721 lines
23 KiB
C

/* Copyright (C) 2010-2018 The RetroArch team
*
* ---------------------------------------------------------------------------------------
* The following license statement only applies to this file (sinc_resampler.c).
* ---------------------------------------------------------------------------------------
*
* Permission is hereby granted, free of charge,
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Bog-standard windowed SINC implementation. */
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <retro_inline.h>
#include <filters.h>
#include <memalign.h>
#include <audio/audio_resampler.h>
#include <filters.h>
#ifdef __SSE__
#include <xmmintrin.h>
#endif
#if defined(__AVX__)
#include <immintrin.h>
#endif
/* Rough SNR values for upsampling:
* LOWEST: 40 dB
* LOWER: 55 dB
* NORMAL: 70 dB
* HIGHER: 110 dB
* HIGHEST: 140 dB
*/
/* TODO, make all this more configurable. */
enum sinc_window
{
SINC_WINDOW_NONE = 0,
SINC_WINDOW_KAISER,
SINC_WINDOW_LANCZOS
};
/* For the little amount of taps we're using,
* SSE1 is faster than AVX for some reason.
* AVX code is kept here though as by increasing number
* of sinc taps, the AVX code is clearly faster than SSE1.
*/
typedef struct rarch_sinc_resampler
{
unsigned enable_avx;
unsigned phase_bits;
unsigned subphase_bits;
unsigned subphase_mask;
unsigned taps;
unsigned ptr;
uint32_t time;
float subphase_mod;
float kaiser_beta;
enum sinc_window window_type;
/* A buffer for phase_table, buffer_l and buffer_r
* are created in a single calloc().
* Ensure that we get as good cache locality as we can hope for. */
float *main_buffer;
float *phase_table;
float *buffer_l;
float *buffer_r;
} rarch_sinc_resampler_t;
#if defined(__ARM_NEON__) && !defined(DONT_WANT_ARM_OPTIMIZATIONS)
#if TARGET_OS_IPHONE
#else
#define WANT_NEON
#endif
#endif
#ifdef WANT_NEON
/* Assumes that taps >= 8, and that taps is a multiple of 8. */
void process_sinc_neon_asm(float *out, const float *left,
const float *right, const float *coeff, unsigned taps);
static void resampler_sinc_process_neon(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = phases / data->ratio;
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
size_t out_frames = 0;
while (frames)
{
while (frames && resamp->time >= phases)
{
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr)
resamp->ptr = resamp->taps;
resamp->ptr--;
resamp->buffer_l[resamp->ptr + resamp->taps] =
resamp->buffer_l[resamp->ptr] = *input++;
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= phases;
frames--;
}
while (resamp->time < phases)
{
const float *buffer_l = resamp->buffer_l + resamp->ptr;
const float *buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> resamp->subphase_bits;
const float *phase_table = resamp->phase_table + phase * taps;
process_sinc_neon_asm(output, buffer_l, buffer_r, phase_table, taps);
output += 2;
out_frames++;
resamp->time += ratio;
}
}
data->output_frames = out_frames;
}
#endif
#if defined(__AVX__)
static void resampler_sinc_process_avx(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = phases / data->ratio;
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
size_t out_frames = 0;
while (frames)
{
while (frames && resamp->time >= phases)
{
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr)
resamp->ptr = resamp->taps;
resamp->ptr--;
resamp->buffer_l[resamp->ptr + resamp->taps] =
resamp->buffer_l[resamp->ptr] = *input++;
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= phases;
