RetroArch/input/drivers_joypad/udev_joypad.c
2018-07-24 22:48:50 +01:00

721 lines
19 KiB
C

/* RetroArch - A frontend for libretro.
* Copyright (C) 2010-2015 - Hans-Kristian Arntzen
* Copyright (C) 2011-2017 - Daniel De Matteis
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <unistd.h>
#include <string.h>
#include <limits.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/poll.h>
#include <libudev.h>
#include <linux/types.h>
#include <linux/input.h>
#include <retro_inline.h>
#include <compat/strl.h>
#include <string/stdstring.h>
#include "../input_driver.h"
#include "../../tasks/tasks_internal.h"
#include "../../verbosity.h"
/* Udev/evdev Linux joypad driver.
* More complex and extremely low level,
* but only Linux driver which can support joypad rumble.
*
* Uses udev for device detection + hotplug.
*
* Code adapted from SDL 2.0's implementation.
*/
#define UDEV_NUM_BUTTONS 32
#define NUM_AXES 32
#define NUM_HATS 4
#define test_bit(nr, addr) \
(((1UL << ((nr) % (sizeof(long) * CHAR_BIT))) & ((addr)[(nr) / (sizeof(long) * CHAR_BIT)])) != 0)
#define NBITS(x) ((((x) - 1) / (sizeof(long) * CHAR_BIT)) + 1)
struct udev_joypad
{
int fd;
dev_t device;
/* Input state polled. */
uint64_t buttons;
int16_t axes[NUM_AXES];
int8_t hats[NUM_HATS][2];
/* Maps keycodes -> button/axes */
uint8_t button_bind[KEY_MAX];
uint8_t axes_bind[ABS_MAX];
struct input_absinfo absinfo[NUM_AXES];
int num_effects;
int effects[2]; /* [0] - strong, [1] - weak */
bool has_set_ff[2];
uint16_t strength[2];
uint16_t configured_strength[2];
char ident[255];
char *path;
int32_t vid;
int32_t pid;
/* Deal with analog triggers that report -32767 to 32767 */
bool neg_trigger[NUM_AXES];
};
struct joypad_udev_entry
{
const char *devnode;
struct udev_list_entry *item;
};
static struct udev *udev_joypad_fd = NULL;
static struct udev_monitor *udev_joypad_mon = NULL;
static struct udev_joypad udev_pads[MAX_USERS];
static INLINE int16_t udev_compute_axis(const struct input_absinfo *info, int value)
{
int range = info->maximum - info->minimum;
int axis = (value - info->minimum) * 0xffffll / range - 0x7fffll;
if (axis > 0x7fff)
return 0x7fff;
else if (axis < -0x7fff)
return -0x7fff;
return axis;
}
static int udev_find_vacant_pad(void)
{
unsigned i;
for (i = 0; i < MAX_USERS; i++)
if (udev_pads[i].fd < 0)
return i;
return -1;
}
static int udev_open_joystick(const char *path)
{
unsigned long evbit[NBITS(EV_MAX)] = {0};
unsigned long keybit[NBITS(KEY_MAX)] = {0};
unsigned long absbit[NBITS(ABS_MAX)] = {0};
int fd = open(path, O_RDWR | O_NONBLOCK);
if (fd < 0)
return fd;
if ( (ioctl(fd, EVIOCGBIT(0, sizeof(evbit)), evbit) < 0) ||
(ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(keybit)), keybit) < 0) ||
(ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(absbit)), absbit) < 0))
goto error;
/* Has to at least support EV_KEY interface. */
if (!test_bit(EV_KEY, evbit))
goto error;
return fd;
error:
close(fd);
return -1;
}
static int udev_add_pad(struct udev_device *dev, unsigned p, int fd, const char *path)
{
int i;
struct stat st;
int ret = 0;
const char *buf = NULL;
unsigned buttons = 0;
unsigned axes = 0;
struct udev_device *parent = NULL;
struct udev_joypad *pad = (struct udev_joypad*)&udev_pads[p];
struct input_id inputid = {0};
unsigned long keybit[NBITS(KEY_MAX)] = {0};
unsigned long absbit[NBITS(ABS_MAX)] = {0};
unsigned long ffbit[NBITS(FF_MAX)] = {0};
strlcpy(pad->ident, input_device_names[p], sizeof(pad->ident));
if (ioctl(fd, EVIOCGNAME(sizeof(pad->ident)), pad->ident) < 0)
{
RARCH_LOG("[udev]: Failed to get pad name: %s.\n", pad->ident);
return -1;
}
pad->vid = pad->pid = 0;
if (ioctl(fd, EVIOCGID, &inputid) >= 0) {
pad->vid = inputid.vendor;
pad->pid = inputid.product;
}
RARCH_LOG("[udev]: Plugged pad: %s (%u:%u) on port #%u.\n",
pad->ident, pad->vid, pad->pid, p);
if (fstat(fd, &st) < 0)
return -1;
if ((ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(keybit)), keybit) < 0) ||
(ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(absbit)), absbit) < 0))
return -1;
/* Go through all possible keycodes, check if they are used,
* and map them to button/axes/hat indices.
