RetroArch/gfx/drivers_shader/shader_vulkan.cpp
2016-03-25 14:51:37 +01:00

1915 lines
58 KiB
C++

/* RetroArch - A frontend for libretro.
* Copyright (C) 2010-2016 - Hans-Kristian Arntzen
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "shader_vulkan.h"
#include "glslang_util.hpp"
#include <vector>
#include <memory>
#include <functional>
#include <utility>
#include <string.h>
#include <math.h>
#include "../drivers/vulkan_shaders/opaque.vert.inc"
#include "../drivers/vulkan_shaders/opaque.frag.inc"
#include "../video_shader_driver.h"
#include "../../verbosity.h"
#include "slang_reflection.hpp"
using namespace std;
static void image_layout_transition(
VkCommandBuffer cmd, VkImage image,
VkImageLayout old_layout, VkImageLayout new_layout,
VkAccessFlags srcAccess, VkAccessFlags dstAccess,
VkPipelineStageFlags srcStages, VkPipelineStageFlags dstStages)
{
VkImageMemoryBarrier barrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER };
barrier.srcAccessMask = srcAccess;
barrier.dstAccessMask = dstAccess;
barrier.oldLayout = old_layout;
barrier.newLayout = new_layout;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.levelCount = 1;
barrier.subresourceRange.layerCount = 1;
VKFUNC(vkCmdPipelineBarrier)(cmd,
srcStages,
dstStages,
false,
0, nullptr,
0, nullptr,
1, &barrier);
}
static uint32_t find_memory_type(
const VkPhysicalDeviceMemoryProperties &mem_props,
uint32_t device_reqs, uint32_t host_reqs)
{
uint32_t i;
for (i = 0; i < VK_MAX_MEMORY_TYPES; i++)
{
if ((device_reqs & (1u << i)) &&
(mem_props.memoryTypes[i].propertyFlags & host_reqs) == host_reqs)
return i;
}
RARCH_ERR("[Vulkan]: Failed to find valid memory type. This should never happen.");
abort();
}
static uint32_t find_memory_type_fallback(
const VkPhysicalDeviceMemoryProperties &mem_props,
uint32_t device_reqs, uint32_t host_reqs)
{
uint32_t i;
for (i = 0; i < VK_MAX_MEMORY_TYPES; i++)
{
if ((device_reqs & (1u << i)) &&
(mem_props.memoryTypes[i].propertyFlags & host_reqs) == host_reqs)
return i;
}
return find_memory_type(mem_props, device_reqs, 0);
}
static void build_identity_matrix(float *data)
{
data[ 0] = 1.0f;
data[ 1] = 0.0f;
data[ 2] = 0.0f;
data[ 3] = 0.0f;
data[ 4] = 0.0f;
data[ 5] = 1.0f;
data[ 6] = 0.0f;
data[ 7] = 0.0f;
data[ 8] = 0.0f;
data[ 9] = 0.0f;
data[10] = 1.0f;
data[11] = 0.0f;
data[12] = 0.0f;
data[13] = 0.0f;
data[14] = 0.0f;
data[15] = 1.0f;
}
static void build_vec4(float *data, unsigned width, unsigned height)
{
data[0] = float(width);
data[1] = float(height);
data[2] = 1.0f / float(width);
data[3] = 1.0f / float(height);
}
struct Size2D
{
unsigned width, height;
};
struct Texture
{
vulkan_filter_chain_texture texture;
vulkan_filter_chain_filter filter;
};
class DeferredDisposer
{
public:
DeferredDisposer(vector<function<void ()>> &calls) : calls(calls) {}
void defer(function<void ()> func)
{
calls.push_back(move(func));
}
private:
vector<function<void ()>> &calls;
};
class Buffer
{
public:
Buffer(VkDevice device,
const VkPhysicalDeviceMemoryProperties &mem_props,
size_t size, VkBufferUsageFlags usage);
~Buffer();
size_t get_size() const { return size; }
void *map();
void unmap();
const VkBuffer &get_buffer() const { return buffer; }
private:
VkDevice device;
VkBuffer buffer;
VkDeviceMemory memory;
size_t size;
};
class Framebuffer
{
public:
Framebuffer(VkDevice device,
const VkPhysicalDeviceMemoryProperties &mem_props,
const Size2D &max_size, VkFormat format);
~Framebuffer();
Framebuffer(Framebuffer&&) = delete;
void operator=(Framebuffer&&) = delete;
void set_size(DeferredDisposer &disposer, const Size2D &size);
const Size2D &get_size() const { return size; }
VkImage get_image() const { return image; }
VkImageView get_view() const { return view; }
VkFramebuffer get_framebuffer() const { return framebuffer; }
VkRenderPass get_render_pass() const { return render_pass; }
void clear(VkCommandBuffer cmd);
void copy(VkCommandBuffer cmd, VkImage image, VkImageLayout layout);
private:
VkDevice device = VK_NULL_HANDLE;
const VkPhysicalDeviceMemoryProperties &memory_properties;
VkImage image = VK_NULL_HANDLE;
VkImageView view = VK_NULL_HANDLE;
Size2D size;
VkFormat format;
VkFramebuffer framebuffer = VK_NULL_HANDLE;
VkRenderPass render_pass = VK_NULL_HANDLE;
struct
{
size_t size = 0;
uint32_t type = 0;
VkDeviceMemory memory = VK_NULL_HANDLE;
} memory;
void init(DeferredDisposer *disposer);
void init_framebuffer();
void init_render_pass();
};
struct CommonResources
{
CommonResources(VkDevice device,
const VkPhysicalDeviceMemoryProperties &memory_properties);
~CommonResources();
unique_ptr<Buffer> vbo_offscreen, vbo_final;
VkSampler samplers[2];
VkDevice device;
};
class Pass
{
public:
Pass(VkDevice device,
const VkPhysicalDeviceMemoryProperties &memory_properties,
VkPipelineCache cache, unsigned num_sync_indices, bool final_pass) :
device(device),
memory_properties(memory_properties),
cache(cache),
num_sync_indices(num_sync_indices),
final_pass(final_pass)
{}
~Pass();
Pass(Pass&&) = delete;
void operator=(Pass&&) = delete;
const Framebuffer &get_framebuffer() const
{
return *framebuffer;
}
Framebuffer *get_feedback_framebuffer()
{
return framebuffer_feedback.get();
}
Size2D set_pass_info(
const Size2D &max_original,
const Size2D &max_source,
const vulkan_filter_chain_swapchain_info &swapchain,
const vulkan_filter_chain_pass_info &info);
void set_shader(VkShaderStageFlags stage,
const uint32_t *spirv,
size_t spirv_words);
bool build();
bool init_feedback();
void build_commands(
DeferredDisposer &disposer,
VkCommandBuffer cmd,
const Texture &original,
const Texture &source,
const VkViewport &vp,
const float *mvp);
void notify_sync_index(unsigned index)
{
sync_index = index;
}
vulkan_filter_chain_filter get_source_filter() const
{
return pass_info.source_filter;
}
void set_common_resources(const CommonResources &common)
{
this->common = &common;
}
const slang_reflection &get_reflection() const
{
return reflection;
}
void end_frame();
private:
VkDevice device;