frames--;
}
while (resamp->time < phases)
{
unsigned i;
__m256 delta, sum_l, sum_r;
float *delta_table = NULL;
float *phase_table = NULL;
const float *buffer_l = resamp->buffer_l + resamp->ptr;
const float *buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> resamp->subphase_bits;
phase_table = resamp->phase_table + phase * taps;
if (resamp->window_type == SINC_WINDOW_KAISER)
{
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = _mm256_set1_ps((float)
(resamp->time & resamp->subphase_mask) * resamp->subphase_mod);
}
sum_l = _mm256_setzero_ps();
sum_r = _mm256_setzero_ps();
for (i = 0; i < taps; i += 8)
{
__m256 sinc;
__m256 buf_l = _mm256_loadu_ps(buffer_l + i);
__m256 buf_r = _mm256_loadu_ps(buffer_r + i);
if (resamp->window_type == SINC_WINDOW_KAISER)
{
__m256 deltas = _mm256_load_ps(delta_table + i);
sinc = _mm256_add_ps(_mm256_load_ps((const float*)phase_table + i),
_mm256_mul_ps(deltas, delta));
}
else
{
sinc = _mm256_load_ps((const float*)phase_table + i);
}
sum_l = _mm256_add_ps(sum_l, _mm256_mul_ps(buf_l, sinc));
sum_r = _mm256_add_ps(sum_r, _mm256_mul_ps(buf_r, sinc));
}
/* hadd on AVX is weird, and acts on low-lanes
* and high-lanes separately. */
__m256 res_l = _mm256_hadd_ps(sum_l, sum_l);
__m256 res_r = _mm256_hadd_ps(sum_r, sum_r);
res_l = _mm256_hadd_ps(res_l, res_l);
res_r = _mm256_hadd_ps(res_r, res_r);
res_l = _mm256_add_ps(_mm256_permute2f128_ps(res_l, res_l, 1), res_l);
res_r = _mm256_add_ps(_mm256_permute2f128_ps(res_r, res_r, 1), res_r);
/* This is optimized to mov %xmmN, [mem].
* There doesn't seem to be any _mm256_store_ss intrinsic. */
_mm_store_ss(output + 0, _mm256_extractf128_ps(res_l, 0));
_mm_store_ss(output + 1, _mm256_extractf128_ps(res_r, 0));
output += 2;
out_frames++;
resamp->time += ratio;
}
}
data->output_frames = out_frames;
}
#endif
#if defined(__SSE__)
static void resampler_sinc_process_sse(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = phases / data->ratio;
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
size_t out_frames = 0;
while (frames)
{
while (frames && resamp->time >= phases)
{
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr)
resamp->ptr = resamp->taps;
resamp->ptr--;
resamp->buffer_l[resamp->ptr + resamp->taps] =
resamp->buffer_l[resamp->ptr] = *input++;
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= phases;
frames--;
}
while (resamp->time < phases)
{
unsigned i;
__m128 sum, sum_l, sum_r, delta;
float *phase_table = NULL;
float *delta_table = NULL;
const float *buffer_l = resamp->buffer_l + resamp->ptr;
const float *buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> resamp->subphase_bits;
if (resamp->window_type == SINC_WINDOW_KAISER)
{
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = _mm_set1_ps((float)
(resamp->time & resamp->subphase_mask) * resamp->subphase_mod);
}
else
{
phase_table = resamp->phase_table + phase * taps;
}
sum_l = _mm_setzero_ps();
sum_r = _mm_setzero_ps();
for (i = 0; i < taps; i += 4)
{
__m128 deltas, _sinc;
__m128 buf_l = _mm_loadu_ps(buffer_l + i);
__m128 buf_r = _mm_loadu_ps(buffer_r + i);
if (resamp->window_type == SINC_WINDOW_KAISER)
{
deltas = _mm_load_ps(delta_table + i);
_sinc = _mm_add_ps(_mm_load_ps((const float*)phase_table + i),
_mm_mul_ps(deltas, delta));
}
else
{
_sinc = _mm_load_ps((const float*)phase_table + i);
}
sum_l = _mm_add_ps(sum_l, _mm_mul_ps(buf_l, _sinc));
sum_r = _mm_add_ps(sum_r, _mm_mul_ps(buf_r, _sinc));
}
/* Them annoying shuffles.
