gblues 6904101c44 Clean up trailing whitespace
== DETAILS

Really simple code cleanup, because my editor flags trailing whitespaces
and it's pretty annoying.
2017-12-12 00:24:18 -08:00

917 lines
24 KiB
C

#include <gu.h>
#include <math.h>
extern void __ps_guMtxRotAxisRadInternal(register Mtx mt,const register guVector *axis,register f32 sT,register f32 cT);
void guFrustum(Mtx44 mt,f32 t,f32 b,f32 l,f32 r,f32 n,f32 f)
{
f32 tmp;
tmp = 1.0f/(r-l);
mt[0][0] = (2*n)*tmp;
mt[0][1] = 0.0f;
mt[0][2] = (r+l)*tmp;
mt[0][3] = 0.0f;
tmp = 1.0f/(t-b);
mt[1][0] = 0.0f;
mt[1][1] = (2*n)*tmp;
mt[1][2] = (t+b)*tmp;
mt[1][3] = 0.0f;
tmp = 1.0f/(f-n);
mt[2][0] = 0.0f;
mt[2][1] = 0.0f;
mt[2][2] = -(n)*tmp;
mt[2][3] = -(f*n)*tmp;
mt[3][0] = 0.0f;
mt[3][1] = 0.0f;
mt[3][2] = -1.0f;
mt[3][3] = 0.0f;
}
void guPerspective(Mtx44 mt,f32 fovy,f32 aspect,f32 n,f32 f)
{
f32 cot,angle,tmp;
angle = fovy*0.5f;
angle = DegToRad(angle);
cot = 1.0f/tanf(angle);
mt[0][0] = cot/aspect;
mt[0][1] = 0.0f;
mt[0][2] = 0.0f;
mt[0][3] = 0.0f;
mt[1][0] = 0.0f;
mt[1][1] = cot;
mt[1][2] = 0.0f;
mt[1][3] = 0.0f;
tmp = 1.0f/(f-n);
mt[2][0] = 0.0f;
mt[2][1] = 0.0f;
mt[2][2] = -(n)*tmp;
mt[2][3] = -(f*n)*tmp;
mt[3][0] = 0.0f;
mt[3][1] = 0.0f;
mt[3][2] = -1.0f;
mt[3][3] = 0.0f;
}
void guOrtho(Mtx44 mt,f32 t,f32 b,f32 l,f32 r,f32 n,f32 f)
{
f32 tmp;
tmp = 1.0f/(r-l);
mt[0][0] = 2.0f*tmp;
mt[0][1] = 0.0f;
mt[0][2] = 0.0f;
mt[0][3] = -(r+l)*tmp;
tmp = 1.0f/(t-b);
mt[1][0] = 0.0f;
mt[1][1] = 2.0f*tmp;
mt[1][2] = 0.0f;
mt[1][3] = -(t+b)*tmp;
tmp = 1.0f/(f-n);
mt[2][0] = 0.0f;
mt[2][1] = 0.0f;
mt[2][2] = -(1.0f)*tmp;
mt[2][3] = -(f)*tmp;
mt[3][0] = 0.0f;
mt[3][1] = 0.0f;
mt[3][2] = 0.0f;
mt[3][3] = 1.0f;
}
void guLightPerspective(Mtx mt,f32 fovY,f32 aspect,f32 scaleS,f32 scaleT,f32 transS,f32 transT)
{
f32 angle;
f32 cot;
angle = fovY*0.5f;
angle = DegToRad(angle);
cot = 1.0f/tanf(angle);
mt[0][0] = (cot / aspect) * scaleS;
mt[0][1] = 0.0f;
mt[0][2] = -transS;
mt[0][3] = 0.0f;
mt[1][0] = 0.0f;
mt[1][1] = cot * scaleT;
mt[1][2] = -transT;
mt[1][3] = 0.0f;
mt[2][0] = 0.0f;
mt[2][1] = 0.0f;
mt[2][2] = -1.0f;
mt[2][3] = 0.0f;
}
void guLightOrtho(Mtx mt,f32 t,f32 b,f32 l,f32 r,f32 scaleS,f32 scaleT,f32 transS,f32 transT)
{
f32 tmp;
tmp = 1.0f / (r - l);
mt[0][0] = (2.0f * tmp * scaleS);
mt[0][1] = 0.0f;
mt[0][2] = 0.0f;
mt[0][3] = ((-(r + l) * tmp) * scaleS) + transS;
tmp = 1.0f / (t - b);
mt[1][0] = 0.0f;
mt[1][1] = (2.0f * tmp) * scaleT;
mt[1][2] = 0.0f;
mt[1][3] = ((-(t + b) * tmp)* scaleT) + transT;
mt[2][0] = 0.0f;
mt[2][1] = 0.0f;
mt[2][2] = 0.0f;
mt[2][3] = 1.0f;
}
void guLightFrustum(Mtx mt,f32 t,f32 b,f32 l,f32 r,f32 n,f32 scaleS,f32 scaleT,f32 transS,f32 transT)
{
f32 tmp;
tmp = 1.0f / (r - l);
mt[0][0] = ((2*n) * tmp) * scaleS;
mt[0][1] = 0.0f;
mt[0][2] = (((r + l) * tmp) * scaleS) - transS;
mt[0][3] = 0.0f;
tmp = 1.0f / (t - b);
mt[1][0] = 0.0f;