const VkPhysicalDeviceMemoryProperties &memory_properties;
VkPipelineCache cache;
unsigned num_sync_indices;
unsigned sync_index;
bool final_pass;
Size2D get_output_size(const Size2D &original_size,
const Size2D &max_source) const;
VkPipeline pipeline = VK_NULL_HANDLE;
VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
VkDescriptorSetLayout set_layout = VK_NULL_HANDLE;
VkDescriptorPool pool = VK_NULL_HANDLE;
vector<unique_ptr<Buffer>> ubos;
vector<VkDescriptorSet> sets;
const CommonResources *common = nullptr;
Size2D current_framebuffer_size;
VkViewport current_viewport;
vulkan_filter_chain_pass_info pass_info;
vector<uint32_t> vertex_shader;
vector<uint32_t> fragment_shader;
unique_ptr<Framebuffer> framebuffer;
unique_ptr<Framebuffer> framebuffer_feedback;
VkRenderPass swapchain_render_pass;
void clear_vk();
bool init_pipeline();
bool init_pipeline_layout();
bool init_buffers();
void set_texture(VkDescriptorSet set, unsigned binding,
const Texture &texture);
void set_semantic_texture(VkDescriptorSet set, slang_texture_semantic semantic,
const Texture &texture);
void set_uniform_buffer(VkDescriptorSet set, unsigned binding,
VkBuffer buffer,
VkDeviceSize offset,
VkDeviceSize range);
slang_reflection reflection;
void build_semantics(VkDescriptorSet set, uint8_t *buffer,
const float *mvp, const Texture &original, const Texture &source);
void build_semantic_vec4(uint8_t *data, slang_semantic semantic,
unsigned width, unsigned height);
void build_semantic_texture_vec4(uint8_t *data,
slang_texture_semantic semantic,
unsigned width, unsigned height);
void build_semantic_texture(VkDescriptorSet set, uint8_t *buffer,
slang_texture_semantic semantic, const Texture &texture);
};
// struct here since we're implementing the opaque typedef from C.
struct vulkan_filter_chain
{
public:
vulkan_filter_chain(const vulkan_filter_chain_create_info &info);
~vulkan_filter_chain();
inline void set_shader_preset(unique_ptr<video_shader> shader)
{
shader_preset = move(shader);
}
inline video_shader *get_shader_preset()
{
return shader_preset.get();
}
void set_pass_info(unsigned pass,
const vulkan_filter_chain_pass_info &info);
void set_shader(unsigned pass, VkShaderStageFlags stage,
const uint32_t *spirv, size_t spirv_words);
bool init();
bool update_swapchain_info(
const vulkan_filter_chain_swapchain_info &info);
void notify_sync_index(unsigned index);
void set_input_texture(const vulkan_filter_chain_texture &texture);
void build_offscreen_passes(VkCommandBuffer cmd, const VkViewport &vp);
void build_viewport_pass(VkCommandBuffer cmd,
const VkViewport &vp, const float *mvp);
private:
VkDevice device;
const VkPhysicalDeviceMemoryProperties &memory_properties;
VkPipelineCache cache;
vector<unique_ptr<Pass>> passes;
vector<vulkan_filter_chain_pass_info> pass_info;
vector<vector<function<void ()>>> deferred_calls;
CommonResources common;
VkFormat original_format;
vulkan_filter_chain_texture input_texture;
Size2D max_input_size;
vulkan_filter_chain_swapchain_info swapchain_info;
unsigned current_sync_index;
unique_ptr<video_shader> shader_preset;
void flush();
void set_num_passes(unsigned passes);
void execute_deferred();
void set_num_sync_indices(unsigned num_indices);
void set_swapchain_info(const vulkan_filter_chain_swapchain_info &info);
bool init_history();
void update_history(DeferredDisposer &disposer, VkCommandBuffer cmd);
vector<unique_ptr<Framebuffer>> original_history;
bool require_clear = false;
};
vulkan_filter_chain::vulkan_filter_chain(
const vulkan_filter_chain_create_info &info)
: device(info.device),
memory_properties(*info.memory_properties),
cache(info.pipeline_cache),
common(info.device, *info.memory_properties),
original_format(info.original_format)
{
max_input_size = { info.max_input_size.width, info.max_input_size.height };
set_swapchain_info(info.swapchain);
set_num_passes(info.num_passes);
}
vulkan_filter_chain::~vulkan_filter_chain()
{
flush();
}
void vulkan_filter_chain::set_swapchain_info(
const vulkan_filter_chain_swapchain_info &info)
{
swapchain_info = info;
set_num_sync_indices(info.num_indices);
}
void vulkan_filter_chain::set_num_sync_indices(unsigned num_indices)
{
execute_deferred();
deferred_calls.resize(num_indices);
}
void vulkan_filter_chain::notify_sync_index(unsigned index)
{
auto &calls = deferred_calls[index];
for (auto &call : calls)
call();
calls.clear();
current_sync_index = index;
for (auto &pass : passes)
pass->notify_sync_index(index);
}
void vulkan_filter_chain::set_num_passes(unsigned num_passes)
{
pass_info.resize(num_passes);
passes.reserve(num_passes);
for (unsigned i = 0; i < num_passes; i++)
{
passes.emplace_back(new Pass(device, memory_properties,
cache, deferred_calls.size(), i + 1 == num_passes));
passes.back()->set_common_resources(common);
}
}
bool vulkan_filter_chain::update_swapchain_info(
const vulkan_filter_chain_swapchain_info &info)
{
flush();
set_swapchain_info(info);
return init();
}
void vulkan_filter_chain::set_pass_info(unsigned pass,
const vulkan_filter_chain_pass_info &info)
{
pass_info[pass] = info;
}
void vulkan_filter_chain::set_shader(
unsigned pass,
VkShaderStageFlags stage,
const uint32_t *spirv,
size_t spirv_words)
{
passes[pass]->set_shader(stage, spirv, spirv_words);
}
void vulkan_filter_chain::set_input_texture(
const vulkan_filter_chain_texture &texture)
{
input_texture = texture;
}
void vulkan_filter_chain::execute_deferred()
{
for (auto &calls : deferred_calls)
{
for (auto &call : calls)
call();
calls.clear();
}
}
void vulkan_filter_chain::flush()
{
VKFUNC(vkDeviceWaitIdle)(device);
execute_deferred();
}
bool vulkan_filter_chain::init_history()
{
original_history.clear();
require_clear = false;
size_t required_images = 0;
for (auto &pass : passes)
{
required_images =
max(required_images,
pass->get_reflection().semantic_textures[SLANG_TEXTURE_SEMANTIC_ORIGINAL_HISTORY].size());
}
if (required_images < 2)
return true;
// We don't need to store array element #0, since it's aliased with the actual original.
