RetroArch/libretro-common/formats/libchdr/libchdr_huffman.c
2023-07-02 05:46:45 +02:00

564 lines
17 KiB
C

/* license:BSD-3-Clause
* copyright-holders:Aaron Giles
****************************************************************************
huffman.c
Static Huffman compression and decompression helpers.
****************************************************************************
Maximum codelength is officially (alphabetsize - 1). This would be 255 bits
(since we use 1 byte values). However, it is also dependent upon the number
of samples used, as follows:
2 bits -> 3..4 samples
3 bits -> 5..7 samples
4 bits -> 8..12 samples
5 bits -> 13..20 samples
6 bits -> 21..33 samples
7 bits -> 34..54 samples
8 bits -> 55..88 samples
9 bits -> 89..143 samples
10 bits -> 144..232 samples
11 bits -> 233..376 samples
12 bits -> 377..609 samples
13 bits -> 610..986 samples
14 bits -> 987..1596 samples
15 bits -> 1597..2583 samples
16 bits -> 2584..4180 samples -> note that a 4k data size guarantees codelength <= 16 bits
17 bits -> 4181..6764 samples
18 bits -> 6765..10945 samples
19 bits -> 10946..17710 samples
20 bits -> 17711..28656 samples
21 bits -> 28657..46367 samples
22 bits -> 46368..75024 samples
23 bits -> 75025..121392 samples
24 bits -> 121393..196417 samples
25 bits -> 196418..317810 samples
26 bits -> 317811..514228 samples
27 bits -> 514229..832039 samples
28 bits -> 832040..1346268 samples
29 bits -> 1346269..2178308 samples
30 bits -> 2178309..3524577 samples
31 bits -> 3524578..5702886 samples
32 bits -> 5702887..9227464 samples
Looking at it differently, here is where powers of 2 fall into these buckets:
256 samples -> 11 bits max
512 samples -> 12 bits max
1k samples -> 14 bits max
2k samples -> 15 bits max
4k samples -> 16 bits max
8k samples -> 18 bits max
16k samples -> 19 bits max
32k samples -> 21 bits max
64k samples -> 22 bits max
128k samples -> 24 bits max
256k samples -> 25 bits max
512k samples -> 27 bits max
1M samples -> 28 bits max
2M samples -> 29 bits max
4M samples -> 31 bits max
8M samples -> 32 bits max
****************************************************************************
Delta-RLE encoding works as follows:
Starting value is assumed to be 0. All data is encoded as a delta
from the previous value, such that final[i] = final[i - 1] + delta.
Long runs of 0s are RLE-encoded as follows:
0x100 = repeat count of 8
0x101 = repeat count of 9
0x102 = repeat count of 10
0x103 = repeat count of 11
0x104 = repeat count of 12
0x105 = repeat count of 13
0x106 = repeat count of 14
0x107 = repeat count of 15
0x108 = repeat count of 16
0x109 = repeat count of 32
0x10a = repeat count of 64
0x10b = repeat count of 128
0x10c = repeat count of 256
0x10d = repeat count of 512
0x10e = repeat count of 1024
0x10f = repeat count of 2048
Note that repeat counts are reset at the end of a row, so if a 0 run
extends to the end of a row, a large repeat count may be used.
The reason for starting the run counts at 8 is that 0 is expected to
be the most common symbol, and is typically encoded in 1 or 2 bits.
***************************************************************************/
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <libchdr/huffman.h>
#include <libchdr/minmax.h>
/***************************************************************************
* MACROS
***************************************************************************
*/
#define MAKE_LOOKUP(code,bits) (((code) << 5) | ((bits) & 0x1f))
/***************************************************************************
* IMPLEMENTATION
***************************************************************************
*/
/*-------------------------------------------------
* huffman_context_base - create an encoding/
* decoding context
*-------------------------------------------------
*/
struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
{
struct huffman_decoder* decoder;
/* limit to 24 bits */
if (maxbits > 24)
return NULL;
decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
decoder->numcodes = numcodes;
decoder->maxbits = maxbits;
decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes);
decoder->datahisto = NULL;
decoder->prevdata = 0;
decoder->rleremaining = 0;
return decoder;
}
void delete_huffman_decoder(struct huffman_decoder* decoder)
{
if (decoder != NULL)
{
if (decoder->lookup != NULL)
free(decoder->lookup);
if (decoder->huffnode != NULL)
free(decoder->huffnode);
free(decoder);
}
}
/*-------------------------------------------------
* decode_one - decode a single code from the
* huffman stream
*-------------------------------------------------
*/
uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
/* peek ahead to get maxbits worth of data */
uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits);
/* look it up, then remove the actual number of bits for this code */
lookup_value lookup = decoder->lookup[bits];
bitstream_remove(bitbuf, lookup & 0x1f);
/* return the value */
return lookup >> 5;
}
/*-------------------------------------------------
* import_tree_rle - import an RLE-encoded