mt[1][1] = ((2*n) * tmp) * scaleT;
mt[1][2] = (((t + b) * tmp) * scaleT) - transT;
mt[1][3] = 0.0f;
mt[2][0] = 0.0f;
mt[2][1] = 0.0f;
mt[2][2] = -1.0f;
mt[2][3] = 0.0f;
}
void guLookAt(Mtx mt,guVector *camPos,guVector *camUp,guVector *target)
{
guVector vLook,vRight,vUp;
vLook.x = camPos->x - target->x;
vLook.y = camPos->y - target->y;
vLook.z = camPos->z - target->z;
guVecNormalize(&vLook);
guVecCross(camUp,&vLook,&vRight);
guVecNormalize(&vRight);
guVecCross(&vLook,&vRight,&vUp);
mt[0][0] = vRight.x;
mt[0][1] = vRight.y;
mt[0][2] = vRight.z;
mt[0][3] = -( camPos->x * vRight.x + camPos->y * vRight.y + camPos->z * vRight.z );
mt[1][0] = vUp.x;
mt[1][1] = vUp.y;
mt[1][2] = vUp.z;
mt[1][3] = -( camPos->x * vUp.x + camPos->y * vUp.y + camPos->z * vUp.z );
mt[2][0] = vLook.x;
mt[2][1] = vLook.y;
mt[2][2] = vLook.z;
mt[2][3] = -( camPos->x * vLook.x + camPos->y * vLook.y + camPos->z * vLook.z );
}
void c_guMtxIdentity(Mtx mt)
{
s32 i,j;
for(i=0;i<3;i++) {
for(j=0;j<4;j++) {
if(i==j) mt[i][j] = 1.0;
else mt[i][j] = 0.0;
}
}
}
void c_guMtxRotRad(Mtx mt,const char axis,f32 rad)
{
f32 sinA,cosA;
sinA = sinf(rad);
cosA = cosf(rad);
c_guMtxRotTrig(mt,axis,sinA,cosA);
}
#ifdef GEKKO
void ps_guMtxRotRad(register Mtx mt,const register char axis,register f32 rad)
{
register f32 sinA = sinf(rad);
register f32 cosA = cosf(rad);
ps_guMtxRotTrig(mt,axis,sinA,cosA);
}
void ps_guMtxRotAxisRad(Mtx mt,guVector *axis,f32 rad)
{
f32 sinT = sinf(rad);
f32 cosT = cosf(rad);
__ps_guMtxRotAxisRadInternal(mt,axis,sinT,cosT);
}
#endif
void c_guMtxRotTrig(Mtx mt,const char axis,f32 sinA,f32 cosA)
{
switch(axis) {
case 'x':
case 'X':
mt[0][0] = 1.0f; mt[0][1] = 0.0f; mt[0][2] = 0.0f; mt[0][3] = 0.0f;
mt[1][0] = 0.0f; mt[1][1] = cosA; mt[1][2] = -sinA; mt[1][3] = 0.0f;
mt[2][0] = 0.0f; mt[2][1] = sinA; mt[2][2] = cosA; mt[2][3] = 0.0f;
break;
case 'y':
case 'Y':
mt[0][0] = cosA; mt[0][1] = 0.0f; mt[0][2] = sinA; mt[0][3] = 0.0f;
mt[1][0] = 0.0f; mt[1][1] = 1.0f; mt[1][2] = 0.0f; mt[1][3] = 0.0f;
mt[2][0] = -sinA; mt[2][1] = 0.0f; mt[2][2] = cosA; mt[2][3] = 0.0f;
break;
case 'z':
case 'Z':
mt[0][0] = cosA; mt[0][1] = -sinA; mt[0][2] = 0.0f; mt[0][3] = 0.0f;
mt[1][0] = sinA; mt[1][1] = cosA; mt[1][2] = 0.0f; mt[1][3] = 0.0f;
mt[2][0] = 0.0f; mt[2][1] = 0.0f; mt[2][2] = 1.0f; mt[2][3] = 0.0f;
break;
default:
break;
}
}
void c_guMtxRotAxisRad(Mtx mt,guVector *axis,f32 rad)
{
f32 s,c;
f32 t;
f32 x,y,z;
f32 xSq,ySq,zSq;
s = sinf(rad);
c = cosf(rad);
t = 1.0f-c;
c_guVecNormalize(axis);
x = axis->x;
y = axis->y;
z = axis->z;
xSq = x*x;
ySq = y*y;
zSq = z*z;
mt[0][0] = ( t * xSq ) + ( c );
mt[0][1] = ( t * x * y ) - ( s * z );
mt[0][2] = ( t * x * z ) + ( s * y );
mt[0][3] = 0.0f;
mt[1][0] = ( t * x * y ) + ( s * z );
mt[1][1] = ( t * ySq ) + ( c );
mt[1][2] = ( t * y * z ) - ( s * x );
mt[1][3] = 0.0f;
mt[2][0] = ( t * x * z ) - ( s * y );