required_images--;
original_history.reserve(required_images);
for (unsigned i = 0; i < required_images; i++)
{
original_history.emplace_back(new Framebuffer(device, memory_properties,
max_input_size, original_format));
}
// On first frame, we need to clear the textures to a known state, but we need
// a command buffer for that, so just defer to first frame.
require_clear = true;
return true;
}
bool vulkan_filter_chain::init()
{
Size2D source = max_input_size;
for (unsigned i = 0; i < passes.size(); i++)
{
auto &pass = passes[i];
source = pass->set_pass_info(max_input_size,
source, swapchain_info, pass_info[i]);
if (!pass->build())
return false;
}
if (!init_history())
return false;
return true;
}
void vulkan_filter_chain::build_offscreen_passes(VkCommandBuffer cmd,
const VkViewport &vp)
{
// First frame, make sure our history and feedback textures are in a clean state.
if (require_clear)
{
for (auto &texture : original_history)
texture->clear(cmd);
for (auto &pass : passes)
{
auto *fb = pass->get_feedback_framebuffer();
if (fb)
fb->clear(cmd);
}
require_clear = false;
}
unsigned i;
DeferredDisposer disposer(deferred_calls[current_sync_index]);
const Texture original = {
input_texture, passes.front()->get_source_filter() };
Texture source = {
input_texture, passes.front()->get_source_filter() };
for (i = 0; i < passes.size() - 1; i++)
{
passes[i]->build_commands(disposer, cmd,
original, source, vp, nullptr);
auto &fb = passes[i]->get_framebuffer();
source.texture.view = fb.get_view();
source.texture.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
source.texture.width = fb.get_size().width;
source.texture.height = fb.get_size().height;
source.filter = passes[i + 1]->get_source_filter();
}
}
void vulkan_filter_chain::update_history(DeferredDisposer &disposer, VkCommandBuffer cmd)
{
VkImageLayout src_layout = input_texture.layout;
// Transition input texture to something appropriate.
if (input_texture.layout != VK_IMAGE_LAYOUT_GENERAL)
{
image_layout_transition(cmd,
input_texture.image,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
0,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT);
src_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
}
unique_ptr<Framebuffer> tmp;
unique_ptr<Framebuffer> &back = original_history.back();
swap(back, tmp);
if (input_texture.width != tmp->get_size().width ||
input_texture.height != tmp->get_size().height)
{
tmp->set_size(disposer, { input_texture.width, input_texture.height });
}
tmp->copy(cmd, input_texture.image, src_layout);
// Transition input texture back.
if (input_texture.layout != VK_IMAGE_LAYOUT_GENERAL)
{
image_layout_transition(cmd,
input_texture.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
0,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
}
// Should ring buffer, but we don't have *that* many passes.
move(begin(original_history), end(original_history) - 1, begin(original_history) + 1);
swap(original_history.front(), tmp);
}
void vulkan_filter_chain::build_viewport_pass(
VkCommandBuffer cmd, const VkViewport &vp, const float *mvp)
{
Texture source;
DeferredDisposer disposer(deferred_calls[current_sync_index]);
const Texture original = {
input_texture, passes.front()->get_source_filter() };
if (passes.size() == 1)
source = { input_texture, passes.back()->get_source_filter() };
else
{
auto &fb = passes[passes.size() - 2]->get_framebuffer();
source.texture.view = fb.get_view();
source.texture.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
source.texture.width = fb.get_size().width;
source.texture.height = fb.get_size().height;
source.filter = passes.back()->get_source_filter();
}
passes.back()->build_commands(disposer, cmd,
original, source, vp, mvp);
// If we need to keep old frames, copy it after fragment is complete.
// TODO: We can improve pipelining by figuring out which pass is the last that reads from
// the history and dispatch the copy earlier.
if (!original_history.empty())
update_history(disposer, cmd);
// For feedback FBOs, swap current and previous.
for (auto &pass : passes)
pass->end_frame();
}
Buffer::Buffer(VkDevice device,
const VkPhysicalDeviceMemoryProperties &mem_props,
size_t size, VkBufferUsageFlags usage) :
device(device), size(size)
{
VkMemoryRequirements mem_reqs;
VkBufferCreateInfo info = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
info.size = size;
info.usage = usage;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VKFUNC(vkCreateBuffer)(device, &info, nullptr, &buffer);
VKFUNC(vkGetBufferMemoryRequirements)(device, buffer, &mem_reqs);
VkMemoryAllocateInfo alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
alloc.allocationSize = mem_reqs.size;
alloc.memoryTypeIndex = find_memory_type(
mem_props, mem_reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VKFUNC(vkAllocateMemory)(device, &alloc, NULL, &memory);
VKFUNC(vkBindBufferMemory)(device, buffer, memory, 0);
}
void *Buffer::map()
{
void *ptr = nullptr;
if (VKFUNC(vkMapMemory)(device, memory, 0, size, 0, &ptr) == VK_SUCCESS)
return ptr;
return nullptr;
}
void Buffer::unmap()
{
VKFUNC(vkUnmapMemory)(device, memory);
}
Buffer::~Buffer()
{
if (memory != VK_NULL_HANDLE)
VKFUNC(vkFreeMemory)(device, memory, nullptr);
if (buffer != VK_NULL_HANDLE)
VKFUNC(vkDestroyBuffer)(device, buffer, nullptr);
}
Pass::~Pass()
{
clear_vk();
}
void Pass::set_shader(VkShaderStageFlags stage,
const uint32_t *spirv,
size_t spirv_words)
{
if (stage == VK_SHADER_STAGE_VERTEX_BIT)
{
vertex_shader.clear();
vertex_shader.insert(end(vertex_shader),
spirv, spirv + spirv_words);
}
else if (stage == VK_SHADER_STAGE_FRAGMENT_BIT)
{
fragment_shader.clear();
fragment_shader.insert(end(fragment_shader),
spirv, spirv + spirv_words);
}
}
Size2D Pass::get_output_size(const Size2D &original,
const Size2D &source) const
{
float width, height;
switch (pass_info.scale_type_x)
{
case VULKAN_FILTER_CHAIN_SCALE_ORIGINAL:
width = float(original.width) * pass_info.scale_x;
break;
case VULKAN_FILTER_CHAIN_SCALE_SOURCE:
width = float(source.width) * pass_info.scale_x;
break;
case VULKAN_FILTER_CHAIN_SCALE_VIEWPORT:
width = current_viewport.width * pass_info.scale_x;
break;
case VULKAN_FILTER_CHAIN_SCALE_ABSOLUTE:
width = pass_info.scale_x;
break;
default:
width = 0.0f;
}
switch (pass_info.scale_type_y)
{
case VULKAN_FILTER_CHAIN_SCALE_ORIGINAL:
height = float(original.height) * pass_info.scale_y;
break;
case VULKAN_FILTER_CHAIN_SCALE_SOURCE:
height = float(source.height) * pass_info.scale_y;
break;
case VULKAN_FILTER_CHAIN_SCALE_VIEWPORT:
height = current_viewport.height * pass_info.scale_y;
break;
case VULKAN_FILTER_CHAIN_SCALE_ABSOLUTE:
height = pass_info.scale_y;
break;
default:
height = 0.0f;
}
return { unsigned(roundf(width)), unsigned(roundf(height)) };
}
Size2D Pass::set_pass_info(
const Size2D &max_original,
const Size2D &max_source,
const vulkan_filter_chain_swapchain_info &swapchain,
const vulkan_filter_chain_pass_info &info)
{
clear_vk();
current_viewport = swapchain.viewport;
pass_info = info;
num_sync_indices = swapchain.num_indices;
sync_index = 0;
current_framebuffer_size = get_output_size(max_original, max_source);
swapchain_render_pass = swapchain.render_pass;
return current_framebuffer_size;
}
void Pass::clear_vk()
{
if (pool != VK_NULL_HANDLE)
VKFUNC(vkDestroyDescriptorPool)(device, pool, nullptr);
if (pipeline != VK_NULL_HANDLE)
VKFUNC(vkDestroyPipeline)(device, pipeline, nullptr);
if (set_layout != VK_NULL_HANDLE)
VKFUNC(vkDestroyDescriptorSetLayout)(device, set_layout, nullptr);
if (pipeline_layout != VK_NULL_HANDLE)
VKFUNC(vkDestroyPipelineLayout)(device, pipeline_layout, nullptr);
pool = VK_NULL_HANDLE;
pipeline = VK_NULL_HANDLE;
set_layout = VK_NULL_HANDLE;
ubos.clear();
}
bool Pass::init_pipeline_layout()
{
vector<VkDescriptorSetLayoutBinding> bindings;
vector<VkDescriptorPoolSize> desc_counts;
// Main UBO.
