2020-07-01 04:33:16 +02:00

760 lines
21 KiB
C

/*
* FIPS-197 compliant AES implementation
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/*
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
*
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#if defined(MBEDTLS_AES_C)
#include <string.h>
#include "mbedtls/aes.h"
#if defined(MBEDTLS_PADLOCK_C)
#include "mbedtls/padlock.h"
#endif
#if defined(MBEDTLS_AESNI_C)
#include "mbedtls/aesni.h"
#endif
#if !defined(MBEDTLS_AES_ALT)
#include "arc4_alt.h"
/*
* 32-bit integer manipulation macros (little endian)
*/
#ifndef GET_UINT32_LE
#define GET_UINT32_LE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] ) \
| ( (uint32_t) (b)[(i) + 1] << 8 ) \
| ( (uint32_t) (b)[(i) + 2] << 16 ) \
| ( (uint32_t) (b)[(i) + 3] << 24 ); \
}
#endif
#ifndef PUT_UINT32_LE
#define PUT_UINT32_LE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( ( (n) ) & 0xFF ); \
(b)[(i) + 1] = (unsigned char) ( ( (n) >> 8 ) & 0xFF ); \
(b)[(i) + 2] = (unsigned char) ( ( (n) >> 16 ) & 0xFF ); \
(b)[(i) + 3] = (unsigned char) ( ( (n) >> 24 ) & 0xFF ); \
}
#endif
#if defined(MBEDTLS_PADLOCK_C) && \
( defined(MBEDTLS_HAVE_X86) || defined(MBEDTLS_PADLOCK_ALIGN16) )
static int aes_padlock_ace = -1;
#endif
/*
* Forward S-box & tables
*/
static unsigned char FSb[256];
static uint32_t FT0[256];
static uint32_t FT1[256];
static uint32_t FT2[256];
static uint32_t FT3[256];
/*
* Reverse S-box & tables
*/
static unsigned char RSb[256];
static uint32_t RT0[256];
static uint32_t RT1[256];
static uint32_t RT2[256];
static uint32_t RT3[256];
/*
* Round constants
*/
static uint32_t RCON[10];
/*
* Tables generation code
*/
#define ROTL8(x) ( ( x << 8 ) & 0xFFFFFFFF ) | ( x >> 24 )
#define XTIME(x) ( ( x << 1 ) ^ ( ( x & 0x80 ) ? 0x1B : 0x00 ) )
#define MUL(x,y) ( ( x && y ) ? pow[(log[x]+log[y]) % 255] : 0 )
static int aes_init_done = 0;
static void aes_gen_tables( void )
{
int i, x, y, z;
int pow[256];
int log[256];
/*
* compute pow and log tables over GF(2^8)
*/
for( i = 0, x = 1; i < 256; i++ )
{
pow[i] = x;
log[x] = i;
x = ( x ^ XTIME( x ) ) & 0xFF;
}
/*
* calculate the round constants
*/
for( i = 0, x = 1; i < 10; i++ )
{
RCON[i] = (uint32_t) x;
x = XTIME( x ) & 0xFF;
}
/*
* generate the forward and reverse S-boxes
*/
FSb[0x00] = 0x63;
RSb[0x63] = 0x00;
for( i = 1; i < 256; i++ )
{
x = pow[255 - log[i]];
y = x; y = ( ( y << 1 ) | ( y >> 7 ) ) & 0xFF;
x ^= y; y = ( ( y << 1 ) | ( y >> 7 ) ) & 0xFF;
x ^= y; y = ( ( y << 1 ) | ( y >> 7 ) ) & 0xFF;
x ^= y; y = ( ( y << 1 ) | ( y >> 7 ) ) & 0xFF;
x ^= y ^ 0x63;
FSb[i] = (unsigned char) x;
RSb[x] = (unsigned char) i;
}
/*
* generate the forward and reverse tables
*/
for( i = 0; i < 256; i++ )
{
x = FSb[i];
y = XTIME( x ) & 0xFF;
z = ( y ^ x ) & 0xFF;
FT0[i] = ( (uint32_t) y ) ^
( (uint32_t) x << 8 ) ^
( (uint32_t) x << 16 ) ^
( (uint32_t) z << 24 );
FT1[i] = ROTL8( FT0[i] );
FT2[i] = ROTL8( FT1[i] );
FT3[i] = ROTL8( FT2[i] );
x = RSb[i];
RT0[i] = ( (uint32_t) MUL( 0x0E, x ) ) ^
( (uint32_t) MUL( 0x09, x ) << 8 ) ^