mt[2][1] = ( t * y * z ) + ( s * x );
mt[2][2] = ( t * zSq ) + ( c );
mt[2][3] = 0.0f;
}
void c_guMtxCopy(Mtx src,Mtx dst)
{
if(src==dst) return;
dst[0][0] = src[0][0]; dst[0][1] = src[0][1]; dst[0][2] = src[0][2]; dst[0][3] = src[0][3];
dst[1][0] = src[1][0]; dst[1][1] = src[1][1]; dst[1][2] = src[1][2]; dst[1][3] = src[1][3];
dst[2][0] = src[2][0]; dst[2][1] = src[2][1]; dst[2][2] = src[2][2]; dst[2][3] = src[2][3];
}
void c_guMtxConcat(Mtx a,Mtx b,Mtx ab)
{
Mtx tmp;
MtxP m;
if(ab==b || ab==a)
m = tmp;
else
m = ab;
m[0][0] = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
m[0][1] = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
m[0][2] = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
m[0][3] = a[0][0]*b[0][3] + a[0][1]*b[1][3] + a[0][2]*b[2][3] + a[0][3];
m[1][0] = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
m[1][1] = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
m[1][2] = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
m[1][3] = a[1][0]*b[0][3] + a[1][1]*b[1][3] + a[1][2]*b[2][3] + a[1][3];
m[2][0] = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
m[2][1] = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
m[2][2] = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
m[2][3] = a[2][0]*b[0][3] + a[2][1]*b[1][3] + a[2][2]*b[2][3] + a[2][3];
if(m==tmp)
c_guMtxCopy(tmp,ab);
}
void c_guMtxScale(Mtx mt,f32 xS,f32 yS,f32 zS)
{
mt[0][0] = xS; mt[0][1] = 0.0f; mt[0][2] = 0.0f; mt[0][3] = 0.0f;
mt[1][0] = 0.0f; mt[1][1] = yS; mt[1][2] = 0.0f; mt[1][3] = 0.0f;
mt[2][0] = 0.0f; mt[2][1] = 0.0f; mt[2][2] = zS; mt[2][3] = 0.0f;
}
void c_guMtxScaleApply(Mtx src,Mtx dst,f32 xS,f32 yS,f32 zS)
{
dst[0][0] = src[0][0] * xS; dst[0][1] = src[0][1] * xS;
dst[0][2] = src[0][2] * xS; dst[0][3] = src[0][3] * xS;
dst[1][0] = src[1][0] * yS; dst[1][1] = src[1][1] * yS;
dst[1][2] = src[1][2] * yS; dst[1][3] = src[1][3] * yS;
dst[2][0] = src[2][0] * zS; dst[2][1] = src[2][1] * zS;
dst[2][2] = src[2][2] * zS; dst[2][3] = src[2][3] * zS;
}
void c_guMtxApplyScale(Mtx src,Mtx dst,f32 xS,f32 yS,f32 zS)
{
dst[0][0] = src[0][0] * xS; dst[0][1] = src[0][1] * yS;
dst[0][2] = src[0][2] * zS; dst[0][3] = src[0][3];
dst[1][0] = src[1][0] * xS; dst[1][1] = src[1][1] * yS;
dst[1][2] = src[1][2] * zS; dst[1][3] = src[1][3];
dst[2][0] = src[2][0] * xS; dst[2][1] = src[2][1] * yS;
dst[2][2] = src[2][2] * zS; dst[2][3] = src[2][3];
}
void c_guMtxTrans(Mtx mt,f32 xT,f32 yT,f32 zT)
{
mt[0][0] = 1.0f; mt[0][1] = 0.0f; mt[0][2] = 0.0f; mt[0][3] = xT;
mt[1][0] = 0.0f; mt[1][1] = 1.0f; mt[1][2] = 0.0f; mt[1][3] = yT;
mt[2][0] = 0.0f; mt[2][1] = 0.0f; mt[2][2] = 1.0f; mt[2][3] = zT;
}
void c_guMtxTransApply(Mtx src,Mtx dst,f32 xT,f32 yT,f32 zT)
{
if ( src != dst )
{
dst[0][0] = src[0][0]; dst[0][1] = src[0][1]; dst[0][2] = src[0][2];
dst[1][0] = src[1][0]; dst[1][1] = src[1][1]; dst[1][2] = src[1][2];