* sum_l = { l3, l2, l1, l0 }
* sum_r = { r3, r2, r1, r0 }
*/
sum = _mm_add_ps(_mm_shuffle_ps(sum_l, sum_r,
_MM_SHUFFLE(1, 0, 1, 0)),
_mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(3, 2, 3, 2)));
/* sum = { r1, r0, l1, l0 } + { r3, r2, l3, l2 }
* sum = { R1, R0, L1, L0 }
*/
sum = _mm_add_ps(_mm_shuffle_ps(sum, sum, _MM_SHUFFLE(3, 3, 1, 1)), sum);
/* sum = {R1, R1, L1, L1 } + { R1, R0, L1, L0 }
* sum = { X, R, X, L }
*/
/* Store L */
_mm_store_ss(output + 0, sum);
/* movehl { X, R, X, L } == { X, R, X, R } */
_mm_store_ss(output + 1, _mm_movehl_ps(sum, sum));
output += 2;
out_frames++;
resamp->time += ratio;
}
}
data->output_frames = out_frames;
}
#endif
static void resampler_sinc_process_c(void *re_, struct resampler_data *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)re_;
unsigned phases = 1 << (resamp->phase_bits + resamp->subphase_bits);
uint32_t ratio = phases / data->ratio;
const float *input = data->data_in;
float *output = data->data_out;
size_t frames = data->input_frames;
size_t out_frames = 0;
while (frames)
{
while (frames && resamp->time >= phases)
{
/* Push in reverse to make filter more obvious. */
if (!resamp->ptr)
resamp->ptr = resamp->taps;
resamp->ptr--;
resamp->buffer_l[resamp->ptr + resamp->taps] =
resamp->buffer_l[resamp->ptr] = *input++;
resamp->buffer_r[resamp->ptr + resamp->taps] =
resamp->buffer_r[resamp->ptr] = *input++;
resamp->time -= phases;
frames--;
}
while (resamp->time < phases)
{
unsigned i;
float delta = 0.0f;
float sum_l = 0.0f;
float sum_r = 0.0f;
float *phase_table = NULL;
float *delta_table = NULL;
const float *buffer_l = resamp->buffer_l + resamp->ptr;
const float *buffer_r = resamp->buffer_r + resamp->ptr;
unsigned taps = resamp->taps;
unsigned phase = resamp->time >> resamp->subphase_bits;
if (resamp->window_type == SINC_WINDOW_KAISER)
{
phase_table = resamp->phase_table + phase * taps * 2;
delta_table = phase_table + taps;
delta = (float)
(resamp->time & resamp->subphase_mask) * resamp->subphase_mod;
}
else
{
phase_table = resamp->phase_table + phase * taps;
}
for (i = 0; i < taps; i++)
{
float sinc_val = phase_table[i];
if (resamp->window_type == SINC_WINDOW_KAISER)
sinc_val = sinc_val + delta_table[i] * delta;
sum_l += buffer_l[i] * sinc_val;
sum_r += buffer_r[i] * sinc_val;
}
output[0] = sum_l;
output[1] = sum_r;
output += 2;
out_frames++;
resamp->time += ratio;
}
}
data->output_frames = out_frames;
}
static void resampler_sinc_free(void *data)
{
rarch_sinc_resampler_t *resamp = (rarch_sinc_resampler_t*)data;
if (resamp)
memalign_free(resamp->main_buffer);
free(resamp);
}
static void sinc_init_table_kaiser(rarch_sinc_resampler_t *resamp,
double cutoff,
float *phase_table, int phases, int taps, bool calculate_delta)
{
int i, j;
double window_mod = kaiser_window_function(0.0, resamp->kaiser_beta); /* Need to normalize w(0) to 1.0. */
int stride = calculate_delta ? 2 : 1;
double sidelobes = taps / 2.0;
for (i = 0; i < phases; i++)
{
for (j = 0; j < taps; j++)
{
