RetroArch/deps/glm/detail/func_exponential.inl
2016-11-03 13:20:25 +01:00

217 lines
5.8 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref core
/// @file glm/core/func_exponential.inl
/// @date 2008-08-03 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "func_vector_relational.hpp"
#include "_vectorize.hpp"
#include <limits>
#include <cassert>
namespace glm{
namespace detail
{
template <bool isFloat>
struct compute_log2
{
template <typename T>
T operator() (T const & Value) const;
};
template <>
struct compute_log2<true>
{
template <typename T>
inline T operator() (T const & Value) const
{
return static_cast<T>(::std::log(Value)) * static_cast<T>(1.4426950408889634073599246810019);
}
};
template <template <class, precision> class vecType, typename T, precision P>
struct compute_inversesqrt
{
inline static vecType<T, P> call(vecType<T, P> const & x)
{
return static_cast<T>(1) / sqrt(x);
}
};
template <template <class, precision> class vecType>
struct compute_inversesqrt<vecType, float, lowp>
{
inline static vecType<float, lowp> call(vecType<float, lowp> const & x)
{
vecType<float, lowp> tmp(x);
vecType<float, lowp> xhalf(tmp * 0.5f);
vecType<uint, lowp>* p = reinterpret_cast<vecType<uint, lowp>*>(const_cast<vecType<float, lowp>*>(&x));
vecType<uint, lowp> i = vecType<uint, lowp>(0x5f375a86) - (*p >> vecType<uint, lowp>(1));
vecType<float, lowp>* ptmp = reinterpret_cast<vecType<float, lowp>*>(&i);
tmp = *ptmp;
tmp = tmp * (1.5f - xhalf * tmp * tmp);
return tmp;
}
};
}//namespace detail
// pow
template <typename genType>
inline genType pow
(
genType const & x,
genType const & y
)
{
return std::pow(x, y);
}
VECTORIZE_VEC_VEC(pow)
// exp
template <typename genType>
inline genType exp
(
genType const & x
)
{
return std::exp(x);
}
VECTORIZE_VEC(exp)
// log
template <typename genType>
inline genType log
(
genType const & x
)
{
return std::log(x);
}
VECTORIZE_VEC(log)
//exp2, ln2 = 0.69314718055994530941723212145818f
template <typename genType>
inline genType exp2(genType const & x)
{
return std::exp(static_cast<genType>(0.69314718055994530941723212145818) * x);
}
VECTORIZE_VEC(exp2)
// log2, ln2 = 0.69314718055994530941723212145818f
template <typename genType>
inline genType log2(genType x)
{
assert(x > genType(0)); // log2 is only defined on the range (0, inf]
return detail::compute_log2<std::numeric_limits<genType>::is_iec559>()(x);
}
VECTORIZE_VEC(log2)
namespace detail
{
template <template <class, precision> class vecType, typename T, precision P>
struct compute_sqrt{};
template <typename T, precision P>
struct compute_sqrt<detail::tvec1, T, P>
{
inline static detail::tvec1<T, P> call(detail::tvec1<T, P> const & x)
{
return detail::tvec1<T, P>(std::sqrt(x.x));
}
};
template <typename T, precision P>
struct compute_sqrt<detail::tvec2, T, P>
{
inline static detail::tvec2<T, P> call(detail::tvec2<T, P> const & x)
{
return detail::tvec2<T, P>(std::sqrt(x.x), std::sqrt(x.y));
}
};
template <typename T, precision P>
struct compute_sqrt<detail::tvec3, T, P>
{
inline static detail::tvec3<T, P> call(detail::tvec3<T, P> const & x)
{
return detail::tvec3<T, P>(std::sqrt(x.x), std::sqrt(x.y), std::sqrt(x.z));
}
};
template <typename T, precision P>
struct compute_sqrt<detail::tvec4, T, P>
{
inline static detail::tvec4<T, P> call(detail::tvec4<T, P> const & x)
{
return detail::tvec4<T, P>(std::sqrt(x.x), std::sqrt(x.y), std::sqrt(x.z), std::sqrt(x.w));
}
};
}//namespace detail
// sqrt
inline float sqrt(float x)
{
return detail::compute_sqrt<detail::tvec1, float, highp>::call(x).x;
}
inline double sqrt(double x)
{
return detail::compute_sqrt<detail::tvec1, double, highp>::call(x).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
inline vecType<T, P> sqrt(vecType<T, P> const & x)
{
return detail::compute_sqrt<vecType, T, P>::call(x);
}
// inversesqrt
inline float inversesqrt(float const & x)
{
return 1.0f / sqrt(x);
}
inline double inversesqrt(double const & x)
{
return 1.0 / sqrt(x);
}
template <template <class, precision> class vecType, typename T, precision P>
inline vecType<T, P> inversesqrt
(
vecType<T, P> const & x
)
{
return detail::compute_inversesqrt<vecType, T, P>::call(x);
}
VECTORIZE_VEC(inversesqrt)
}//namespace glm