VkShaderStageFlags ubo_mask = 0;
if (reflection.ubo_stage_mask & SLANG_STAGE_VERTEX_MASK)
ubo_mask |= VK_SHADER_STAGE_VERTEX_BIT;
if (reflection.ubo_stage_mask & SLANG_STAGE_FRAGMENT_MASK)
ubo_mask |= VK_SHADER_STAGE_FRAGMENT_BIT;
if (ubo_mask != 0)
{
bindings.push_back({ reflection.ubo_binding,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1,
ubo_mask, nullptr });
desc_counts.push_back({ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, num_sync_indices });
}
// Semantic textures.
for (auto &semantic : reflection.semantic_textures)
{
for (auto &texture : semantic)
{
if (!texture.texture)
continue;
VkShaderStageFlags stages = 0;
if (texture.stage_mask & SLANG_STAGE_VERTEX_MASK)
stages |= VK_SHADER_STAGE_VERTEX_BIT;
if (texture.stage_mask & SLANG_STAGE_FRAGMENT_MASK)
stages |= VK_SHADER_STAGE_FRAGMENT_BIT;
bindings.push_back({ texture.binding,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1,
stages, nullptr });
desc_counts.push_back({ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, num_sync_indices });
}
}
VkDescriptorSetLayoutCreateInfo set_layout_info = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO };
set_layout_info.bindingCount = bindings.size();
set_layout_info.pBindings = bindings.data();
if (VKFUNC(vkCreateDescriptorSetLayout)(device,
&set_layout_info, NULL, &set_layout) != VK_SUCCESS)
return false;
VkPipelineLayoutCreateInfo layout_info = {
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO };
layout_info.setLayoutCount = 1;
layout_info.pSetLayouts = &set_layout;
if (VKFUNC(vkCreatePipelineLayout)(device,
&layout_info, NULL, &pipeline_layout) != VK_SUCCESS)
return false;
VkDescriptorPoolCreateInfo pool_info = {
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO };
pool_info.maxSets = num_sync_indices;
pool_info.poolSizeCount = desc_counts.size();
pool_info.pPoolSizes = desc_counts.data();
if (VKFUNC(vkCreateDescriptorPool)(device, &pool_info, nullptr, &pool) != VK_SUCCESS)
return false;
VkDescriptorSetAllocateInfo alloc_info = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO };
alloc_info.descriptorPool = pool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &set_layout;
sets.resize(num_sync_indices);
for (unsigned i = 0; i < num_sync_indices; i++)
VKFUNC(vkAllocateDescriptorSets)(device, &alloc_info, &sets[i]);
return true;
}
bool Pass::init_pipeline()
{
if (!init_pipeline_layout())
return false;
// Input assembly
VkPipelineInputAssemblyStateCreateInfo input_assembly = {
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO };
input_assembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
// VAO state
VkVertexInputAttributeDescription attributes[2] = {{0}};
VkVertexInputBindingDescription binding = {0};
attributes[0].location = 0;
attributes[0].binding = 0;
attributes[0].format = VK_FORMAT_R32G32_SFLOAT;
attributes[0].offset = 0;
attributes[1].location = 1;
attributes[1].binding = 0;
attributes[1].format = VK_FORMAT_R32G32_SFLOAT;
attributes[1].offset = 2 * sizeof(float);
binding.binding = 0;
binding.stride = 4 * sizeof(float);
binding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
VkPipelineVertexInputStateCreateInfo vertex_input = {
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO };
vertex_input.vertexBindingDescriptionCount = 1;
vertex_input.pVertexBindingDescriptions = &binding;
vertex_input.vertexAttributeDescriptionCount = 2;
vertex_input.pVertexAttributeDescriptions = attributes;
// Raster state
VkPipelineRasterizationStateCreateInfo raster = {
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO };
raster.polygonMode = VK_POLYGON_MODE_FILL;
raster.cullMode = VK_CULL_MODE_NONE;
raster.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
raster.depthClampEnable = false;
raster.rasterizerDiscardEnable = false;
raster.depthBiasEnable = false;
raster.lineWidth = 1.0f;
// Blend state
VkPipelineColorBlendAttachmentState blend_attachment = {0};
VkPipelineColorBlendStateCreateInfo blend = {
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO };
blend_attachment.blendEnable = false;
blend_attachment.colorWriteMask = 0xf;
blend.attachmentCount = 1;
blend.pAttachments = &blend_attachment;
// Viewport state
VkPipelineViewportStateCreateInfo viewport = {
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO };
viewport.viewportCount = 1;
viewport.scissorCount = 1;
// Depth-stencil state
VkPipelineDepthStencilStateCreateInfo depth_stencil = {
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO };
depth_stencil.depthTestEnable = false;
depth_stencil.depthWriteEnable = false;
depth_stencil.depthBoundsTestEnable = false;
depth_stencil.stencilTestEnable = false;
depth_stencil.minDepthBounds = 0.0f;
depth_stencil.maxDepthBounds = 1.0f;
// Multisample state
VkPipelineMultisampleStateCreateInfo multisample = {
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO };
multisample.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
// Dynamic state
VkPipelineDynamicStateCreateInfo dynamic = {
VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO };
static const VkDynamicState dynamics[] = {
VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
dynamic.pDynamicStates = dynamics;
dynamic.dynamicStateCount = sizeof(dynamics) / sizeof(dynamics[0]);
// Shaders
VkPipelineShaderStageCreateInfo shader_stages[2] = {
{ VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO },
{ VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO },
};
