mirror of
https://github.com/libretro/RetroArch
synced 2025-01-16 16:29:28 +00:00
168 lines
4.8 KiB
C
168 lines
4.8 KiB
C
// 29 march 2014
|
|
#include "../ui.h"
|
|
#include "uipriv.h"
|
|
|
|
/*
|
|
Windows and GTK+ have a limit of 2 and 3 clicks, respectively, natively supported. Fortunately, we can simulate the double/triple-click behavior to build higher-order clicks. We can use the same algorithm Windows uses on both:
|
|
http://blogs.msdn.com/b/oldnewthing/archive/2004/10/18/243925.aspx
|
|
For GTK+, we pull the double-click time and double-click distance, which work the same as the equivalents on Windows (so the distance is in all directions), from the GtkSettings system.
|
|
|
|
On GTK+ this will also allow us to discard the GDK_BUTTON_2PRESS and GDK_BUTTON_3PRESS events, so the button press stream will be just like on other platforms.
|
|
|
|
Thanks to mclasen, garnacho_, halfline, and tristan in irc.gimp.net/#gtk+.
|
|
*/
|
|
|
|
// x, y, xdist, ydist, and c.rect must have the same units
|
|
// so must time, maxTime, and c.prevTime
|
|
int clickCounterClick(clickCounter *c, int button, int x, int y, uintptr_t time, uintptr_t maxTime, int32_t xdist, int32_t ydist)
|
|
{
|
|
// different button than before? if so, don't count
|
|
if (button != c->curButton)
|
|
c->count = 0;
|
|
|
|
// (x, y) in the allowed region for a double-click? if not, don't count
|
|
if (x < c->rectX0)
|
|
c->count = 0;
|
|
if (y < c->rectY0)
|
|
c->count = 0;
|
|
if (x >= c->rectX1)
|
|
c->count = 0;
|
|
if (y >= c->rectY1)
|
|
c->count = 0;
|
|
|
|
// too slow? if so, don't count
|
|
// note the below expression; time > (c.prevTime + maxTime) can overflow!
|
|
if ((time - c->prevTime) > maxTime) // too slow; don't count
|
|
c->count = 0;
|
|
|
|
c->count++; // if either of the above ifs happened, this will make the click count 1; otherwise it will make the click count 2, 3, 4, 5, ...
|
|
|
|
// now we need to update the internal structures for the next test
|
|
c->curButton = button;
|
|
c->prevTime = time;
|
|
c->rectX0 = x - xdist;
|
|
c->rectY0 = y - ydist;
|
|
c->rectX1 = x + xdist;
|
|
c->rectY1 = y + ydist;
|
|
|
|
return c->count;
|
|
}
|
|
|
|
void clickCounterReset(clickCounter *c)
|
|
{
|
|
c->curButton = 0;
|
|
c->rectX0 = 0;
|
|
c->rectY0 = 0;
|
|
c->rectX1 = 0;
|
|
c->rectY1 = 0;
|
|
c->prevTime = 0;
|
|
c->count = 0;
|
|
}
|
|
|
|
/*
|
|
For position independence across international keyboard layouts, typewriter keys are read using scancodes (which are always set 1).
|
|
Windows provides the scancodes directly in the LPARAM.
|
|
GTK+ provides the scancodes directly from the underlying window system via GdkEventKey.hardware_keycode.
|
|
On X11, this is scancode + 8 (because X11 keyboard codes have a range of [8,255]).
|
|
Wayland is guaranteed to give the same result (thanks ebassi in irc.gimp.net/#gtk+).
|
|
On Linux, where evdev is used instead of polling scancodes directly from the keyboard, evdev's typewriter section key code constants are the same as scancodes anyway, so the rules above apply.
|
|
Typewriter section scancodes are the same across international keyboards with some exceptions that have been accounted for (see KeyEvent's documentation); see http://www.quadibloc.com/comp/scan.htm for details.
|
|
Non-typewriter keys can be handled safely using constants provided by the respective backend API.
