mirror of
https://github.com/libretro/RetroArch
synced 2025-01-04 02:50:05 +00:00
216 lines
5.5 KiB
C
216 lines
5.5 KiB
C
/* SSNES - A Super Nintendo Entertainment System (SNES) Emulator frontend for libsnes.
|
|
* Copyright (C) 2010-2012 - Hans-Kristian Arntzen
|
|
*
|
|
* Some code herein may be based on code found in BSNES.
|
|
*
|
|
* SSNES is free software: you can redistribute it and/or modify it under the terms
|
|
* of the GNU General Public License as published by the Free Software Found-
|
|
* ation, either version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* SSNES is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with SSNES.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "../resampler.h"
|
|
#include "../utils.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
static void gen_signal(float *out, double omega, double bias_samples, size_t samples)
|
|
{
|
|
for (size_t i = 0; i < samples; i += 2)
|
|
{
|
|
out[i + 0] = cos(((i >> 1) + bias_samples) * omega);
|
|
out[i + 1] = out[i + 0];
|
|
}
|
|
}
|
|
|
|
static double calculate_gain(const float *orig, const float *resamp, size_t samples)
|
|
{
|
|
double orig_power = 0.0;
|
|
double resamp_power = 0.0;
|
|
|
|
for (size_t i = 0; i < samples; i += 2)
|
|
orig_power += orig[i] * orig[i];
|
|
|
|
for (size_t i = 0; i < samples; i += 2)
|
|
resamp_power += resamp[i] * resamp[i];
|
|
|
|
return sqrt(resamp_power / orig_power);
|
|
}
|
|
|
|
static double calculate_phase(const float *orig, const float *resamp, double makeup_gain, size_t samples)
|
|
{
|
|
double max_correlation = 0.0;
|
|
for (size_t i = 0; i < samples; i += 2)
|
|
max_correlation += orig[i] * orig[i];
|
|
|
|
double actual_correlation = 0.0;
|
|
for (size_t i = 0; i < samples; i += 2)
|
|
{
|
|
double resampled = makeup_gain * resamp[i];
|
|
actual_correlation += resampled * orig[i];
|
|
}
|
|
|
|
double corr = actual_correlation / max_correlation;
|
|
if (corr > 1.0)
|
|
corr = 1.0;
|
|
|
|
if (fabs(corr) < 0.0001)
|
|
return 0.5 * M_PI;
|
|
else
|
|
return acos(corr);
|
|
}
|
|
|
|
struct snr_result
|
|
{
|
|
double snr;
|
|
double gain;
|
|
double phase;
|
|
};
|
|
|
|
// This doesn't yet take account for slight phase distortions,
|
|
// so reported SNR is lower than reality.
|
|
static void calculate_snr(struct snr_result *res,
|
|
double omega,
|
|
float *orig, const float *resamp, size_t samples)
|
|
{
|
|
double noise = 0.0;
|
|
double signal = 0.0;
|
|
|
|
gen_signal(orig, omega, 0, samples);
|
|
|
|
// Account for gain losses at higher frequencies as it's not really noise.
|
|
double filter_gain = calculate_gain(orig, resamp, samples);
|
|
double makeup_gain = 1.0 / filter_gain;
|
|
|
|
double phase = calculate_phase(orig, resamp, makeup_gain, samples);
|
|
|
|
for (size_t i = 0; i < samples; i += 2)
|
|
{
|
|
signal += orig[i] * orig[i];
|
|
double diff = makeup_gain * resamp[i] - orig[i];
|
|
noise += diff * diff;
|
|
}
|
|
|
|
res->snr = 10 * log10(signal / noise);
|
|
res->gain = 20.0 * log10(filter_gain);
|
|
res->phase = phase;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
float *input;
|
|
float *output;
|
|
float *output_expected;
|
|
|
|
if (argc != 3)
|
|
{
|
|
fprintf(stderr, "Usage: %s <in-rate> <out-rate> (max ratio: 8.0)\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
unsigned in_rate = strtoul(argv[1], NULL, 0);
|
|
unsigned out_rate = strtoul(argv[2], NULL, 0);
|
|
|
|
double ratio = (double)out_rate / in_rate;
|
|
if (ratio >= 7.99)
|
|
{
|
|
fprintf(stderr, "Ratio is too high ...\n");
|
|
return 1;
|
|
}
|
|
|
|
if (ratio < 1.0)
|
|
{
|
|
fprintf(stderr, "Ratio too low ...\n");
|
|
return 1;
|
|
}
|
|
|
|
static const float freq_list[] = {
|
|
30, 50,
|
|
100, 150,
|
|
200, 250,
|
|
300, 350,
|
|
400, 450,
|
|
500, 550,
|
|
600, 650,
|
|
700, 800,
|
|
900, 1000,
|
|
1100, 1200,
|
|
1300, 1500,
|
|
1600, 1700,
|
|
1800, 1900,
|
|
2000, 2100,
|
|
2200, 2300,
|
|
2500, 3000,
|
|
3500, 4000,
|
|
4500, 5000,
|
|
5500, 6000,
|
|
6500, 7000,
|
|
7500, 8000,
|
|
9000, 9500,
|
|
10000, 11000,
|
|
12000, 13000,
|
|
14000, 15000,
|
|
16000, 17000,
|
|
18000, 19000,
|
|
20000, 21000,
|
|
22000,
|
|
};
|
|
|
|
unsigned samples = in_rate * 2;
|
|
input = calloc(sizeof(float), samples);
|
|
output = calloc(sizeof(float), samples * 8);
|
|
output_expected = calloc(sizeof(float), samples * 8);
|
|
assert(input);
|
|
assert(output);
|
|
assert(output_expected);
|
|
|
|
ssnes_resampler_t *re = resampler_new();
|
|
assert(re);
|
|
|
|
for (unsigned i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]) && freq_list[i] < 0.5f * in_rate; i++)
|
|
{
|
|
double omega = 2.0 * M_PI * freq_list[i] / in_rate;
|
|
double omega_out = 2.0 * M_PI * freq_list[i] / out_rate;
|
|
double sample_offset;
|
|
resampler_preinit(re, omega, &sample_offset);
|
|
|
|
gen_signal(input, omega, sample_offset, samples);
|
|
|
|
struct resampler_data data = {
|
|
.data_in = input,
|
|
.data_out = output,
|
|
.input_frames = in_rate,
|
|
.ratio = ratio,
|
|
};
|
|
|
|
resampler_process(re, &data);
|
|
|
|
unsigned out_samples = data.output_frames * 2;
|
|
|
|
struct snr_result res;
|
|
calculate_snr(&res, omega_out, output_expected, output, out_samples);
|
|
|
|
printf("SNR @ %7.1f Hz: %6.2lf dB, Gain: %6.1lf dB, Phase: %6.4f rad\n",
|
|
freq_list[i], res.snr, res.gain, res.phase);
|
|
|
|
//printf("Generated:\n\t");
|
|
//for (unsigned i = 0; i < 10; i++)
|
|
// printf("%.4f, ", output[i]);
|
|
//printf("\n");
|
|
}
|
|
|
|
resampler_free(re);
|
|
free(input);
|
|
free(output);
|
|
free(output_expected);
|
|
}
|
|
|