VkShaderModuleCreateInfo module_info = {
VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO };
module_info.codeSize = vertex_shader.size() * sizeof(uint32_t);
module_info.pCode = vertex_shader.data();
shader_stages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shader_stages[0].pName = "main";
VKFUNC(vkCreateShaderModule)(device, &module_info, NULL, &shader_stages[0].module);
module_info.codeSize = fragment_shader.size() * sizeof(uint32_t);
module_info.pCode = fragment_shader.data();
shader_stages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shader_stages[1].pName = "main";
VKFUNC(vkCreateShaderModule)(device, &module_info, NULL, &shader_stages[1].module);
VkGraphicsPipelineCreateInfo pipe = {
VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO };
pipe.stageCount = 2;
pipe.pStages = shader_stages;
pipe.pVertexInputState = &vertex_input;
pipe.pInputAssemblyState = &input_assembly;
pipe.pRasterizationState = &raster;
pipe.pColorBlendState = &blend;
pipe.pMultisampleState = &multisample;
pipe.pViewportState = &viewport;
pipe.pDepthStencilState = &depth_stencil;
pipe.pDynamicState = &dynamic;
pipe.renderPass = final_pass ? swapchain_render_pass :
framebuffer->get_render_pass();
pipe.layout = pipeline_layout;
if (VKFUNC(vkCreateGraphicsPipelines)(device,
cache, 1, &pipe, NULL, &pipeline) != VK_SUCCESS)
{
VKFUNC(vkDestroyShaderModule)(device, shader_stages[0].module, NULL);
VKFUNC(vkDestroyShaderModule)(device, shader_stages[1].module, NULL);
return false;
}
VKFUNC(vkDestroyShaderModule)(device, shader_stages[0].module, NULL);
VKFUNC(vkDestroyShaderModule)(device, shader_stages[1].module, NULL);
return true;
}
CommonResources::CommonResources(VkDevice device,
const VkPhysicalDeviceMemoryProperties &memory_properties)
: device(device)
{
// The final pass uses an MVP designed for [0, 1] range VBO.
// For in-between passes, we just go with identity matrices, so keep it simple.
const float vbo_data_offscreen[] = {
-1.0f, -1.0f, 0.0f, 0.0f,
-1.0f, +1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 1.0f, 0.0f,
1.0f, +1.0f, 1.0f, 1.0f,
};
const float vbo_data_final[] = {
0.0f, 0.0f, 0.0f, 0.0f,
0.0f, +1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 1.0f, 0.0f,
1.0f, +1.0f, 1.0f, 1.0f,
};
vbo_offscreen = unique_ptr<Buffer>(new Buffer(device,
memory_properties, sizeof(vbo_data_offscreen), VK_BUFFER_USAGE_VERTEX_BUFFER_BIT));
void *ptr = vbo_offscreen->map();
memcpy(ptr, vbo_data_offscreen, sizeof(vbo_data_offscreen));
vbo_offscreen->unmap();
vbo_final = unique_ptr<Buffer>(new Buffer(device,
memory_properties, sizeof(vbo_data_final), VK_BUFFER_USAGE_VERTEX_BUFFER_BIT));
ptr = vbo_final->map();
memcpy(ptr, vbo_data_final, sizeof(vbo_data_final));
vbo_final->unmap();
VkSamplerCreateInfo info = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO };
info.magFilter = VK_FILTER_NEAREST;
info.minFilter = VK_FILTER_NEAREST;
info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
info.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
info.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
info.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
info.mipLodBias = 0.0f;
info.maxAnisotropy = 1.0f;
info.compareEnable = false;
info.minLod = 0.0f;
info.maxLod = 0.0f;
info.unnormalizedCoordinates = false;
info.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VKFUNC(vkCreateSampler)(device,
&info, nullptr, &samplers[VULKAN_FILTER_CHAIN_NEAREST]);
info.magFilter = VK_FILTER_LINEAR;
info.minFilter = VK_FILTER_LINEAR;
VKFUNC(vkCreateSampler)(device,
&info, nullptr, &samplers[VULKAN_FILTER_CHAIN_LINEAR]);
}
CommonResources::~CommonResources()
{
for (auto &samp : samplers)
if (samp != VK_NULL_HANDLE)
VKFUNC(vkDestroySampler)(device, samp, nullptr);
}
bool Pass::init_buffers()
{
ubos.clear();
if (reflection.ubo_stage_mask)
{
for (unsigned i = 0; i < num_sync_indices; i++)
ubos.emplace_back(new Buffer(device,
memory_properties, reflection.ubo_size, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT));
}
return true;
}
void Pass::end_frame()
{
if (framebuffer_feedback)
swap(framebuffer, framebuffer_feedback);
}
bool Pass::init_feedback()
{
if (final_pass)
return false;
framebuffer_feedback = unique_ptr<Framebuffer>(
new Framebuffer(device, memory_properties,
current_framebuffer_size,
pass_info.rt_format));
return true;
}
bool Pass::build()
{
framebuffer.reset();
framebuffer_feedback.reset();
if (!final_pass)
{
framebuffer = unique_ptr<Framebuffer>(
new Framebuffer(device, memory_properties,
current_framebuffer_size,
pass_info.rt_format));
}
reflection = slang_reflection{};
if (!slang_reflect_spirv(vertex_shader, fragment_shader, &reflection))
return false;
if (!init_pipeline())
return false;
if (!init_buffers())
return false;
return true;
}
void Pass::set_uniform_buffer(VkDescriptorSet set, unsigned binding,
VkBuffer buffer,
VkDeviceSize offset,
VkDeviceSize range)
{
VkDescriptorBufferInfo buffer_info;
buffer_info.buffer = buffer;
buffer_info.offset = offset;
buffer_info.range = range;
VkWriteDescriptorSet write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET };
write.dstSet = set;
write.dstBinding = binding;
write.descriptorCount = 1;
write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
write.pBufferInfo = &buffer_info;
VKFUNC(vkUpdateDescriptorSets)(device, 1, &write, 0, NULL);
}
void Pass::set_texture(VkDescriptorSet set, unsigned binding,
const Texture &texture)
{