*/
for (i = KEY_UP; i <= KEY_DOWN && buttons < UDEV_NUM_BUTTONS; i++)
if (test_bit(i, keybit))
pad->button_bind[i] = buttons++;
for (i = BTN_MISC; i < KEY_MAX && buttons < UDEV_NUM_BUTTONS; i++)
if (test_bit(i, keybit))
pad->button_bind[i] = buttons++;
/* The following two ranges are scanned and added after the above
* ranges to maintain compatibility with existing key maps.
*/
for (i = 0; i < KEY_UP && buttons < UDEV_NUM_BUTTONS; i++)
if (test_bit(i, keybit))
pad->button_bind[i] = buttons++;
for (i = KEY_DOWN + 1; i < BTN_MISC && buttons < UDEV_NUM_BUTTONS; i++)
if (test_bit(i, keybit))
pad->button_bind[i] = buttons++;
for (i = 0; i < ABS_MISC && axes < NUM_AXES; i++)
{
/* Skip hats for now. */
if (i == ABS_HAT0X)
{
i = ABS_HAT3Y;
continue;
}
if (test_bit(i, absbit))
{
struct input_absinfo *abs = &pad->absinfo[axes];
if (ioctl(fd, EVIOCGABS(i), abs) < 0)
continue;
if (abs->maximum > abs->minimum)
{
pad->axes[axes] = udev_compute_axis(abs, abs->value);
/* Deal with analog triggers that report -32767 to 32767
by testing if the axis initial value is negative, allowing for
for some slop (1300 =~ 4%)in an axis centred around 0.
The actual work is done in udev_joypad_axis.
All bets are off if you're sitting on it. Reinitailise it by unpluging
and plugging back in. */
if (udev_compute_axis(abs, abs->value) < -1300)
pad->neg_trigger[i] = true;
pad->axes_bind[i] = axes++;
}
}
}
pad->device = st.st_rdev;
pad->fd = fd;
pad->path = strdup(path);
if (!string_is_empty(pad->ident))
{
if (!input_autoconfigure_connect(
pad->ident,
NULL,
udev_joypad.ident,
p,
pad->vid,
pad->pid))
input_config_set_device_name(p, pad->ident);
ret = 1;
}
/* Check for rumble features. */
if (ioctl(fd, EVIOCGBIT(EV_FF, sizeof(ffbit)), ffbit) >= 0)
{
if (test_bit(FF_RUMBLE, ffbit))
RARCH_LOG("[udev]: Pad #%u (%s) supports force feedback.\n",
p, path);
if (ioctl(fd, EVIOCGEFFECTS, &pad->num_effects) >= 0)
RARCH_LOG(
"[udev]: Pad #%u (%s) supports %d force feedback effects.\n",
p, path, pad->num_effects);
}
return ret;
}
static void udev_check_device(struct udev_device *dev, const char *path)
{
int ret;
int pad, fd;
unsigned i;
struct stat st;
if (stat(path, &st) < 0)
return;
for (i = 0; i < MAX_USERS; i++)
{
if (st.st_rdev == udev_pads[i].device)
{
RARCH_LOG(
"[udev]: Device ID %u is already plugged.\n",
(unsigned)st.st_rdev);
return;
}
}
pad = udev_find_vacant_pad();
if (pad < 0)
return;
fd = udev_open_joystick(path);
if (fd < 0)
return;
ret = udev_add_pad(dev, pad, fd, path);
switch (ret)
{
case -1:
RARCH_ERR("[udev]: Failed to add pad: %s.\n", path);
close(fd);
break;
case 1:
/* Pad was autoconfigured. */
break;
case 0:
default:
break;
}
}
static void udev_free_pad(unsigned pad)
{
if (udev_pads[pad].fd >= 0)
close(udev_pads[pad].fd);