double sinc_phase;
float val;
int n = j * phases + i;
double window_phase = (double)n / (phases * taps); /* [0, 1). */
window_phase = 2.0 * window_phase - 1.0; /* [-1, 1) */
sinc_phase = sidelobes * window_phase;
val = cutoff * sinc(M_PI * sinc_phase * cutoff) *
kaiser_window_function(window_phase, resamp->kaiser_beta) / window_mod;
phase_table[i * stride * taps + j] = val;
}
}
if (calculate_delta)
{
int phase;
int p;
for (p = 0; p < phases - 1; p++)
{
for (j = 0; j < taps; j++)
{
float delta = phase_table[(p + 1) * stride * taps + j] -
phase_table[p * stride * taps + j];
phase_table[(p * stride + 1) * taps + j] = delta;
}
}
phase = phases - 1;
for (j = 0; j < taps; j++)
{
float val, delta;
double sinc_phase;
int n = j * phases + (phase + 1);
double window_phase = (double)n / (phases * taps); /* (0, 1]. */
window_phase = 2.0 * window_phase - 1.0; /* (-1, 1] */
sinc_phase = sidelobes * window_phase;
val = cutoff * sinc(M_PI * sinc_phase * cutoff) *
kaiser_window_function(window_phase, resamp->kaiser_beta) / window_mod;
delta = (val - phase_table[phase * stride * taps + j]);
phase_table[(phase * stride + 1) * taps + j] = delta;
}
}
}
static void sinc_init_table_lanczos(rarch_sinc_resampler_t *resamp, double cutoff,
float *phase_table, int phases, int taps, bool calculate_delta)
{
int i, j;
double window_mod = lanzcos_window_function(0.0); /* Need to normalize w(0) to 1.0. */
int stride = calculate_delta ? 2 : 1;
double sidelobes = taps / 2.0;
for (i = 0; i < phases; i++)
{
for (j = 0; j < taps; j++)
{
double sinc_phase;
float val;
int n = j * phases + i;
double window_phase = (double)n / (phases * taps); /* [0, 1). */
window_phase = 2.0 * window_phase - 1.0; /* [-1, 1) */
sinc_phase = sidelobes * window_phase;
val = cutoff * sinc(M_PI * sinc_phase * cutoff) *
lanzcos_window_function(window_phase) / window_mod;
phase_table[i * stride * taps + j] = val;
}
}
if (calculate_delta)
{
int phase;
int p;
for (p = 0; p < phases - 1; p++)
{
for (j = 0; j < taps; j++)
{
float delta = phase_table[(p + 1) * stride * taps + j] -
phase_table[p * stride * taps + j];
phase_table[(p * stride + 1) * taps + j] = delta;
}
}
phase = phases - 1;
for (j = 0; j < taps; j++)
{
float val, delta;
double sinc_phase;
int n = j * phases + (phase + 1);
double window_phase = (double)n / (phases * taps); /* (0, 1]. */
window_phase = 2.0 * window_phase - 1.0; /* (-1, 1] */
sinc_phase = sidelobes * window_phase;
val = cutoff * sinc(M_PI * sinc_phase * cutoff) *
lanzcos_window_function(window_phase) / window_mod;
delta = (val - phase_table[phase * stride * taps + j]);
phase_table[(phase * stride + 1) * taps + j] = delta;
}
}
}
static void *resampler_sinc_new(const struct resampler_config *config,
double bandwidth_mod, enum resampler_quality quality,
resampler_simd_mask_t mask)
{
double cutoff = 0.0;
size_t phase_elems = 0;
size_t elems = 0;
unsigned sidelobes = 0;
rarch_sinc_resampler_t *re = (rarch_sinc_resampler_t*)
calloc(1, sizeof(*re));
if (!re)
return NULL;