dst[2][0] = src[2][0]; dst[2][1] = src[2][1]; dst[2][2] = src[2][2];
}
dst[0][3] = src[0][3] + xT;
dst[1][3] = src[1][3] + yT;
dst[2][3] = src[2][3] + zT;
}
void c_guMtxApplyTrans(Mtx src,Mtx dst,f32 xT,f32 yT,f32 zT)
{
if ( src != dst )
{
dst[0][0] = src[0][0]; dst[0][1] = src[0][1]; dst[0][2] = src[0][2];
dst[1][0] = src[1][0]; dst[1][1] = src[1][1]; dst[1][2] = src[1][2];
dst[2][0] = src[2][0]; dst[2][1] = src[2][1]; dst[2][2] = src[2][2];
}
dst[0][3] = src[0][0]*xT + src[0][1]*yT + src[0][2]*zT + src[0][3];
dst[1][3] = src[1][0]*xT + src[1][1]*yT + src[1][2]*zT + src[1][3];
dst[2][3] = src[2][0]*xT + src[2][1]*yT + src[2][2]*zT + src[2][3];
}
u32 c_guMtxInverse(Mtx src,Mtx inv)
{
Mtx mTmp;
MtxP m;
f32 det;
if(src==inv)
m = mTmp;
else
m = inv;
// compute the determinant of the upper 3x3 submatrix
det = src[0][0]*src[1][1]*src[2][2] + src[0][1]*src[1][2]*src[2][0] + src[0][2]*src[1][0]*src[2][1]
- src[2][0]*src[1][1]*src[0][2] - src[1][0]*src[0][1]*src[2][2] - src[0][0]*src[2][1]*src[1][2];
// check if matrix is singular
if(det==0.0f)return 0;
// compute the inverse of the upper submatrix:
// find the transposed matrix of cofactors of the upper submatrix
// and multiply by (1/det)
det = 1.0f / det;
m[0][0] = (src[1][1]*src[2][2] - src[2][1]*src[1][2]) * det;
m[0][1] = -(src[0][1]*src[2][2] - src[2][1]*src[0][2]) * det;
m[0][2] = (src[0][1]*src[1][2] - src[1][1]*src[0][2]) * det;
m[1][0] = -(src[1][0]*src[2][2] - src[2][0]*src[1][2]) * det;
m[1][1] = (src[0][0]*src[2][2] - src[2][0]*src[0][2]) * det;
m[1][2] = -(src[0][0]*src[1][2] - src[1][0]*src[0][2]) * det;
m[2][0] = (src[1][0]*src[2][1] - src[2][0]*src[1][1]) * det;
m[2][1] = -(src[0][0]*src[2][1] - src[2][0]*src[0][1]) * det;
m[2][2] = (src[0][0]*src[1][1] - src[1][0]*src[0][1]) * det;
// compute (invA)*(-C)
m[0][3] = -m[0][0]*src[0][3] - m[0][1]*src[1][3] - m[0][2]*src[2][3];
m[1][3] = -m[1][0]*src[0][3] - m[1][1]*src[1][3] - m[1][2]*src[2][3];
m[2][3] = -m[2][0]*src[0][3] - m[2][1]*src[1][3] - m[2][2]*src[2][3];
// copy back if needed
if( m == mTmp )
c_guMtxCopy(mTmp,inv);
return 1;
}
void c_guMtxTranspose(Mtx src,Mtx xPose)
{
Mtx mTmp;
MtxP m;
if(src==xPose)
m = mTmp;
else
m = xPose;
m[0][0] = src[0][0]; m[0][1] = src[1][0]; m[0][2] = src[2][0]; m[0][3] = 0.0f;
m[1][0] = src[0][1]; m[1][1] = src[1][1]; m[1][2] = src[2][1]; m[1][3] = 0.0f;
m[2][0] = src[0][2]; m[2][1] = src[1][2]; m[2][2] = src[2][2]; m[2][3] = 0.0f;
// copy back if needed
if(m==mTmp)
c_guMtxCopy(mTmp,xPose);
}
u32 c_guMtxInvXpose(Mtx src, Mtx xPose)
{
Mtx mTmp;
MtxP m;
f32 det;
if(src == xPose)
m = mTmp;
else
m = xPose;
// Compute the determinant of the upper 3x3 submatrix
det = src[0][0]*src[1][1]*src[2][2] + src[0][1]*src[1][2]*src[2][0] + src[0][2]*src[1][0]*src[2][1]
- src[2][0]*src[1][1]*src[0][2] - src[1][0]*src[0][1]*src[2][2] - src[0][0]*src[2][1]*src[1][2];