VkDescriptorImageInfo image_info;
image_info.sampler = common->samplers[texture.filter];
image_info.imageView = texture.texture.view;
image_info.imageLayout = texture.texture.layout;
VkWriteDescriptorSet write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET };
write.dstSet = set;
write.dstBinding = binding;
write.descriptorCount = 1;
write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
write.pImageInfo = &image_info;
VKFUNC(vkUpdateDescriptorSets)(device, 1, &write, 0, nullptr);
}
void Pass::set_semantic_texture(VkDescriptorSet set,
slang_texture_semantic semantic, const Texture &texture)
{
if (reflection.semantic_textures[semantic][0].texture)
set_texture(set, reflection.semantic_textures[semantic][0].binding, texture);
}
void Pass::build_semantic_texture_vec4(uint8_t *data, slang_texture_semantic semantic,
unsigned width, unsigned height)
{
if (data && reflection.semantic_textures[semantic][0].uniform)
{
build_vec4(
reinterpret_cast<float *>(data + reflection.semantic_textures[semantic][0].ubo_offset),
width,
height);
}
}
void Pass::build_semantic_vec4(uint8_t *data, slang_semantic semantic,
unsigned width, unsigned height)
{
if (data && reflection.semantics[semantic].uniform)
{
build_vec4(
reinterpret_cast<float *>(data + reflection.semantics[semantic].ubo_offset),
width,
height);
}
}
void Pass::build_semantic_texture(VkDescriptorSet set, uint8_t *buffer,
slang_texture_semantic semantic, const Texture &texture)
{
build_semantic_texture_vec4(buffer, semantic,
texture.texture.width, texture.texture.height);
set_semantic_texture(set, semantic, texture);
}
void Pass::build_semantics(VkDescriptorSet set, uint8_t *buffer,
const float *mvp, const Texture &original, const Texture &source)
{
if (buffer && reflection.semantics[SLANG_SEMANTIC_MVP].uniform)
{
size_t offset = reflection.semantics[SLANG_SEMANTIC_MVP].ubo_offset;
if (mvp)
memcpy(buffer + offset, mvp, sizeof(float) * 16);
else
build_identity_matrix(reinterpret_cast<float *>(buffer + offset));
}
build_semantic_vec4(buffer, SLANG_SEMANTIC_OUTPUT,
current_framebuffer_size.width, current_framebuffer_size.height);
build_semantic_vec4(buffer, SLANG_SEMANTIC_FINAL_VIEWPORT,
unsigned(current_viewport.width), unsigned(current_viewport.height));
build_semantic_texture(set, buffer, SLANG_TEXTURE_SEMANTIC_ORIGINAL, original);
build_semantic_texture(set, buffer, SLANG_TEXTURE_SEMANTIC_SOURCE, source);
}
void Pass::build_commands(
DeferredDisposer &disposer,
VkCommandBuffer cmd,
const Texture &original,
const Texture &source,
const VkViewport &vp,
const float *mvp)
{
current_viewport = vp;
auto size = get_output_size(
{ original.texture.width, original.texture.height },
{ source.texture.width, source.texture.height });
if ( size.width != current_framebuffer_size.width
|| size.height != current_framebuffer_size.height)
{
if (framebuffer)
framebuffer->set_size(disposer, size);
current_framebuffer_size = size;
}
if (reflection.ubo_stage_mask)
{
uint8_t *u = static_cast<uint8_t*>(ubos[sync_index]->map());
build_semantics(sets[sync_index], u, mvp, original, source);
ubos[sync_index]->unmap();
}
else
build_semantics(sets[sync_index], nullptr, mvp, original, source);
if (reflection.ubo_stage_mask)
{
set_uniform_buffer(sets[sync_index], 0,
ubos[sync_index]->get_buffer(), 0, reflection.ubo_size);
}
// The final pass is always executed inside
// another render pass since the frontend will
// want to overlay various things on top for
// the passes that end up on-screen.
if (!final_pass)
{
// Render.
image_layout_transition(cmd,
framebuffer->get_image(),
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
0,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
VkRenderPassBeginInfo rp_info = {
VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO };
VkClearValue clear_value;
clear_value.color.float32[0] = 0.0f;
clear_value.color.float32[1] = 0.0f;
clear_value.color.float32[2] = 0.0f;
clear_value.color.float32[3] = 1.0f;
rp_info.renderPass = framebuffer->get_render_pass();
rp_info.framebuffer = framebuffer->get_framebuffer();
rp_info.renderArea.extent.width = current_framebuffer_size.width;
rp_info.renderArea.extent.height = current_framebuffer_size.height;
rp_info.clearValueCount = 1;
rp_info.pClearValues = &clear_value;
VKFUNC(vkCmdBeginRenderPass)(cmd, &rp_info, VK_SUBPASS_CONTENTS_INLINE);
}
VKFUNC(vkCmdBindPipeline)(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VKFUNC(vkCmdBindDescriptorSets)(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout,
0, 1, &sets[sync_index], 0, nullptr);
VkDeviceSize offset = 0;
VKFUNC(vkCmdBindVertexBuffers)(cmd, 0, 1,
final_pass ? &common->vbo_final->get_buffer() : &common->vbo_offscreen->get_buffer(),
&offset);
if (final_pass)
{
const VkRect2D sci = {
{
int32_t(current_viewport.x),
int32_t(current_viewport.y)
},
{
uint32_t(current_viewport.width),
uint32_t(current_viewport.height)
},
};
VKFUNC(vkCmdSetViewport)(cmd, 0, 1, &current_viewport);
VKFUNC(vkCmdSetScissor)(cmd, 0, 1, &sci);
}
else
{
const VkViewport vp = {
0.0f, 0.0f,
float(current_framebuffer_size.width),
float(current_framebuffer_size.height),
0.0f, 1.0f
};
const VkRect2D sci = {
{ 0, 0 },
{
current_framebuffer_size.width,
current_framebuffer_size.height
},
};
VKFUNC(vkCmdSetViewport)(cmd, 0, 1, &vp);
VKFUNC(vkCmdSetScissor)(cmd, 0, 1, &sci);
}
VKFUNC(vkCmdDraw)(cmd, 4, 1, 0, 0);
if (!final_pass)
{
VKFUNC(vkCmdEndRenderPass)(cmd);
// Barrier to sync with next pass.