( (uint32_t) MUL( 0x0D, x ) << 16 ) ^
( (uint32_t) MUL( 0x0B, x ) << 24 );
RT1[i] = ROTL8( RT0[i] );
RT2[i] = ROTL8( RT1[i] );
RT3[i] = ROTL8( RT2[i] );
}
}
void mbedtls_aes_init( mbedtls_aes_context *ctx )
{
memset( ctx, 0, sizeof( mbedtls_aes_context ) );
}
void mbedtls_aes_free( mbedtls_aes_context *ctx )
{
if( ctx == NULL )
return;
mbedtls_zeroize( ctx, sizeof( mbedtls_aes_context ) );
}
/*
* AES key schedule (encryption)
*/
#if !defined(MBEDTLS_AES_SETKEY_ENC_ALT)
int mbedtls_aes_setkey_enc( mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits )
{
unsigned int i;
uint32_t *RK;
if( aes_init_done == 0 )
{
aes_gen_tables();
aes_init_done = 1;
}
switch( keybits )
{
case 128: ctx->nr = 10; break;
case 192: ctx->nr = 12; break;
case 256: ctx->nr = 14; break;
default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH );
}
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_PADLOCK_ALIGN16)
if( aes_padlock_ace == -1 )
aes_padlock_ace = mbedtls_padlock_has_support( MBEDTLS_PADLOCK_ACE );
if( aes_padlock_ace )
ctx->rk = RK = MBEDTLS_PADLOCK_ALIGN16( ctx->buf );
else
#endif
ctx->rk = RK = ctx->buf;
#if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
if( mbedtls_aesni_has_support( MBEDTLS_AESNI_AES ) )
return( mbedtls_aesni_setkey_enc( (unsigned char *) ctx->rk, key, keybits ) );
#endif
for( i = 0; i < ( keybits >> 5 ); i++ )
{
GET_UINT32_LE( RK[i], key, i << 2 );
}
switch( ctx->nr )
{
case 10:
for( i = 0; i < 10; i++, RK += 4 )
{
RK[4] = RK[0] ^ RCON[i] ^
( (uint32_t) FSb[ ( RK[3] >> 8 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( RK[3] >> 16 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( RK[3] >> 24 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( RK[3] ) & 0xFF ] << 24 );
RK[5] = RK[1] ^ RK[4];
RK[6] = RK[2] ^ RK[5];
RK[7] = RK[3] ^ RK[6];
}
break;
case 12:
for( i = 0; i < 8; i++, RK += 6 )
{
RK[6] = RK[0] ^ RCON[i] ^
( (uint32_t) FSb[ ( RK[5] >> 8 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( RK[5] >> 16 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( RK[5] >> 24 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( RK[5] ) & 0xFF ] << 24 );
RK[7] = RK[1] ^ RK[6];
RK[8] = RK[2] ^ RK[7];
RK[9] = RK[3] ^ RK[8];
RK[10] = RK[4] ^ RK[9];
RK[11] = RK[5] ^ RK[10];
}
break;
case 14:
for( i = 0; i < 7; i++, RK += 8 )
{
RK[8] = RK[0] ^ RCON[i] ^
( (uint32_t) FSb[ ( RK[7] >> 8 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( RK[7] >> 16 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( RK[7] >> 24 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( RK[7] ) & 0xFF ] << 24 );
RK[9] = RK[1] ^ RK[8];
RK[10] = RK[2] ^ RK[9];
RK[11] = RK[3] ^ RK[10];
RK[12] = RK[4] ^
( (uint32_t) FSb[ ( RK[11] ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( RK[11] >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( RK[11] >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( RK[11] >> 24 ) & 0xFF ] << 24 );
RK[13] = RK[5] ^ RK[12];
RK[14] = RK[6] ^ RK[13];
RK[15] = RK[7] ^ RK[14];
}
break;
}
return( 0 );