if (udev_pads[pad].path)
free(udev_pads[pad].path);
udev_pads[pad].path = NULL;
if (!string_is_empty(udev_pads[pad].ident))
udev_pads[pad].ident[0] = '\0';
memset(&udev_pads[pad], 0, sizeof(udev_pads[pad]));
udev_pads[pad].fd = -1;
}
static void udev_joypad_remove_device(const char *path)
{
unsigned i;
for (i = 0; i < MAX_USERS; i++)
{
if ( !string_is_empty(udev_pads[i].path)
&& string_is_equal(udev_pads[i].path, path))
{
input_autoconfigure_disconnect(i, udev_pads[i].ident);
udev_free_pad(i);
break;
}
}
}
static void udev_joypad_destroy(void)
{
unsigned i;
for (i = 0; i < MAX_USERS; i++)
udev_free_pad(i);
if (udev_joypad_mon)
udev_monitor_unref(udev_joypad_mon);
if (udev_joypad_fd)
udev_unref(udev_joypad_fd);
udev_joypad_mon = NULL;
udev_joypad_fd = NULL;
}
static bool udev_set_rumble(unsigned i,
enum retro_rumble_effect effect, uint16_t strength)
{
int old_effect;
uint16_t old_strength;
struct udev_joypad *pad = (struct udev_joypad*)&udev_pads[i];
if (pad->fd < 0)
return false;
if (pad->num_effects < 2)
return false;
old_strength = pad->strength[effect];
if (old_strength == strength)
return true;
old_effect = pad->has_set_ff[effect] ? pad->effects[effect] : -1;
if (strength && strength != pad->configured_strength[effect])
{
/* Create new or update old playing state. */
struct ff_effect e = {0};
e.type = FF_RUMBLE;
e.id = old_effect;
switch (effect)
{
case RETRO_RUMBLE_STRONG:
e.u.rumble.strong_magnitude = strength;
break;
case RETRO_RUMBLE_WEAK:
e.u.rumble.weak_magnitude = strength;
break;
default:
return false;
}
if (ioctl(pad->fd, EVIOCSFF, &e) < 0)
{
RARCH_ERR("Failed to set rumble effect on pad #%u.\n", i);
return false;
}
pad->effects[effect] = e.id;
pad->has_set_ff[effect] = true;
pad->configured_strength[effect] = strength;
}
pad->strength[effect] = strength;
/* It seems that we can update strength with EVIOCSFF atomically. */
if ((!!strength) != (!!old_strength))
{
struct input_event play = {{0}};
play.type = EV_FF;
play.code = pad->effects[effect];
play.value = !!strength;
if (write(pad->fd, &play, sizeof(play)) < (ssize_t)sizeof(play))
{
RARCH_ERR("[udev]: Failed to play rumble effect #%u on pad #%u.\n",
effect, i);
return false;
}
}
return true;
}
static bool udev_joypad_poll_hotplug_available(struct udev_monitor *dev)
{
struct pollfd fds;
fds.fd = udev_monitor_get_fd(dev);
fds.events = POLLIN;
fds.revents = 0;
return (poll(&fds, 1, 0) == 1) && (fds.revents & POLLIN);
}
static void udev_joypad_poll(void)
{
unsigned p;
while (udev_joypad_mon && udev_joypad_poll_hotplug_available(udev_joypad_mon))
{
struct udev_device *dev = udev_monitor_receive_device(udev_joypad_mon);
if (dev)
{
const char *val = udev_device_get_property_value(dev, "ID_INPUT_JOYSTICK");
const char *action = udev_device_get_action(dev);
