statement only applies to this file (scaler_int.c).
|
|
* ---------------------------------------------------------------------------------------
|
|
*
|
|
* Permission is hereby granted, free of charge,
|
|
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
|
|
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <gfx/scaler/scaler_int.h>
|
|
|
|
#include <retro_inline.h>
|
|
|
|
#ifdef SCALER_NO_SIMD
|
|
#undef __SSE2__
|
|
#endif
|
|
|
|
#if defined(__SSE2__)
|
|
#include <emmintrin.h>
|
|
#ifdef _WIN32
|
|
#include <intrin.h>
|
|
#endif
|
|
#endif
|
|
|
|
/* ARGB8888 scaler is split in two:
|
|
*
|
|
* First, horizontal scaler is applied.
|
|
* Here, all 8-bit channels are expanded to 16-bit. Values are then shifted 7
|
|
* to left to occupy 15 bits.
|
|
*
|
|
* The sign bit is kept empty as we have to do signed multiplication for the
|
|
* filter.
|
|
*
|
|
* A mulhi [(a * b) >> 16] is applied which loses some precision, but is
|
|
* very efficient for SIMD.
|
|
* It is accurate enough for 8-bit purposes.
|
|
*
|
|
* The fixed point 1.0 for filter is (1 << 14). After horizontal scale,
|
|
* the output is kept with 16-bit channels, and will now have 13 bits
|
|
* of precision as [(a * (1 << 14)) >> 16] is effectively a right shift by 2.
|
|
*
|
|
* Vertical scaler takes the 13 bit channels, and performs the
|
|
* same mulhi steps.
|
|
* Another 2 bits of precision is lost, which ends up as 11 bits.
|
|
* Scaling is now complete. Channels are shifted right by 3, and saturated
|
|
* into 8-bit values.
|
|
*
|
|
* The C version of scalers perform the exact same operations as the
|
|
* SIMD code for testing purposes.
|
|
*/
|
|
|
|
void scaler_argb8888_vert(const struct scaler_ctx *ctx, void *output_, int stride)
|
|
{
|
|
int h, w, y;
|
|
const uint64_t *input = ctx->scaled.frame;
|
|
uint32_t *output = (uint32_t*)output_;
|
|
|
|
const int16_t *filter_vert = ctx->vert.filter;
|
|
|
|
for (h = 0; h < ctx->out_height; h++,
|
|
filter_vert += ctx->vert.filter_stride, output += stride >> 2)
|
|
{
|
|
const uint64_t *input_base = input + ctx->vert.filter_pos[h]
|
|
* (ctx->scaled.stride >> 3);
|
|
|
|
for (w = 0; w < ctx->out_width; w++)
|
|
{
|
|
const uint64_t *input_base_y = input_base + w;
|
|
#if defined(__SSE2__)
|
|
__m128i final;
|
|
__m128i res = _mm_setzero_si128();
|
|
|
|
for (y = 0; (y + 1) < ctx->vert.filter_len; y += 2,
|
|
input_base_y += (ctx->scaled.stride >> 2))
|
|
{
|
|
__m128i coeff = _mm_set_epi64x(filter_vert[y + 1] * 0x0001000100010001ll, filter_vert[y + 0] * 0x0001000100010001ll);
|
|
__m128i col = _mm_set_epi64x(input_base_y[ctx->scaled.stride >> 3], input_base_y[0]);
|
|
|
|
res = _mm_adds_epi16(_mm_mulhi_epi16(col, coeff), res);
|
|
}
|
|
|
|
for (; y < ctx->vert.filter_len; y++, input_base_y += (ctx->scaled.stride >> 3))
|
|
{
|
|
__m128i coeff = _mm_set_epi64x(0, filter_vert[y] * 0x0001000100010001ll);
|
|
__m128i col = _mm_set_epi64x(0, input_base_y[0]);
|
|
|
|
res = _mm_adds_epi16(_mm_mulhi_epi16(col, coeff), res);
|
|
}
|
|
|
|
res = _mm_adds_epi16(_mm_srli_si128(res, 8), res);
|
|
res = _mm_srai_epi16(res, (7 - 2 - 2));
|
|
|
|
final = _mm_packus_epi16(res, res);
|
|
|
|
output[w] = _mm_cvtsi128_si32(final);
|
|
#else
|
|
int16_t res_a = 0;
|
|
int16_t res_r = 0;
|
|
int16_t res_g = 0;
|
|
int16_t res_b = 0;
|
|
|
|
for (y = 0; y < ctx->vert.filter_len; y++,
|
|
input_base_y += (ctx->scaled.stride >> 3))
|
|
{
|
|
uint64_t col = *input_base_y;
|
|
|
|
int16_t a = (col >> 48) & 0xffff;
|
|
int16_t r = (col >> 32) & 0xffff;
|
|
int16_t g = (col >> 16) & 0xffff;
|
|
int16_t b = (col >> 0) & 0xffff;
|
|
|
|
int16_t coeff = filter_vert[y];
|
|
|
|
res_a += (a * coeff) >> 16;
|
|
res_r += (r * coeff) >> 16;
|
|
res_g += (g * coeff) >> 16;
|
|
res_b += (b * coeff) >> 16;
|