image_layout_transition(
cmd,
framebuffer->get_image(),
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
}
}
Framebuffer::Framebuffer(
VkDevice device,
const VkPhysicalDeviceMemoryProperties &mem_props,
const Size2D &max_size, VkFormat format) :
device(device),
memory_properties(mem_props),
size(max_size),
format(format)
{
RARCH_LOG("[Vulkan filter chain]: Creating framebuffer %u x %u.\n",
max_size.width, max_size.height);
init_render_pass();
init(nullptr);
}
void Framebuffer::clear(VkCommandBuffer cmd)
{
image_layout_transition(cmd, image,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
0, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT);
VkClearColorValue color;
memset(&color, 0, sizeof(color));
VkImageSubresourceRange range;
memset(&range, 0, sizeof(range));
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
range.levelCount = 1;
range.layerCount = 1;
VKFUNC(vkCmdClearColorImage)(cmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
&color, 1, &range);
image_layout_transition(cmd, image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
}
void Framebuffer::copy(VkCommandBuffer cmd,
VkImage src_image, VkImageLayout src_layout)
{
image_layout_transition(cmd, image,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
0, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT);
VkImageCopy region;
memset(&region, 0, sizeof(region));
region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.srcSubresource.layerCount = 1;
region.dstSubresource = region.srcSubresource;
region.extent.width = size.width;
region.extent.height = size.height;
region.extent.depth = 1;
VKFUNC(vkCmdCopyImage)(cmd,
src_image, src_layout,
image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &region);
image_layout_transition(cmd, image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
}
void Framebuffer::init(DeferredDisposer *disposer)
{
VkMemoryRequirements mem_reqs;
VkImageCreateInfo info = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
info.imageType = VK_IMAGE_TYPE_2D;
info.format = format;
info.extent.width = size.width;
info.extent.height = size.height;
info.extent.depth = 1;
info.mipLevels = 1;
info.arrayLayers = 1;
info.samples = VK_SAMPLE_COUNT_1_BIT;
info.tiling = VK_IMAGE_TILING_OPTIMAL;
info.usage = VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VKFUNC(vkCreateImage)(device, &info, nullptr, &image);
VKFUNC(vkGetImageMemoryRequirements)(device, image, &mem_reqs);
VkMemoryAllocateInfo alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
alloc.allocationSize = mem_reqs.size;
alloc.memoryTypeIndex = find_memory_type_fallback(
memory_properties, mem_reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
// Can reuse already allocated memory.
if (memory.size < mem_reqs.size || memory.type != alloc.memoryTypeIndex)
{
// Memory might still be in use since we don't want to totally stall
// the world for framebuffer recreation.
if (memory.memory != VK_NULL_HANDLE && disposer)
{
auto d = device;
auto m = memory.memory;
disposer->defer([=] { VKFUNC(vkFreeMemory)(d, m, nullptr); });
}
memory.type = alloc.memoryTypeIndex;
memory.size = mem_reqs.size;
VKFUNC(vkAllocateMemory)(device, &alloc, nullptr, &memory.memory);
}
VKFUNC(vkBindImageMemory)(device, image, memory.memory, 0);
VkImageViewCreateInfo view_info = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO };
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = format;
view_info.image = image;
view_info.subresourceRange.baseMipLevel = 0;
view_info.subresourceRange.baseArrayLayer = 0;
view_info.subresourceRange.levelCount = 1;
view_info.subresourceRange.layerCount = 1;
view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_info.components.r = VK_COMPONENT_SWIZZLE_R;
view_info.components.g = VK_COMPONENT_SWIZZLE_G;
view_info.components.b = VK_COMPONENT_SWIZZLE_B;
view_info.components.a = VK_COMPONENT_SWIZZLE_A;
VKFUNC(vkCreateImageView)(device, &view_info, nullptr, &view);
init_framebuffer();
}
void Framebuffer::init_render_pass()
{
VkRenderPassCreateInfo rp_info = {
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO };
VkAttachmentReference color_ref = { 0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
// We will always write to the entire framebuffer,
// so we don't really need to clear.
VkAttachmentDescription attachment = {0};
attachment.format = format;
attachment.samples = VK_SAMPLE_COUNT_1_BIT;
attachment.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachment.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {0};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_ref;
rp_info.attachmentCount = 1;
rp_info.pAttachments = &attachment;
rp_info.subpassCount = 1;
rp_info.pSubpasses = &subpass;
VKFUNC(vkCreateRenderPass)(device, &rp_info, nullptr, &render_pass);
}
void Framebuffer::init_framebuffer()
{
VkFramebufferCreateInfo info = {
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO };
info.renderPass = render_pass;
info.attachmentCount = 1;
info.pAttachments = &view;
info.width = size.width;
info.height = size.height;
info.layers = 1;
VKFUNC(vkCreateFramebuffer)(device, &info, nullptr, &framebuffer);
}
void Framebuffer::set_size(DeferredDisposer &disposer, const Size2D &size)
{
this->size = size;
RARCH_LOG("[Vulkan filter chain]: Updating framebuffer size %u x %u.\n",
size.width, size.height);
{
// The current framebuffers, etc, might still be in use
// so defer deletion.
// We'll most likely be able to reuse the memory,
// so don't free it here.
//
// Fake lambda init captures for C++11.
//
auto d = device;
auto i = image;
auto v = view;
auto fb = framebuffer;
disposer.defer([=]
{
if (fb != VK_NULL_HANDLE)
VKFUNC(vkDestroyFramebuffer)(d, fb, nullptr);
if (v != VK_NULL_HANDLE)
VKFUNC(vkDestroyImageView)(d, v, nullptr);
if (i != VK_NULL_HANDLE)
VKFUNC(vkDestroyImage)(d, i, nullptr);
});
}
init(&disposer);
}
Framebuffer::~Framebuffer()
{
if (framebuffer != VK_NULL_HANDLE)
VKFUNC(vkDestroyFramebuffer)(device, framebuffer, nullptr);
if (render_pass != VK_NULL_HANDLE)
VKFUNC(vkDestroyRenderPass)(device, render_pass, nullptr);
if (view != VK_NULL_HANDLE)
VKFUNC(vkDestroyImageView)(device, view, nullptr);
if (image != VK_NULL_HANDLE)
VKFUNC(vkDestroyImage)(device, image, nullptr);
if (memory.memory != VK_NULL_HANDLE)
VKFUNC(vkFreeMemory)(device, memory.memory, nullptr);
}
// C glue
vulkan_filter_chain_t *vulkan_filter_chain_new(
const vulkan_filter_chain_create_info *info)
{
return new vulkan_filter_chain(*info);
}
vulkan_filter_chain_t *vulkan_filter_chain_create_default(