* huffman tree from a source data stream
*-------------------------------------------------
*/
enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
enum huffman_error error;
/* bits per entry depends on the maxbits */
int numbits;
int curnode;
if (decoder->maxbits >= 16)
numbits = 5;
else if (decoder->maxbits >= 8)
numbits = 4;
else
numbits = 3;
/* loop until we read all the nodes */
for (curnode = 0; curnode < (int)decoder->numcodes; /* blank */)
{
/* a non-one value is just raw */
int nodebits = bitstream_read(bitbuf, numbits);
if (nodebits != 1)
decoder->huffnode[curnode++].numbits = nodebits;
/* a one value is an escape code */
else
{
/* a double 1 is just a single 1 */
nodebits = bitstream_read(bitbuf, numbits);
if (nodebits == 1)
decoder->huffnode[curnode++].numbits = nodebits;
/* otherwise, we need one for value for the repeat count */
else
{
int repcount = bitstream_read(bitbuf, numbits) + 3;
while (repcount--)
decoder->huffnode[curnode++].numbits = nodebits;
}
}
}
/* make sure we ended up with the right number */
if (curnode != (int)decoder->numcodes)
return HUFFERR_INVALID_DATA;
/* assign canonical codes for all nodes based on their code lengths */
error = huffman_assign_canonical_codes(decoder);
if (error != HUFFERR_NONE)
return error;
/* build the lookup table */
huffman_build_lookup_table(decoder);
/* determine final input length and report errors */
return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
}
/*-------------------------------------------------
* import_tree_huffman - import a huffman-encoded
* huffman tree from a source data stream
*-------------------------------------------------
*/
enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
{
int last = 0;
int curcode;
uint32_t temp;
enum huffman_error error;
uint8_t rlefullbits = 0;
int index, count = 0;
int start;
/* start by parsing the lengths for the small tree */
struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
start = bitstream_read(bitbuf, 3) + 1;
for (index = 1; index < 24; index++)
{
if (index < start || count == 7)
smallhuff->huffnode[index].numbits = 0;
else
{
count = bitstream_read(bitbuf, 3);
smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count;
}
}
/* then regenerate the tree */
error = huffman_assign_canonical_codes(smallhuff);
if (error != HUFFERR_NONE)
return error;
huffman_build_lookup_table(smallhuff);
/* determine the maximum length of an RLE count */
temp = decoder->numcodes - 9;
while (temp != 0)
{
temp >>= 1;
rlefullbits++;
}
/* now process the rest of the data */
for (curcode = 0; curcode < (int)decoder->numcodes; /* blank */)
{
int value = huffman_decode_one(smallhuff, bitbuf);
if (value != 0)
decoder->huffnode[curcode++].numbits = last = value - 1;
else
{
int count = bitstream_read(bitbuf, 3) + 2;
if (count == 7+2)
count += bitstream_read(bitbuf, rlefullbits);
for (/* blank */; count != 0 && curcode < (int)decoder->numcodes; count--)
decoder->huffnode[curcode++].numbits = last;
}
}
/* make sure we ended up with the right number */
if (curcode != (int)decoder->numcodes)
{
delete_huffman_decoder(smallhuff);
return HUFFERR_INVALID_DATA;
}
/* assign canonical codes for all nodes based on their code lengths */
error = huffman_assign_canonical_codes(decoder);
if (error != HUFFERR_NONE)
{
delete_huffman_decoder(smallhuff);
return error;
}
/* build the lookup table */
huffman_build_lookup_table(decoder);
delete_huffman_decoder(smallhuff);
/* determine final input length and report errors */
return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
}
/*-------------------------------------------------
* compute_tree_from_histo - common backend for
* computing a tree based on the data histogram
*-------------------------------------------------
*/
enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
{
/* compute the number of data items in the histogram */
int i;
uint32_t upperweight;
uint32_t lowerweight = 0;
uint32_t sdatacount = 0;
for (i = 0; i < (int)decoder->numcodes; i++)
sdatacount += decoder->datahisto[i];
/* binary search to achieve the optimum encoding */
upperweight = sdatacount * 2;
for (;;)
{
/* build a tree using the current weight */
uint32_t curweight = (upperweight + lowerweight) / 2;
int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight);
/* apply binary search here */
if (curmaxbits <= decoder->maxbits)
{
lowerweight = curweight;
/* early out if it worked with the raw weights, or if we're done searching */
if (curweight == sdatacount || (upperweight - lowerweight) <= 1)
break;
}
else
upperweight = curweight;
}
/* assign canonical codes for all nodes based on their code lengths */
return huffman_assign_canonical_codes(decoder);
}
/***************************************************************************
* INTERNAL FUNCTIONS
***************************************************************************
*/
/*-------------------------------------------------
* tree_node_compare - compare two tree nodes
* by weight
*-------------------------------------------------
*/
static int huffman_tree_node_compare(const void *item1, const void *item2)