}
#endif /* !MBEDTLS_AES_SETKEY_ENC_ALT */
/*
* AES key schedule (decryption)
*/
#if !defined(MBEDTLS_AES_SETKEY_DEC_ALT)
int mbedtls_aes_setkey_dec( mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits )
{
int i, j, ret;
mbedtls_aes_context cty;
uint32_t *RK;
uint32_t *SK;
mbedtls_aes_init( &cty );
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_PADLOCK_ALIGN16)
if( aes_padlock_ace == -1 )
aes_padlock_ace = mbedtls_padlock_has_support( MBEDTLS_PADLOCK_ACE );
if( aes_padlock_ace )
ctx->rk = RK = MBEDTLS_PADLOCK_ALIGN16( ctx->buf );
else
#endif
ctx->rk = RK = ctx->buf;
/* Also checks keybits */
if( ( ret = mbedtls_aes_setkey_enc( &cty, key, keybits ) ) != 0 )
goto exit;
ctx->nr = cty.nr;
#if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
if( mbedtls_aesni_has_support( MBEDTLS_AESNI_AES ) )
{
mbedtls_aesni_inverse_key( (unsigned char *) ctx->rk,
(const unsigned char *) cty.rk, ctx->nr );
goto exit;
}
#endif
SK = cty.rk + cty.nr * 4;
*RK++ = *SK++;
*RK++ = *SK++;
*RK++ = *SK++;
*RK++ = *SK++;
for( i = ctx->nr - 1, SK -= 8; i > 0; i--, SK -= 8 )
{
for( j = 0; j < 4; j++, SK++ )
{
*RK++ = RT0[ FSb[ ( *SK ) & 0xFF ] ] ^
RT1[ FSb[ ( *SK >> 8 ) & 0xFF ] ] ^
RT2[ FSb[ ( *SK >> 16 ) & 0xFF ] ] ^
RT3[ FSb[ ( *SK >> 24 ) & 0xFF ] ];
}
}
*RK++ = *SK++;
*RK++ = *SK++;
*RK++ = *SK++;
*RK++ = *SK++;
exit:
mbedtls_aes_free( &cty );
return( ret );
}
#endif /* !MBEDTLS_AES_SETKEY_DEC_ALT */
#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^ \
FT1[ ( Y1 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y2 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y3 >> 24 ) & 0xFF ]; \
\
X1 = *RK++ ^ FT0[ ( Y1 ) & 0xFF ] ^ \
FT1[ ( Y2 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y3 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y0 >> 24 ) & 0xFF ]; \
\
X2 = *RK++ ^ FT0[ ( Y2 ) & 0xFF ] ^ \
FT1[ ( Y3 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y0 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y1 >> 24 ) & 0xFF ]; \
\
X3 = *RK++ ^ FT0[ ( Y3 ) & 0xFF ] ^ \
FT1[ ( Y0 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y1 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y2 >> 24 ) & 0xFF ]; \
}
#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
X0 = *RK++ ^ RT0[ ( Y0 ) & 0xFF ] ^ \
RT1[ ( Y3 >> 8 ) & 0xFF ] ^ \
RT2[ ( Y2 >> 16 ) & 0xFF ] ^ \
RT3[ ( Y1 >> 24 ) & 0xFF ]; \
\
X1 = *RK++ ^ RT0[ ( Y1 ) & 0xFF ] ^ \
RT1[ ( Y0 >> 8 ) & 0xFF ] ^ \
RT2[ ( Y3 >> 16 ) & 0xFF ] ^ \
RT3[ ( Y2 >> 24 ) & 0xFF ]; \
\
X2 = *RK++ ^ RT0[ ( Y2 ) & 0xFF ] ^ \
RT1[ ( Y1 >> 8 ) & 0xFF ] ^ \
RT2[ ( Y0 >> 16 ) & 0xFF ] ^ \
RT3[ ( Y3 >> 24 ) & 0xFF ]; \
\
X3 = *RK++ ^ RT0[ ( Y3 ) & 0xFF ] ^ \
RT1[ ( Y2 >> 8 ) & 0xFF ] ^ \
RT2[ ( Y1 >> 16 ) & 0xFF ] ^ \
RT3[ ( Y0 >> 24 ) & 0xFF ]; \
}
/*
* AES-ECB block encryption
*/
#if !defined(MBEDTLS_AES_ENCRYPT_ALT)
int mbedtls_internal_aes_encrypt( mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int i;
uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
RK = ctx->rk;
GET_UINT32_LE( X0, input, 0 ); X0 ^= *RK++;
