RetroArch/bootstrap/vita/sbrk.c
notaz 5f2ed6c85a
VITA: don't fail if vm_memblock can't be allocated (#13545)
Failing here is catastrophic because we get no heap, the whole thing
just crashes and leaves nothing in the logs. vm_memblock is not even
used by RetroArch, it's just used by cores with dynarecs, so let the
cores themselves deal with problems if they arise.
2022-01-25 04:19:00 +01:00

109 lines
2.9 KiB
C

#include <errno.h>
#include <reent.h>
#include <defines/psp_defines.h>
#include <psp2/kernel/sysmem.h>
#include <psp2/kernel/threadmgr.h>
int _newlib_heap_memblock;
unsigned _newlib_heap_size;
char *_newlib_heap_base, *_newlib_heap_end, *_newlib_heap_cur;
static char _newlib_sbrk_mutex[32] __attribute__ ((aligned (8)));
static int _newlib_vm_memblock;
extern int _newlib_heap_size_user __attribute__((weak));
extern int _newlib_vm_size_user __attribute__((weak));
#define ALIGN(x, a) (((x) + ((a) - 1)) & ~((a) - 1))
void * _sbrk_r(struct _reent *reent, ptrdiff_t incr) {
if (sceKernelLockLwMutex((struct SceKernelLwMutexWork*)_newlib_sbrk_mutex, 1, 0) < 0)
goto fail;
if (!_newlib_heap_base || _newlib_heap_cur + incr >= _newlib_heap_end) {
sceKernelUnlockLwMutex((struct SceKernelLwMutexWork*)_newlib_sbrk_mutex, 1);
fail:
reent->_errno = ENOMEM;
return (void*)-1;
}
char *prev_heap_end = _newlib_heap_cur;
_newlib_heap_cur += incr;
sceKernelUnlockLwMutex((struct SceKernelLwMutexWork*)_newlib_sbrk_mutex, 1);
return (void*) prev_heap_end;
}
void _init_vita_heap(void) {
int _newlib_vm_size = 0;
if (&_newlib_vm_size_user != NULL) {
_newlib_vm_size = ALIGN(_newlib_vm_size_user, 0x100000);
_newlib_vm_memblock = sceKernelAllocMemBlockForVM("code", _newlib_vm_size);
if (_newlib_vm_memblock < 0){
//sceClibPrintf("sceKernelAllocMemBlockForVM failed\n");
}
}else{
_newlib_vm_memblock = 0;
}
// Create a mutex to use inside _sbrk_r
if (sceKernelCreateLwMutex((struct SceKernelLwMutexWork*)_newlib_sbrk_mutex, "sbrk mutex", 0, 0, 0) < 0) {
goto failure;
}
// Always allocating the max avaliable USER_RW mem on the system
SceKernelFreeMemorySizeInfo info;
info.size = sizeof(SceKernelFreeMemorySizeInfo);
sceKernelGetFreeMemorySize(&info);
printf("sceKernelGetFreeMemorySize %x\n", info.size_user);
if (&_newlib_heap_size_user != NULL) {
_newlib_heap_size = _newlib_heap_size_user;
}else{
_newlib_heap_size = info.size_user - RAM_THRESHOLD;
}
_newlib_heap_size -= _newlib_vm_size;
_newlib_heap_memblock = sceKernelAllocMemBlock("Newlib heap", 0x0c20d060, _newlib_heap_size, 0);
if (_newlib_heap_memblock < 0) {
goto failure;
}
if (sceKernelGetMemBlockBase(_newlib_heap_memblock, (void**)&_newlib_heap_base) < 0) {
goto failure;
}
_newlib_heap_end = _newlib_heap_base + _newlib_heap_size;
_newlib_heap_cur = _newlib_heap_base;
return;
failure:
_newlib_vm_memblock = 0;
_newlib_heap_memblock = 0;
_newlib_heap_base = 0;
_newlib_heap_cur = 0;
}
int getVMBlock(){
return _newlib_vm_memblock;
}
void _free_vita_heap(void) {
// Destroy the sbrk mutex
sceKernelDeleteLwMutex((struct SceKernelLwMutexWork*)_newlib_sbrk_mutex);
// Free the heap memblock to avoid memory leakage.
sceKernelFreeMemBlock(_newlib_heap_memblock);
if (_newlib_vm_memblock > 0)
sceKernelFreeMemBlock(_newlib_vm_memblock);
_newlib_vm_memblock = 0;
_newlib_heap_memblock = 0;
_newlib_heap_base = 0;
_newlib_heap_cur = 0;
}