re->window_type = SINC_WINDOW_NONE;
switch (quality)
{
case RESAMPLER_QUALITY_LOWEST:
cutoff = 0.98;
sidelobes = 2;
re->phase_bits = 12;
re->subphase_bits = 10;
re->window_type = SINC_WINDOW_LANCZOS;
re->enable_avx = 0;
break;
case RESAMPLER_QUALITY_LOWER:
cutoff = 0.98;
sidelobes = 4;
re->phase_bits = 12;
re->subphase_bits = 10;
re->window_type = SINC_WINDOW_LANCZOS;
re->enable_avx = 0;
break;
case RESAMPLER_QUALITY_HIGHER:
cutoff = 0.90;
sidelobes = 32;
re->phase_bits = 10;
re->subphase_bits = 14;
re->window_type = SINC_WINDOW_KAISER;
re->kaiser_beta = 10.5;
re->enable_avx = 1;
break;
case RESAMPLER_QUALITY_HIGHEST:
cutoff = 0.962;
sidelobes = 128;
re->phase_bits = 10;
re->subphase_bits = 14;
re->window_type = SINC_WINDOW_KAISER;
re->kaiser_beta = 14.5;
re->enable_avx = 1;
break;
case RESAMPLER_QUALITY_NORMAL:
case RESAMPLER_QUALITY_DONTCARE:
cutoff = 0.825;
sidelobes = 8;
re->phase_bits = 8;
re->subphase_bits = 16;
re->window_type = SINC_WINDOW_KAISER;
re->kaiser_beta = 5.5;
re->enable_avx = 0;
break;
}
re->subphase_mask = (1 << re->subphase_bits) - 1;
re->subphase_mod = 1.0f / (1 << re->subphase_bits);
re->taps = sidelobes * 2;
/* Downsampling, must lower cutoff, and extend number of
* taps accordingly to keep same stopband attenuation. */
if (bandwidth_mod < 1.0)
{
cutoff *= bandwidth_mod;
re->taps = (unsigned)ceil(re->taps / bandwidth_mod);
}
/* Be SIMD-friendly. */
#if defined(__AVX__)
if (re->enable_avx)
re->taps = (re->taps + 7) & ~7;
else
#endif
{
#if defined(WANT_NEON)
re->taps = (re->taps + 7) & ~7;
#else
re->taps = (re->taps + 3) & ~3;
#endif
}
phase_elems = ((1 << re->phase_bits) * re->taps);
if (re->window_type == SINC_WINDOW_KAISER)
phase_elems = phase_elems * 2;
elems = phase_elems + 4 * re->taps;
re->main_buffer = (float*)memalign_alloc(128, sizeof(float) * elems);
if (!re->main_buffer)
goto error;
re->phase_table = re->main_buffer;
re->buffer_l = re->main_buffer + phase_elems;
re->buffer_r = re->buffer_l + 2 * re->taps;
switch (re->window_type)
{
case SINC_WINDOW_LANCZOS:
sinc_init_table_lanczos(re, cutoff, re->phase_table,
1 << re->phase_bits, re->taps, false);
break;
case SINC_WINDOW_KAISER:
sinc_init_table_kaiser(re, cutoff, re->phase_table,
1 << re->phase_bits, re->taps, true);
break;
case SINC_WINDOW_NONE:
goto error;
}
sinc_resampler.process = resampler_sinc_process_c;
if (mask & RESAMPLER_SIMD_AVX && re->enable_avx)
{
#if defined(__AVX__)
sinc_resampler.process = resampler_sinc_process_avx;
#endif
}
else if (mask & RESAMPLER_SIMD_SSE)
{
#if defined(__SSE__)
sinc_resampler.process = resampler_sinc_process_sse;
#endif
}
else if (mask & RESAMPLER_SIMD_NEON && re->window_type != SINC_WINDOW_KAISER)
{
#if defined(WANT_NEON)
sinc_resampler.process = resampler_sinc_process_neon;
#endif
}
return re;
error:
resampler_sinc_free(re);
return NULL;
}
retro_resampler_t sinc_resampler = {
resampler_sinc_new,
resampler_sinc_process_c,
resampler_sinc_free,
RESAMPLER_API_VERSION,
"sinc",
"sinc"
};
#undef WANT_NEON