|
}
|
|
|
|
res_a >>= (7 - 2 - 2);
|
|
res_r >>= (7 - 2 - 2);
|
|
res_g >>= (7 - 2 - 2);
|
|
res_b >>= (7 - 2 - 2);
|
|
|
|
output[w] =
|
|
(clamp_8bit(res_a) << 24) |
|
|
(clamp_8bit(res_r) << 16) |
|
|
(clamp_8bit(res_g) << 8) |
|
|
(clamp_8bit(res_b) << 0);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
void scaler_argb8888_horiz(const struct scaler_ctx *ctx, const void *input_, int stride)
|
|
{
|
|
int h, w, x;
|
|
const uint32_t *input = (uint32_t*)input_;
|
|
uint64_t *output = ctx->scaled.frame;
|
|
|
|
for (h = 0; h < ctx->scaled.height; h++, input += stride >> 2,
|
|
output += ctx->scaled.stride >> 3)
|
|
{
|
|
const int16_t *filter_horiz = ctx->horiz.filter;
|
|
|
|
for (w = 0; w < ctx->scaled.width; w++,
|
|
filter_horiz += ctx->horiz.filter_stride)
|
|
{
|
|
const uint32_t *input_base_x = input + ctx->horiz.filter_pos[w];
|
|
#if defined(__SSE2__)
|
|
__m128i res = _mm_setzero_si128();
|
|
#ifndef __x86_64__
|
|
union
|
|
{
|
|
uint32_t *u32;
|
|
uint64_t *u64;
|
|
} u;
|
|
#endif
|
|
for (x = 0; (x + 1) < ctx->horiz.filter_len; x += 2)
|
|
{
|
|
__m128i coeff = _mm_set_epi64x(filter_horiz[x + 1] * 0x0001000100010001ll, filter_horiz[x + 0] * 0x0001000100010001ll);
|
|
|
|
__m128i col = _mm_unpacklo_epi8(_mm_set_epi64x(0,
|
|
((uint64_t)input_base_x[x + 1] << 32) | input_base_x[x + 0]), _mm_setzero_si128());
|
|
|
|
col = _mm_slli_epi16(col, 7);
|
|
res = _mm_adds_epi16(_mm_mulhi_epi16(col, coeff), res);
|
|
}
|
|
|
|
for (; x < ctx->horiz.filter_len; x++)
|
|
{
|
|
__m128i coeff = _mm_set_epi64x(0, filter_horiz[x] * 0x0001000100010001ll);
|
|
__m128i col = _mm_unpacklo_epi8(_mm_set_epi32(0, 0, 0, input_base_x[x]), _mm_setzero_si128());
|
|
|
|
col = _mm_slli_epi16(col, 7);
|
|
res = _mm_adds_epi16(_mm_mulhi_epi16(col, coeff), res);
|
|
}
|
|
|
|
res = _mm_adds_epi16(_mm_srli_si128(res, 8), res);
|
|
|
|
#ifdef __x86_64__
|
|
output[w] = _mm_cvtsi128_si64(res);
|
|
#else /* 32-bit doesn't have si64. Do it in two steps. */
|
|
u.u64 = output + w;
|
|
u.u32[0] = _mm_cvtsi128_si32(res);
|
|
u.u32[1] = _mm_cvtsi128_si32(_mm_srli_si128(res, 4));
|
|
#endif
|
|
#else
|
|
int16_t res_a = 0;
|
|
int16_t res_r = 0;
|
|
int16_t res_g = 0;
|
|
int16_t res_b = 0;
|
|
|
|
for (x = 0; x < ctx->horiz.filter_len; x++)
|
|
{
|
|
uint32_t col = input_base_x[x];
|
|
|
|
int16_t a = (col >> (24 - 7)) & (0xff << 7);
|
|
int16_t r = (col >> (16 - 7)) & (0xff << 7);
|
|
int16_t g = (col >> ( 8 - 7)) & (0xff << 7);
|
|
int16_t b = (col << ( 0 + 7)) & (0xff << 7);
|
|
|
|
int16_t coeff = filter_horiz[x];
|
|
|
|
res_a += (a * coeff) >> 16;
|
|
res_r += (r * coeff) >> 16;
|
|
res_g += (g * coeff) >> 16;
|
|
res_b += (b * coeff) >> 16;
|
|
}
|
|
|
|
output[w] = (
|
|
(uint64_t)res_a << 48) |
|
|
((uint64_t)res_r << 32) |
|
|
((uint64_t)res_g << 16) |
|
|
((uint64_t)res_b << 0);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
void scaler_argb8888_point_special(const struct scaler_ctx *ctx,
|
|
void *output_, const void *input_,
|
|
int out_width, int out_height,
|
|
int in_width, int in_height,
|
|
int out_stride, int in_stride)
|
|
{
|
|
int h, w;
|
|
int x_pos = (1 << 15) * in_width / out_width - (1 << 15);
|
|
int x_step = (1 << 16) * in_width / out_width;
|
|
int y_pos = (1 << 15) * in_height / out_height - (1 << 15);
|
|
int y_step = (1 << 16) * in_height / out_height;
|
|
const uint32_t *input = (const uint32_t*)input_;
|
|
uint32_t *output = (uint32_t*)output_;
|
|
|
|
if (x_pos < 0)
|
|
x_pos = 0;
|
|
if (y_pos < 0)
|
|
y_pos = 0;
|
|
|
|
for (h = 0; h < out_height; h++, y_pos += y_step, output += out_stride >> 2)
|
|
{
|
|
int x = x_pos;
|
|
const uint32_t *inp = input + (y_pos >> 16) * (in_stride >> 2);
|
|
|
|
for (w = 0; w < out_width; w++, x += x_step)
|
|
output[w] = inp[x >> 16];
|
|
}
|
|
}
|