const char *devnode = udev_device_get_devnode(dev);
if (val && string_is_equal(val, "1") && devnode)
{
if (string_is_equal(action, "add"))
{
RARCH_LOG("[udev]: Hotplug add: %s.\n", devnode);
udev_check_device(dev, devnode);
}
else if (string_is_equal(action, "remove"))
{
RARCH_LOG("[udev]: Hotplug remove: %s.\n", devnode);
udev_joypad_remove_device(devnode);
}
}
udev_device_unref(dev);
}
}
for (p = 0; p < MAX_USERS; p++)
{
int i, len;
struct input_event events[32];
struct udev_joypad *pad = &udev_pads[p];
if (pad->fd < 0)
continue;
while ((len = read(pad->fd, events, sizeof(events))) > 0)
{
len /= sizeof(*events);
for (i = 0; i < len; i++)
{
uint16_t type = events[i].type;
uint16_t code = events[i].code;
int32_t value = events[i].value;
switch (type)
{
case EV_KEY:
if (code > 0 && code < KEY_MAX)
{
if (value)
BIT64_SET(pad->buttons, pad->button_bind[code]);
else
BIT64_CLEAR(pad->buttons, pad->button_bind[code]);
}
break;
case EV_ABS:
if (code >= ABS_MISC)
break;
switch (code)
{
case ABS_HAT0X:
case ABS_HAT0Y:
case ABS_HAT1X:
case ABS_HAT1Y:
case ABS_HAT2X:
case ABS_HAT2Y:
case ABS_HAT3X:
case ABS_HAT3Y:
code -= ABS_HAT0X;
pad->hats[code >> 1][code & 1] = value;
break;
default:
{
unsigned axis = pad->axes_bind[code];
pad->axes[axis] = udev_compute_axis(
&pad->absinfo[axis], value);
break;
}
}
break;
default:
break;
}
}
}
}
}
/* Used for sorting devnodes to appear in the correct order */
static int sort_devnodes(const void *a, const void *b)
{
const struct joypad_udev_entry *aa = a;
const struct joypad_udev_entry *bb = b;
return strcmp(aa->devnode, bb->devnode);
}
static bool udev_joypad_init(void *data)
{
unsigned i;
unsigned sorted_count = 0;
struct udev_list_entry *devs = NULL;
struct udev_list_entry *item = NULL;
struct udev_enumerate *enumerate = NULL;
struct joypad_udev_entry sorted[MAX_USERS];
(void)data;
for (i = 0; i < MAX_USERS; i++)
udev_pads[i].fd = -1;
udev_joypad_fd = udev_new();
if (!udev_joypad_fd)
return false;
udev_joypad_mon = udev_monitor_new_from_netlink(udev_joypad_fd, "udev");
if (udev_joypad_mon)
{
udev_monitor_filter_add_match_subsystem_devtype(
udev_joypad_mon, "input", NULL);
udev_monitor_enable_receiving(udev_joypad_mon);
}
enumerate = udev_enumerate_new(udev_joypad_fd);
if (!enumerate)
goto error;
udev_enumerate_add_match_property(enumerate, "ID_INPUT_JOYSTICK", "1");
udev_enumerate_scan_devices(enumerate);
devs = udev_enumerate_get_list_entry(enumerate);
for (item = devs; item; item = udev_list_entry_get_next(item))
{
const char *name = udev_list_entry_get_name(item);
struct udev_device *dev = udev_device_new_from_syspath(udev_joypad_fd, name);
const char *devnode = udev_device_get_devnode(dev);
if (devnode != NULL) {
sorted[sorted_count].devnode = devnode;