// Check if matrix is singular
if(det == 0.0f) return 0;
// Compute the inverse of the upper submatrix:
// Find the transposed matrix of cofactors of the upper submatrix
// and multiply by (1/det)
det = 1.0f / det;
m[0][0] = (src[1][1]*src[2][2] - src[2][1]*src[1][2]) * det;
m[0][1] = -(src[1][0]*src[2][2] - src[2][0]*src[1][2]) * det;
m[0][2] = (src[1][0]*src[2][1] - src[2][0]*src[1][1]) * det;
m[1][0] = -(src[0][1]*src[2][2] - src[2][1]*src[0][2]) * det;
m[1][1] = (src[0][0]*src[2][2] - src[2][0]*src[0][2]) * det;
m[1][2] = -(src[0][0]*src[2][1] - src[2][0]*src[0][1]) * det;
m[2][0] = (src[0][1]*src[1][2] - src[1][1]*src[0][2]) * det;
m[2][1] = -(src[0][0]*src[1][2] - src[1][0]*src[0][2]) * det;
m[2][2] = (src[0][0]*src[1][1] - src[1][0]*src[0][1]) * det;
// The 4th columns should be zero
m[0][3] = 0.0F;
m[1][3] = 0.0F;
m[2][3] = 0.0F;
// Copy back if needed
if(m == mTmp)
c_guMtxCopy(mTmp, xPose);
return 1;
}
void c_guMtxReflect(Mtx m,guVector *p,guVector *n)
{
f32 vxy, vxz, vyz, pdotn;
vxy = -2.0f * n->x * n->y;
vxz = -2.0f * n->x * n->z;
vyz = -2.0f * n->y * n->z;
pdotn = 2.0f * c_guVecDotProduct(p,n);
m[0][0] = 1.0f - 2.0f * n->x * n->x;
m[0][1] = vxy;
m[0][2] = vxz;
m[0][3] = pdotn * n->x;
m[1][0] = vxy;
m[1][1] = 1.0f - 2.0f * n->y * n->y;
m[1][2] = vyz;
m[1][3] = pdotn * n->y;
m[2][0] = vxz;
m[2][1] = vyz;
m[2][2] = 1.0f - 2.0f * n->z * n->z;
m[2][3] = pdotn * n->z;
}
void c_guVecAdd(guVector *a,guVector *b,guVector *ab)
{
ab->x = a->x + b->x;
ab->y = a->y + b->y;
ab->z = a->z + b->z;
}
void c_guVecSub(guVector *a,guVector *b,guVector *ab)
{
ab->x = a->x - b->x;
ab->y = a->y - b->y;
ab->z = a->z - b->z;
}
void c_guVecScale(guVector *src,guVector *dst,f32 scale)
{
dst->x = src->x * scale;
dst->y = src->y * scale;
dst->z = src->z * scale;
}
void c_guVecNormalize(guVector *v)
{
f32 m;
m = ((v->x)*(v->x)) + ((v->y)*(v->y)) + ((v->z)*(v->z));
m = 1/sqrtf(m);
v->x *= m;
v->y *= m;
v->z *= m;
}
void c_guVecCross(guVector *a,guVector *b,guVector *axb)
{
guVector vTmp;
vTmp.x = (a->y*b->z)-(a->z*b->y);
vTmp.y = (a->z*b->x)-(a->x*b->z);
vTmp.z = (a->x*b->y)-(a->y*b->x);
axb->x = vTmp.x;
axb->y = vTmp.y;
axb->z = vTmp.z;
}
void c_guVecMultiply(Mtx mt,guVector *src,guVector *dst)
{
guVector tmp;
tmp.x = mt[0][0]*src->x + mt[0][1]*src->y + mt[0][2]*src->z + mt[0][3];
tmp.y = mt[1][0]*src->x + mt[1][1]*src->y + mt[1][2]*src->z + mt[1][3];
tmp.z = mt[2][0]*src->x + mt[2][1]*src->y + mt[2][2]*src->z + mt[2][3];
dst->x = tmp.x;
dst->y = tmp.y;
dst->z = tmp.z;
}
void c_guVecMultiplySR(Mtx mt,guVector *src,guVector *dst)
{
guVector tmp;
tmp.x = mt[0][0]*src->x + mt[0][1]*src->y + mt[0][2]*src->z;
tmp.y = mt[1][0]*src->x + mt[1][1]*src->y + mt[1][2]*src->z;
tmp.z = mt[2][0]*src->x + mt[2][1]*src->y + mt[2][2]*src->z;
// copy back
dst->x = tmp.x;
dst->y = tmp.y;
dst->z = tmp.z;