const struct vulkan_filter_chain_create_info *info,
vulkan_filter_chain_filter filter)
{
struct vulkan_filter_chain_pass_info pass_info;
auto tmpinfo = *info;
tmpinfo.num_passes = 1;
unique_ptr<vulkan_filter_chain> chain{ new vulkan_filter_chain(tmpinfo) };
if (!chain)
return nullptr;
memset(&pass_info, 0, sizeof(pass_info));
pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT;
pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT;
pass_info.scale_x = 1.0f;
pass_info.scale_y = 1.0f;
pass_info.rt_format = tmpinfo.swapchain.format;
pass_info.source_filter = filter;
chain->set_pass_info(0, pass_info);
chain->set_shader(0, VK_SHADER_STAGE_VERTEX_BIT,
(const uint32_t*)opaque_vert_spv,
opaque_vert_spv_len / sizeof(uint32_t));
chain->set_shader(0, VK_SHADER_STAGE_FRAGMENT_BIT,
(const uint32_t*)opaque_frag_spv,
opaque_frag_spv_len / sizeof(uint32_t));
if (!chain->init())
return nullptr;
return chain.release();
}
struct ConfigDeleter
{
void operator()(config_file_t *conf)
{
if (conf)
config_file_free(conf);
}
};
vulkan_filter_chain_t *vulkan_filter_chain_create_from_preset(
const struct vulkan_filter_chain_create_info *info,
const char *path, vulkan_filter_chain_filter filter)
{
unique_ptr<video_shader> shader{ new video_shader() };
if (!shader)
return nullptr;
unique_ptr<config_file_t, ConfigDeleter> conf{ config_file_new(path) };
if (!path)
return nullptr;
if (!video_shader_read_conf_cgp(conf.get(), shader.get()))
return nullptr;
video_shader_resolve_relative(shader.get(), path);
video_shader_resolve_parameters(conf.get(), shader.get());
bool last_pass_is_fbo = shader->pass[shader->passes - 1].fbo.valid;
auto tmpinfo = *info;
tmpinfo.num_passes = shader->passes + (last_pass_is_fbo ? 1 : 0);
unique_ptr<vulkan_filter_chain> chain{ new vulkan_filter_chain(tmpinfo) };
if (!chain)
return nullptr;
for (unsigned i = 0; i < shader->passes; i++)
{
const video_shader_pass *pass = &shader->pass[i];
struct vulkan_filter_chain_pass_info pass_info;
memset(&pass_info, 0, sizeof(pass_info));
glslang_output output;
if (!glslang_compile_shader(pass->source.path, &output))
{
RARCH_ERR("Failed to compile shader: \"%s\".\n",
pass->source.path);
return nullptr;
}
chain->set_shader(i,
VK_SHADER_STAGE_VERTEX_BIT,
output.vertex.data(),
output.vertex.size());
chain->set_shader(i,
VK_SHADER_STAGE_FRAGMENT_BIT,
output.fragment.data(),
output.fragment.size());
if (pass->filter == RARCH_FILTER_UNSPEC)
pass_info.source_filter = filter;
else
{
pass_info.source_filter =
pass->filter == RARCH_FILTER_LINEAR ? VULKAN_FILTER_CHAIN_LINEAR :
VULKAN_FILTER_CHAIN_NEAREST;
}
if (!pass->fbo.valid)
{
pass_info.scale_type_x = i + 1 == shader->passes
? VULKAN_FILTER_CHAIN_SCALE_VIEWPORT
: VULKAN_FILTER_CHAIN_SCALE_SOURCE;
pass_info.scale_type_y = i + 1 == shader->passes
? VULKAN_FILTER_CHAIN_SCALE_VIEWPORT
: VULKAN_FILTER_CHAIN_SCALE_SOURCE;
pass_info.scale_x = 1.0f;
pass_info.scale_y = 1.0f;
pass_info.rt_format = i + 1 == shader->passes
? tmpinfo.swapchain.format
: VK_FORMAT_R8G8B8A8_UNORM;
}
else
{
// TODO: Add more general format spec.
pass_info.rt_format = VK_FORMAT_R8G8B8A8_UNORM;
if (pass->fbo.srgb_fbo)
pass_info.rt_format = VK_FORMAT_R8G8B8A8_SRGB;
else if (pass->fbo.fp_fbo)
pass_info.rt_format = VK_FORMAT_R16G16B16A16_SFLOAT;
switch (pass->fbo.type_x)
{
case RARCH_SCALE_INPUT:
pass_info.scale_x = pass->fbo.scale_x;
pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_SOURCE;
break;
case RARCH_SCALE_ABSOLUTE:
pass_info.scale_x = float(pass->fbo.abs_x);
pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_ABSOLUTE;
break;
case RARCH_SCALE_VIEWPORT:
pass_info.scale_x = pass->fbo.scale_x;
pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT;
break;
}
switch (pass->fbo.type_y)
{
case RARCH_SCALE_INPUT:
pass_info.scale_y = pass->fbo.scale_y;
pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_SOURCE;
break;
case RARCH_SCALE_ABSOLUTE:
pass_info.scale_y = float(pass->fbo.abs_y);
pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_ABSOLUTE;
break;
case RARCH_SCALE_VIEWPORT:
pass_info.scale_y = pass->fbo.scale_y;
pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT;
break;
}
}
chain->set_pass_info(i, pass_info);
}
if (last_pass_is_fbo)
{
struct vulkan_filter_chain_pass_info pass_info;
memset(&pass_info, 0, sizeof(pass_info));
pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT;
pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT;
pass_info.scale_x = 1.0f;
pass_info.scale_y = 1.0f;
pass_info.rt_format = tmpinfo.swapchain.format;
pass_info.source_filter = filter;
chain->set_pass_info(shader->passes, pass_info);
chain->set_shader(shader->passes,
VK_SHADER_STAGE_VERTEX_BIT,
(const uint32_t*)opaque_vert_spv,
opaque_vert_spv_len / sizeof(uint32_t));
chain->set_shader(shader->passes,
VK_SHADER_STAGE_FRAGMENT_BIT,
(const uint32_t*)opaque_frag_spv,
opaque_frag_spv_len / sizeof(uint32_t));
}
chain->set_shader_preset(move(shader));
if (!chain->init())
return nullptr;
return chain.release();
}
struct video_shader *vulkan_filter_chain_get_preset(
vulkan_filter_chain_t *chain)
{
return chain->get_shader_preset();
}
void vulkan_filter_chain_free(
vulkan_filter_chain_t *chain)
{
delete chain;
}
void vulkan_filter_chain_set_shader(
vulkan_filter_chain_t *chain,
unsigned pass,
VkShaderStageFlags stage,
const uint32_t *spirv,
size_t spirv_words)
{
chain->set_shader(pass, stage, spirv, spirv_words);
}
void vulkan_filter_chain_set_pass_info(
vulkan_filter_chain_t *chain,
unsigned pass,
const struct vulkan_filter_chain_pass_info *info)
{
chain->set_pass_info(pass, *info);
}
bool vulkan_filter_chain_update_swapchain_info(
vulkan_filter_chain_t *chain,
const vulkan_filter_chain_swapchain_info *info)
{
return chain->update_swapchain_info(*info);
}
void vulkan_filter_chain_notify_sync_index(
vulkan_filter_chain_t *chain,
unsigned index)
{
chain->notify_sync_index(index);
}
bool vulkan_filter_chain_init(vulkan_filter_chain_t *chain)
{
return chain->init();
}
void vulkan_filter_chain_set_input_texture(
vulkan_filter_chain_t *chain,
const struct vulkan_filter_chain_texture *texture)
{
chain->set_input_texture(*texture);
}
void vulkan_filter_chain_build_offscreen_passes(
vulkan_filter_chain_t *chain,
VkCommandBuffer cmd, const VkViewport *vp)
{
chain->build_offscreen_passes(cmd, *vp);
}
void vulkan_filter_chain_build_viewport_pass(
vulkan_filter_chain_t *chain,
VkCommandBuffer cmd, const VkViewport *vp, const float *mvp)
{
chain->build_viewport_pass(cmd, *vp, mvp);
}