{
const struct node_t *node1 = *(const struct node_t **)item1;
const struct node_t *node2 = *(const struct node_t **)item2;
if (node2->weight != node1->weight)
return node2->weight - node1->weight;
if (node2->bits - node1->bits == 0)
fprintf(stderr, "identical node sort keys, should not happen!\n");
return (int)node1->bits - (int)node2->bits;
}
/*-------------------------------------------------
* build_tree - build a huffman tree based on the
* data distribution
*-------------------------------------------------
*/
int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
{
int nextalloc;
int maxbits = 0;
/* make a list of all non-zero nodes */
struct node_t** list = (struct node_t**)
malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
int curcode, listitems = 0;
memset(decoder->huffnode, 0,
decoder->numcodes * sizeof(decoder->huffnode[0]));
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
if (decoder->datahisto[curcode] != 0)
{
list[listitems++] = &decoder->huffnode[curcode];
decoder->huffnode[curcode].count = decoder->datahisto[curcode];
decoder->huffnode[curcode].bits = curcode;
/* scale the weight by the current effective length, ensuring we don't go to 0 */
decoder->huffnode[curcode].weight = (uint32_t)(((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata));
if (decoder->huffnode[curcode].weight == 0)
decoder->huffnode[curcode].weight = 1;
}
#if 0
{
unsigned i;
fprintf(stderr, "Pre-sort:\n");
for (i = 0; i < listitems; i++)
fprintf(stderr, "weight: %d code: %d\n",
list[i]->m_weight, list[i]->m_bits);
}
#endif
/* sort the list by weight, largest weight first */
qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare);
#if 0
fprintf(stderr, "Post-sort:\n");
for (int i = 0; i < listitems; i++) {
fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
}
fprintf(stderr, "===================\n");
#endif
/* now build the tree */
nextalloc = decoder->numcodes;
while (listitems > 1)
{
int curitem;
/* remove lowest two items */
struct node_t* node1 = &(*list[--listitems]);
struct node_t* node0 = &(*list[--listitems]);
/* create new node */
struct node_t* newnode = &decoder->huffnode[nextalloc++];
newnode->parent = NULL;
node0->parent =
node1->parent = newnode;
newnode->weight =
node0->weight + node1->weight;
/* insert into list at appropriate location */
for (curitem = 0; curitem < listitems; curitem++)
if (newnode->weight > list[curitem]->weight)
{
memmove(&list[curitem+1],
&list[curitem],
(listitems - curitem) * sizeof(list[0]));
break;
}
list[curitem] = newnode;
listitems++;
}
/* compute the number of bits in each code,
* and fill in another histogram */
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
{
struct node_t *curnode;
struct node_t* node = &decoder->huffnode[curcode];
node->numbits = 0;
node->bits = 0;
/* if we have a non-zero weight, compute the number of bits */
if (node->weight > 0)
{
/* determine the number of bits for this node */
for (curnode = node;
curnode->parent != NULL; curnode = curnode->parent)
node->numbits++;
if (node->numbits == 0)
node->numbits = 1;
/* keep track of the max */
maxbits = MAX(maxbits, ((int)node->numbits));
}
}
free(list);
return maxbits;
}
/*-------------------------------------------------
* assign_canonical_codes - assign canonical codes
* to all the nodes based on the number of bits
* in each
*-------------------------------------------------
*/
enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
{
uint32_t curstart = 0;
/* build up a histogram of bit lengths */
int curcode, codelen;
uint32_t bithisto[33] = { 0 };
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
{
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > decoder->maxbits)
return HUFFERR_INTERNAL_INCONSISTENCY;
if (node->numbits <= 32)
bithisto[node->numbits]++;
}
/* for each code length, determine the starting code number */
for (codelen = 32; codelen > 0; codelen--)
{
uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
return HUFFERR_INTERNAL_INCONSISTENCY;
bithisto[codelen] = curstart;
curstart = nextstart;
}
/* now assign canonical codes */
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
{
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > 0)
node->bits = bithisto[node->numbits]++;
}
return HUFFERR_NONE;
}
/*-------------------------------------------------
* build_lookup_table - build a lookup table for
* fast decoding
*-------------------------------------------------
*/
void huffman_build_lookup_table(struct huffman_decoder* decoder)
{
/* iterate over all codes */
int curcode;
for (curcode = 0; curcode < (int)decoder->numcodes; curcode++)
{
/* process all nodes which have non-zero bits */
struct node_t* node = &decoder->huffnode[curcode];
if (node->numbits > 0)
{
/* set up the entry */
lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
/* fill all matching entries */
int shift = decoder->maxbits - node->numbits;
lookup_value *dest = &decoder->lookup[node->bits << shift];
lookup_value *destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
while (dest <= destend)
*dest++ = value;
}
}
}