}
f32 c_guVecDotProduct(guVector *a,guVector *b)
{
f32 dot;
dot = (a->x * b->x) + (a->y * b->y) + (a->z * b->z);
return dot;
}
void c_guQuatAdd(guQuaternion *a,guQuaternion *b,guQuaternion *ab)
{
ab->x = a->x + b->x;
ab->y = a->x + b->y;
ab->z = a->x + b->z;
ab->w = a->x + b->w;
}
#ifdef GEKKO
void ps_guQuatAdd(register guQuaternion *a,register guQuaternion *b,register guQuaternion *ab)
{
register f32 tmp0,tmp1;
__asm__ __volatile__ (
"psq_l %0,0(%2),0,0\n" // [ax][ay]
"psq_l %1,0(%3),0,0\n" // [bx][by]
"ps_add %1,%0,%1\n" // [ax+bx][ay+by]
"psq_st %1,0(%4),0,0\n" // X = [ax+bx], Y = [ay+by]
"psq_l %0,8(%2),0,0\n" // [az][aw]
"psq_l %1,8(%3),0,0\n" // [bz][bw]
"ps_add %1,%0,%1\n" // [az+bz][aw+bw]
"psq_st %1,8(%4),0,0" // Z = [az+bz], W = [aw+bw]
: "=&f"(tmp0),"=&f"(tmp1)
: "b"(a),"b"(b),"b"(ab)
: "memory"
);
}
#endif
void c_guQuatSub(guQuaternion *a,guQuaternion *b,guQuaternion *ab)
{
ab->x = a->x - b->x;
ab->y = a->x - b->y;
ab->z = a->x - b->z;
ab->w = a->x - b->w;
}
#ifdef GEKKO
void ps_guQuatSub(register guQuaternion *a,register guQuaternion *b,register guQuaternion *ab)
{
register f32 tmp0,tmp1;
__asm__ __volatile__ (
"psq_l %0,0(%2),0,0\n" // [ax][ay]
"psq_l %1,0(%3),0,0\n" // [bx][by]
"ps_sub %1,%0,%1\n" // [ax-bx][ay-by]
"psq_st %1,0(%4),0,0\n" // X = [ax-bx], Y = [ay-by]
"psq_l %0,8(%2),0,0\n" // [az][aw]
"psq_l %1,8(%3),0,0\n" // [bz][bw]
"ps_sub %1,%0,%1\n" // [az-bz][aw-bw]
"psq_st %1,8(%4),0,0" // Z = [az-bz], W = [aw-bw]
: "=&f"(tmp0),"=&f"(tmp1)
: "b"(a),"b"(b),"b"(ab)
: "memory"
);
}
#endif
void c_guQuatMultiply(guQuaternion *a,guQuaternion *b,guQuaternion *ab)
{
guQuaternion *r;
guQuaternion ab_tmp;
if(a==ab || b==ab) r = &ab_tmp;
else r = ab;
r->w = a->w*b->w - a->x*b->x - a->y*b->y - a->z*b->z;
r->x = a->w*b->x + a->x*b->w + a->y*b->z - a->z*b->y;
r->y = a->w*b->y + a->y*b->w + a->z*b->x - a->x*b->z;
r->z = a->w*b->z + a->z*b->w + a->x*b->y - a->y*b->x;
if(r==&ab_tmp) *ab = ab_tmp;
}
#ifdef GEKKO
void ps_guQuatMultiply(register guQuaternion *a,register guQuaternion *b,register guQuaternion *ab)
{
register f32 aXY,aZW,bXY,bZW;
register f32 tmp0,tmp1,tmp2,tmp3,tmp4,tmp5,tmp6,tmp7;
__asm__ __volatile__ (
"psq_l %0,0(%12),0,0\n" // [px][py]
"psq_l %1,8(%12),0,0\n" // [pz][pw]
"psq_l %2,0(%13),0,0\n" // [qx][qy]
"ps_neg %4,%0\n" // [-px][-py]
"psq_l %3,8(%13),0,0\n" // [qz][qw]
"ps_neg %5,%1\n" // [-pz][-pw]
"ps_merge01 %6,%4,%0\n" // [-px][py]
"ps_muls0 %8,%1,%2\n" // [pz*qx][pw*qx]
"ps_muls0 %9,%4,%2\n" // [-px*qx][-py*qx]
"ps_merge01 %7,%5,%1\n" // [-pz][pw]
"ps_muls1 %11,%6,%2\n" // [-px*qy][py*qy]
"ps_madds0 %8,%6,%3,%8\n" // [-px*qz+pz*qx][py*qz+pw*qx]
"ps_muls1 %10,%7,%2\n" // [-pz*qy][pw*qy]
"ps_madds0 %9,%7,%3,%9\n" // [-pz*qz+-px*qx][pw*qz+-py*qx]
"ps_madds1 %11,%5,%3,%11\n" // [-pz*qw+-px*qy][-pw*qw+py*qy]
"ps_merge10 %8,%8,%8\n" // [py*qz+pw*qx][-px*qz+pz*qx]