|
|
|
|
Because GTK+ keysyms may or may not obey Num Lock, we also handle the 0-9 and . keys on the numeric keypad with scancodes (they match too).
|
|
*/
|
|
|
|
// use uintptr_t to be safe; the size of the scancode/hardware key code field on each platform is different
|
|
static const struct {
|
|
uintptr_t scancode;
|
|
char equiv;
|
|
} scancodeKeys[] = {
|
|
{ 0x02, '1' },
|
|
{ 0x03, '2' },
|
|
{ 0x04, '3' },
|
|
{ 0x05, '4' },
|
|
{ 0x06, '5' },
|
|
{ 0x07, '6' },
|
|
{ 0x08, '7' },
|
|
{ 0x09, '8' },
|
|
{ 0x0A, '9' },
|
|
{ 0x0B, '0' },
|
|
{ 0x0C, '-' },
|
|
{ 0x0D, '=' },
|
|
{ 0x0E, '\b' },
|
|
{ 0x0F, '\t' },
|
|
{ 0x10, 'q' },
|
|
{ 0x11, 'w' },
|
|
{ 0x12, 'e' },
|
|
{ 0x13, 'r' },
|
|
{ 0x14, 't' },
|
|
{ 0x15, 'y' },
|
|
{ 0x16, 'u' },
|
|
{ 0x17, 'i' },
|
|
{ 0x18, 'o' },
|
|
{ 0x19, 'p' },
|
|
{ 0x1A, '[' },
|
|
{ 0x1B, ']' },
|
|
{ 0x1C, '\n' },
|
|
{ 0x1E, 'a' },
|
|
{ 0x1F, 's' },
|
|
{ 0x20, 'd' },
|
|
{ 0x21, 'f' },
|
|
{ 0x22, 'g' },
|
|
{ 0x23, 'h' },
|
|
{ 0x24, 'j' },
|
|
{ 0x25, 'k' },
|
|
{ 0x26, 'l' },
|
|
{ 0x27, ';' },
|
|
{ 0x28, '\'' },
|
|
{ 0x29, '`' },
|
|
{ 0x2B, '\\' },
|
|
{ 0x2C, 'z' },
|
|
{ 0x2D, 'x' },
|
|
{ 0x2E, 'c' },
|
|
{ 0x2F, 'v' },
|
|
{ 0x30, 'b' },
|
|
{ 0x31, 'n' },
|
|
{ 0x32, 'm' },
|
|
{ 0x33, ',' },
|
|
{ 0x34, '.' },
|
|
{ 0x35, '/' },
|
|
{ 0x39, ' ' },
|
|
{ 0xFFFF, 0 },
|
|
};
|
|
|
|
static const struct {
|
|
uintptr_t scancode;
|
|
uiExtKey equiv;
|
|
} scancodeExtKeys[] = {
|
|
{ 0x47, uiExtKeyN7 },
|
|
{ 0x48, uiExtKeyN8 },
|
|
{ 0x49, uiExtKeyN9 },
|
|
{ 0x4B, uiExtKeyN4 },
|
|
{ 0x4C, uiExtKeyN5 },
|
|
{ 0x4D, uiExtKeyN6 },
|
|
{ 0x4F, uiExtKeyN1 },
|
|
{ 0x50, uiExtKeyN2 },
|
|
{ 0x51, uiExtKeyN3 },
|
|
{ 0x52, uiExtKeyN0 },
|
|
{ 0x53, uiExtKeyNDot },
|
|
{ 0xFFFF, 0 },
|
|
};
|
|
|
|
int fromScancode(uintptr_t scancode, uiAreaKeyEvent *ke)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; scancodeKeys[i].scancode != 0xFFFF; i++)
|
|
if (scancodeKeys[i].scancode == scancode) {
|
|
ke->Key = scancodeKeys[i].equiv;
|
|
return 1;
|
|
}
|
|
for (i = 0; scancodeExtKeys[i].scancode != 0xFFFF; i++)
|
|
if (scancodeExtKeys[i].scancode == scancode) {
|
|
ke->ExtKey = scancodeExtKeys[i].equiv;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|