sorted[sorted_count].item = item;
sorted_count++;
} else {
udev_device_unref(dev);
}
}
/* Sort the udev entries by devnode name so that they are
* created in the proper order */
qsort(sorted, sorted_count,
sizeof(struct joypad_udev_entry), sort_devnodes);
for (i = 0; i < sorted_count; i++)
{
const char *name = udev_list_entry_get_name(sorted[i].item);
struct udev_device *dev = udev_device_new_from_syspath(udev_joypad_fd, name);
const char *devnode = udev_device_get_devnode(dev);
if (devnode)
udev_check_device(dev, devnode);
udev_device_unref(dev);
}
udev_enumerate_unref(enumerate);
return true;
error:
udev_joypad_destroy();
return false;
}
static bool udev_joypad_button(unsigned port, uint16_t joykey)
{
const struct udev_joypad *pad = (const struct udev_joypad*)&udev_pads[port];
unsigned hat_dir = GET_HAT_DIR(joykey);
if (hat_dir)
{
unsigned h = GET_HAT(joykey);
if (h < NUM_HATS)
{
switch (hat_dir)
{
case HAT_LEFT_MASK:
return pad->hats[h][0] < 0;
case HAT_RIGHT_MASK:
return pad->hats[h][0] > 0;
case HAT_UP_MASK:
return pad->hats[h][1] < 0;
case HAT_DOWN_MASK:
return pad->hats[h][1] > 0;
}
}
return false;
}
return joykey < UDEV_NUM_BUTTONS && BIT64_GET(pad->buttons, joykey);
}
static void udev_joypad_get_buttons(unsigned port, input_bits_t *state)
{
const struct udev_joypad *pad = (const struct udev_joypad*)
&udev_pads[port];
if (pad)
{
BITS_COPY16_PTR( state, pad->buttons );
}
else
BIT256_CLEAR_ALL_PTR(state);
}
static int16_t udev_joypad_axis(unsigned port, uint32_t joyaxis)
{
int16_t val = 0;
const struct udev_joypad *pad;
if (joyaxis == AXIS_NONE)
return 0;
pad = (const struct udev_joypad*)&udev_pads[port];
if (AXIS_NEG_GET(joyaxis) < NUM_AXES)
{
val = pad->axes[AXIS_NEG_GET(joyaxis)];
/* Deal with analog triggers that report -32767 to 32767 */
if (((AXIS_NEG_GET(joyaxis) == ABS_Z) || (AXIS_NEG_GET(joyaxis) == ABS_RZ))
&& (pad->neg_trigger[AXIS_NEG_GET(joyaxis)]))
val = (val + 0x7fff) / 2;
if (val > 0)
val = 0;
}
else if (AXIS_POS_GET(joyaxis) < NUM_AXES)
{
val = pad->axes[AXIS_POS_GET(joyaxis)];
/* Deal with analog triggers that report -32767 to 32767 */
if (((AXIS_POS_GET(joyaxis) == ABS_Z) || (AXIS_POS_GET(joyaxis) == ABS_RZ))
&& (pad->neg_trigger[AXIS_POS_GET(joyaxis)]))
val = (val + 0x7fff) / 2;
if (val < 0)
val = 0;
}
return val;
}
static bool udev_joypad_query_pad(unsigned pad)
{
return pad < MAX_USERS && udev_pads[pad].fd >= 0;
}
static const char *udev_joypad_name(unsigned pad)
{
if (pad >= MAX_USERS || string_is_empty(udev_pads[pad].ident))
return NULL;
return udev_pads[pad].ident;
}
input_device_driver_t udev_joypad = {
udev_joypad_init,
udev_joypad_query_pad,
udev_joypad_destroy,
udev_joypad_button,
udev_joypad_get_buttons,
udev_joypad_axis,
udev_joypad_poll,
udev_set_rumble,
udev_joypad_name,
"udev",
};