"ps_madds1 %10,%0,%3,%10\n" // [px*qw+-pz*qy][py*qw+pw*qy]
"ps_merge10 %9,%9,%9\n" // [pw*qz+-py*qx][-pz*qz+-px*qx]
"ps_add %8,%8,%10\n" // [py*qz+pw*qx+px*qw+-pz*qy][-px*qz+pz*qx+py*qw+pw*qy]
"psq_st %8,0(%14),0,0\n" // X = [py*qz+pw*qx+px*qw+-pz*qy], Y = [-px*qz+pz*qx+py*qw+pw*qy]
"ps_sub %9,%9,%11\n" // [pw*qz+-py*qx--pz*qw+-px*qy][-pz*qz+-px*qx--pw*qw+py*qy]
"psq_st %9,8(%14),0,0" // Z = [pw*qz+-py*qx--pz*qw+-px*qy], W = [-pz*qz+-px*qx--pw*qw+py*qy]
: "=&f"(aXY),"=&f"(aZW),"=&f"(bXY),"=&f"(bZW),"=&f"(tmp0),"=&f"(tmp1),"=&f"(tmp2),"=&f"(tmp3),"=&f"(tmp4),"=&f"(tmp5),"=&f"(tmp6),"=&f"(tmp7)
: "b"(a),"b"(b),"b"(ab)
: "memory"
);
}
#endif
void c_guQuatNormalize(guQuaternion *a,guQuaternion *d)
{
f32 dot,scale;
dot = (a->x*a->x) + (a->y*a->y) + (a->z*a->z) + (a->w*a->w);
if(dot==0.0f) d->x = d->y = d->z = d->w = 0.0f;
else {
scale = 1.0f/sqrtf(dot);
d->x = a->x*scale;
d->y = a->y*scale;
d->z = a->z*scale;
d->w = a->w*scale;
}
}
#ifdef GEKKO
void ps_guQuatNormalize(register guQuaternion *a,register guQuaternion *d)
{
register f32 c_zero = 0.0f;
register f32 c_half = 0.5f;
register f32 c_three = 3.0f;
register f32 axy,azw,tmp0,tmp1,tmp2,tmp3;
__asm__ __volatile__ (
"psq_l %0,0(%6),0,0\n" // [ax][ay]
"ps_mul %2,%0,%0\n" // [ax*ax][ay*ay]
"psq_l %1,8(%6),0,0\n" // [az][aw]
"ps_madd %2,%1,%1,%2\n" // [az*az+ax*ax][aw*aw+ay*ay]
"ps_sum0 %2,%2,%2,%2\n" // [az*az+ax*ax+aw*aw+ay*ay][aw*aw+ay*ay]
"frsqrte %3,%2\n" // reciprocal sqrt estimated
//Newton-Raphson refinement 1 step: (E/2)*(3 - x*E*E)
"fmul %4,%3,%3\n" // E*E
"fmul %5,%3,%8\n" // E*0.5 = E/2
"fnmsub %4,%4,%2,%9\n" // -(E*E*x - 3) = (3 - x*E*E)
"fmul %3,%4,%5\n" // (E/2)*(3 - x*E*E)
"ps_sel %3,%2,%3,%10\n" // NaN check: if(mag==0.0f)
"ps_muls0 %0,%0,%3\n" // [ax*rsqmag][ay*rsqmag]
"ps_muls0 %1,%1,%3\n" // [az*rsqmag][aw*rsqmag]
"psq_st %0,0(%7),0,0\n" // X = [az*rsqmag], Y = [aw*rsqmag]
"psq_st %1,8(%7),0,0\n" // Z = [az*rsqmag], W = [aw*rsqmag]
: "=&f"(axy),"=&f"(azw),"=&f"(tmp0),"=&f"(tmp1),"=&f"(tmp2),"=&f"(tmp3)
: "b"(a),"b"(d),"f"(c_half),"f"(c_three),"f"(c_zero)
: "memory"
);
}
#endif
void c_guQuatInverse(guQuaternion *a,guQuaternion *d)
{
f32 mag,nrminv;
mag = (a->x*a->x) + (a->y*a->y) + (a->z*a->z) + (a->w*a->w);
if(mag==0.0f) mag = 1.0f;
nrminv = 1.0f/mag;
d->x = -a->x*nrminv;
d->y = -a->y*nrminv;
d->z = -a->z*nrminv;
d->w = a->w*nrminv;
}
#ifdef GEKKO
void ps_guQuatInverse(register guQuaternion *a,register guQuaternion *d)
{
register f32 c_one = 1.0f;
register f32 axy,azw,tmp0,tmp1,tmp2,tmp3,tmp4,tmp5;
__asm__ __volatile__ (
"psq_l %0,0(%8),0,0\n" // [ax][ay]
"ps_mul %2,%0,%0\n" // [ax*ax][ay*ay]
"ps_sub %3,%10,%10\n" // [1 - 1][1 - 1]
"psq_l %1,8(%8),0,0\n" // [az][aw]
"ps_madd %2,%1,%1,%2\n" // [az*az+ax*ax][aw*aw+ay*ay]
"ps_add %7,%0,%10\n" // [1 + 1][1 + 1]
"ps_sum0 %2,%2,%2,%2\n" // [az*az+ax*ax+aw*aw+ay*ay][aw*aw+ay*ay]