GET_UINT32_LE( X1, input, 4 ); X1 ^= *RK++;
GET_UINT32_LE( X2, input, 8 ); X2 ^= *RK++;
GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++;
for( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- )
{
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );
}
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
X0 = *RK++ ^ \
( (uint32_t) FSb[ ( Y0 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );
X1 = *RK++ ^ \
( (uint32_t) FSb[ ( Y1 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y0 >> 24 ) & 0xFF ] << 24 );
X2 = *RK++ ^ \
( (uint32_t) FSb[ ( Y2 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y1 >> 24 ) & 0xFF ] << 24 );
X3 = *RK++ ^ \
( (uint32_t) FSb[ ( Y3 ) & 0xFF ] ) ^
( (uint32_t) FSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) FSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) FSb[ ( Y2 >> 24 ) & 0xFF ] << 24 );
PUT_UINT32_LE( X0, output, 0 );
PUT_UINT32_LE( X1, output, 4 );
PUT_UINT32_LE( X2, output, 8 );
PUT_UINT32_LE( X3, output, 12 );
return( 0 );
}
#endif /* !MBEDTLS_AES_ENCRYPT_ALT */
/*
* AES-ECB block decryption
*/
#if !defined(MBEDTLS_AES_DECRYPT_ALT)
int mbedtls_internal_aes_decrypt( mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
int i;
uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
RK = ctx->rk;
GET_UINT32_LE( X0, input, 0 ); X0 ^= *RK++;
GET_UINT32_LE( X1, input, 4 ); X1 ^= *RK++;
GET_UINT32_LE( X2, input, 8 ); X2 ^= *RK++;
GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++;
for( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- )
{
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );
}
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
X0 = *RK++ ^ \
( (uint32_t) RSb[ ( Y0 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y1 >> 24 ) & 0xFF ] << 24 );
X1 = *RK++ ^ \
( (uint32_t) RSb[ ( Y1 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y2 >> 24 ) & 0xFF ] << 24 );
X2 = *RK++ ^ \
( (uint32_t) RSb[ ( Y2 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );
X3 = *RK++ ^ \
( (uint32_t) RSb[ ( Y3 ) & 0xFF ] ) ^
( (uint32_t) RSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^
( (uint32_t) RSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^
( (uint32_t) RSb[ ( Y0 >> 24 ) & 0xFF ] << 24 );
PUT_UINT32_LE( X0, output, 0 );
PUT_UINT32_LE( X1, output, 4 );
PUT_UINT32_LE( X2, output, 8 );
PUT_UINT32_LE( X3, output, 12 );
return( 0 );
}
#endif /* !MBEDTLS_AES_DECRYPT_ALT */
/*
* AES-ECB block encryption/decryption
*/
int mbedtls_aes_crypt_ecb( mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16] )
{
#if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
if( mbedtls_aesni_has_support( MBEDTLS_AESNI_AES ) )
return( mbedtls_aesni_crypt_ecb( ctx, mode, input, output ) );
#endif
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86)
if( aes_padlock_ace )
{
if( mbedtls_padlock_xcryptecb( ctx, mode, input, output ) == 0 )
return( 0 );
// If padlock data misaligned, we just fall back to
// unaccelerated mode
//
}
#endif
if( mode == MBEDTLS_AES_ENCRYPT )