"fcmpu cr0,%2,%3\n" // [az*az+ax*ax+aw*aw+ay*ay] == 0.0f
"beq- 1f\n"
"fres %4,%2\n" // 1.0f/mag
"ps_neg %5,%2\n" // -mag
// Newton-Rapson refinement (x1) : E' = 2E-X*E*E
"ps_nmsub %6,%2,%4,%7\n" //
"ps_mul %4,%4,%6\n" //
"b 2f\n"
"1:\n"
"fmr %4,%10\n"
"2:\n"
"ps_neg %7,%4\n"
"ps_muls1 %5,%4,%1\n"
"ps_muls0 %0,%0,%7\n"
"psq_st %5,12(%9),1,0\n"
"ps_muls0 %6,%1,%7\n"
"psq_st %0,0(%9),0,0\n"
"psq_st %6,8(%9),1,0\n"
: "=&f"(axy),"=&f"(azw),"=&f"(tmp0),"=&f"(tmp1),"=&f"(tmp2),"=&f"(tmp3),"=&f"(tmp4),"=&f"(tmp5)
: "b"(a),"b"(d),"f"(c_one)
);
}
#endif
void c_guQuatMtx(guQuaternion *a,Mtx m)
{
const f32 diag = guMtxRowCol(m,0,0) + guMtxRowCol(m,1,1) + guMtxRowCol(m,2,2) + 1;
if(diag>0.0f) {
const f32 scale = sqrtf(diag)*2.0f;
a->x = (guMtxRowCol(m,2,1) - guMtxRowCol(m,1,2))/scale;
a->y = (guMtxRowCol(m,0,2) - guMtxRowCol(m,2,0))/scale;
a->z = (guMtxRowCol(m,1,0) - guMtxRowCol(m,0,1))/scale;
a->w = 0.25f*scale;
} else {
if(guMtxRowCol(m,0,0)>guMtxRowCol(m,1,1) && guMtxRowCol(m,0,0)>guMtxRowCol(m,2,2)) {
const f32 scale = sqrtf(1.0f + guMtxRowCol(m,0,0) + guMtxRowCol(m,1,1) + guMtxRowCol(m,2,2))*2.0f;
a->x = 0.25f*scale;
a->y = (guMtxRowCol(m,0,1) + guMtxRowCol(m,1,0))/scale;
a->z = (guMtxRowCol(m,2,0) + guMtxRowCol(m,0,2))/scale;
a->w = (guMtxRowCol(m,2,1) - guMtxRowCol(m,1,2))/scale;
} else if(guMtxRowCol(m,1,1)>guMtxRowCol(m,2,2)) {
const f32 scale = sqrtf(1.0f + guMtxRowCol(m,0,0) + guMtxRowCol(m,1,1) + guMtxRowCol(m,2,2))*2.0f;
a->x = (guMtxRowCol(m,0,1) + guMtxRowCol(m,1,0))/scale;
a->y = 0.25f*scale;
a->z = (guMtxRowCol(m,1,2) + guMtxRowCol(m,2,1))/scale;
a->w = (guMtxRowCol(m,0,2) - guMtxRowCol(m,2,0))/scale;
} else {
const f32 scale = sqrtf(1.0f + guMtxRowCol(m,0,0) + guMtxRowCol(m,1,1) + guMtxRowCol(m,2,2))*2.0f;
a->x = (guMtxRowCol(m,0,2) + guMtxRowCol(m,2,0))/scale;
a->y = (guMtxRowCol(m,1,2) + guMtxRowCol(m,2,1))/scale;
a->z = 0.25f*scale;
a->w = (guMtxRowCol(m,1,0) - guMtxRowCol(m,0,1))/scale;
}
}
c_guQuatNormalize(a,a);
}
void c_guMtxQuat(Mtx m,guQuaternion *a)
{
guMtxRowCol(m,0,0) = 1.0f - 2.0f*a->y*a->y - 2.0f*a->z*a->z;
guMtxRowCol(m,1,0) = 2.0f*a->x*a->y - 2.0f*a->z*a->w;
guMtxRowCol(m,2,0) = 2.0f*a->x*a->z + 2.0f*a->y*a->w;
guMtxRowCol(m,0,1) = 2.0f*a->x*a->y + 2.0f*a->z*a->w;
guMtxRowCol(m,1,1) = 1.0f - 2.0f*a->x*a->x - 2.0f*a->z*a->z;
guMtxRowCol(m,2,1) = 2.0f*a->z*a->y - 2.0f*a->x*a->w;
guMtxRowCol(m,0,2) = 2.0f*a->x*a->z - 2.0f*a->y*a->w;
guMtxRowCol(m,1,2) = 2.0f*a->z*a->y + 2.0f*a->x*a->w;
guMtxRowCol(m,2,2) = 1.0f - 2.0f*a->x*a->x - 2.0f*a->y*a->y;
}
void guVecHalfAngle(guVector *a,guVector *b,guVector *half)
{
guVector tmp1,tmp2,tmp3;
tmp1.x = -a->x;
tmp1.y = -a->y;
tmp1.z = -a->z;
tmp2.x = -b->x;
tmp2.y = -b->y;
tmp2.z = -b->z;
guVecNormalize(&tmp1);
guVecNormalize(&tmp2);
guVecAdd(&tmp1,&tmp2,&tmp3);
if(guVecDotProduct(&tmp3,&tmp3)>0.0f) guVecNormalize(&tmp3);
*half = tmp3;
}