return( mbedtls_internal_aes_encrypt( ctx, input, output ) );
else
return( mbedtls_internal_aes_decrypt( ctx, input, output ) );
}
#if defined(MBEDTLS_CIPHER_MODE_CBC)
/*
* AES-CBC buffer encryption/decryption
*/
int mbedtls_aes_crypt_cbc( mbedtls_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
int i;
unsigned char temp[16];
if( length % 16 )
return( MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH );
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86)
if( aes_padlock_ace )
{
if( mbedtls_padlock_xcryptcbc( ctx, mode, length, iv, input, output ) == 0 )
return( 0 );
// If padlock data misaligned, we just fall back to
// unaccelerated mode
//
}
#endif
if( mode == MBEDTLS_AES_DECRYPT )
{
while( length > 0 )
{
memcpy( temp, input, 16 );
mbedtls_aes_crypt_ecb( ctx, mode, input, output );
for( i = 0; i < 16; i++ )
output[i] = (unsigned char)( output[i] ^ iv[i] );
memcpy( iv, temp, 16 );
input += 16;
output += 16;
length -= 16;
}
}
else
{
while( length > 0 )
{
for( i = 0; i < 16; i++ )
output[i] = (unsigned char)( input[i] ^ iv[i] );
mbedtls_aes_crypt_ecb( ctx, mode, output, output );
memcpy( iv, output, 16 );
input += 16;
output += 16;
length -= 16;
}
}
return( 0 );
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
/*
* AES-CFB128 buffer encryption/decryption
*/
int mbedtls_aes_crypt_cfb128( mbedtls_aes_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
int c;
size_t n = *iv_off;
if( mode == MBEDTLS_AES_DECRYPT )
{
while( length-- )
{
if( n == 0 )
mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, iv, iv );
c = *input++;
*output++ = (unsigned char)( c ^ iv[n] );
iv[n] = (unsigned char) c;
n = ( n + 1 ) & 0x0F;
}
}
else
{
while( length-- )
{
if( n == 0 )
mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, iv, iv );
iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ );
n = ( n + 1 ) & 0x0F;
}
}
*iv_off = n;
return( 0 );
}
/*
* AES-CFB8 buffer encryption/decryption
*/
int mbedtls_aes_crypt_cfb8( mbedtls_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
unsigned char c;
unsigned char ov[17];
while( length-- )
{
memcpy( ov, iv, 16 );
mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, iv, iv );
if( mode == MBEDTLS_AES_DECRYPT )
ov[16] = *input;
c = *output++ = (unsigned char)( iv[0] ^ *input++ );
if( mode == MBEDTLS_AES_ENCRYPT )
ov[16] = c;
memcpy( iv, ov + 1, 16 );
}
return( 0 );
}
#endif /*MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_CTR)
/*
* AES-CTR buffer encryption/decryption
*/
int mbedtls_aes_crypt_ctr( mbedtls_aes_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output )
{
int c, i;
size_t n = *nc_off;
while( length-- )
{
if( n == 0 ) {
mbedtls_aes_crypt_ecb( ctx, MBEDTLS_AES_ENCRYPT, nonce_counter, stream_block );
for( i = 16; i > 0; i-- )
if( ++nonce_counter[i - 1] != 0 )
break;
}
c = *input++;
*output++ = (unsigned char)( c ^ stream_block[n] );
n = ( n + 1 ) & 0x0F;
}
*nc_off = n;
return( 0 );
}
#endif /* MBEDTLS_CIPHER_MODE_CTR */
#endif /* !MBEDTLS_AES_ALT */
#endif /* MBEDTLS_AES_C */