mirror of
https://github.com/libretro/RetroArch
synced 2025-01-18 04:12:07 +00:00
316 lines
9.2 KiB
C
316 lines
9.2 KiB
C
/* RetroArch - A frontend for libretro.
|
|
* Copyright (C) 2010-2012 - Hans-Kristian Arntzen
|
|
*
|
|
* RetroArch is free software: you can redistribute it and/or modify it under the terms
|
|
* of the GNU General Public License as published by the Free Software Found-
|
|
* ation, either version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with RetroArch.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "../resampler.h"
|
|
#include "../utils.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <complex.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
|
|
static void gen_signal(float *out, double omega, double bias_samples, size_t samples)
|
|
{
|
|
for (size_t i = 0; i < samples; i += 2)
|
|
{
|
|
out[i + 0] = cos(((i >> 1) + bias_samples) * omega);
|
|
out[i + 1] = out[i + 0];
|
|
}
|
|
}
|
|
|
|
struct snr_result
|
|
{
|
|
double snr;
|
|
double gain;
|
|
|
|
unsigned alias_freq[3];
|
|
double alias_power[3];
|
|
};
|
|
|
|
static unsigned bitrange(unsigned len)
|
|
{
|
|
unsigned ret = 0;
|
|
while ((len >>= 1))
|
|
ret++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned bitswap(unsigned i, unsigned range)
|
|
{
|
|
unsigned ret = 0;
|
|
for (unsigned shifts = 0; shifts < range; shifts++)
|
|
ret |= i & (1 << (range - shifts - 1)) ? (1 << shifts) : 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// When interleaving the butterfly buffer, addressing puts bits in reverse.
|
|
// [0, 1, 2, 3, 4, 5, 6, 7] => [0, 4, 2, 6, 1, 5, 3, 7]
|
|
static void interleave(complex double *butterfly_buf, size_t samples)
|
|
{
|
|
unsigned range = bitrange(samples);
|
|
for (unsigned i = 0; i < samples; i++)
|
|
{
|
|
unsigned target = bitswap(i, range);
|
|
if (target > i)
|
|
{
|
|
complex double tmp = butterfly_buf[target];
|
|
butterfly_buf[target] = butterfly_buf[i];
|
|
butterfly_buf[i] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
static complex double gen_phase(double index)
|
|
{
|
|
return cexp(M_PI * I * index);
|
|
}
|
|
|
|
static void butterfly(complex double *a, complex double *b, complex double mod)
|
|
{
|
|
mod *= *b;
|
|
complex double a_ = *a + mod;
|
|
complex double b_ = *a - mod;
|
|
*a = a_;
|
|
*b = b_;
|
|
}
|
|
|
|
static void butterflies(complex double *butterfly_buf, double phase_dir, size_t step_size, size_t samples)
|
|
{
|
|
for (unsigned i = 0; i < samples; i += 2 * step_size)
|
|
for (unsigned j = i; j < i + step_size; j++)
|
|
butterfly(&butterfly_buf[j], &butterfly_buf[j + step_size], gen_phase((phase_dir * (j - i)) / step_size));
|
|
}
|
|
|
|
static void calculate_fft(const float *data, complex double *butterfly_buf, size_t samples)
|
|
{
|
|
// Enforce POT.
|
|
assert((samples & (samples - 1)) == 0);
|
|
|
|
for (unsigned i = 0; i < samples; i++)
|
|
butterfly_buf[i] = data[2 * i];
|
|
|
|
// Interleave buffer to work with FFT.
|
|
interleave(butterfly_buf, samples);
|
|
|
|
// Fly, lovely butterflies! :D
|
|
for (unsigned step_size = 1; step_size < samples; step_size *= 2)
|
|
butterflies(butterfly_buf, -1.0, step_size, samples);
|
|
}
|
|
|
|
static void calculate_fft_adjust(complex double *butterfly_buf, double gain, bool merge_high, size_t samples)
|
|
{
|
|
if (merge_high)
|
|
{
|
|
for (unsigned i = 1; i < samples / 2; i++)
|
|
butterfly_buf[i] *= 2.0;
|
|
}
|
|
|
|
// Normalize amplitudes.
|
|
for (unsigned i = 0; i < samples; i++)
|
|
butterfly_buf[i] *= gain;
|
|
}
|
|
|
|
static void calculate_ifft(complex double *butterfly_buf, size_t samples, bool normalize)
|
|
{
|
|
// Enforce POT.
|
|
assert((samples & (samples - 1)) == 0);
|
|
|
|
interleave(butterfly_buf, samples);
|
|
|
|
// Fly, lovely butterflies! In opposite direction! :D
|
|
for (unsigned step_size = 1; step_size < samples; step_size *= 2)
|
|
butterflies(butterfly_buf, 1.0, step_size, samples);
|
|
|
|
if (normalize)
|
|
calculate_fft_adjust(butterfly_buf, 1.0 / samples, false, samples);
|
|
}
|
|
|
|
static void test_fft(void)
|
|
{
|
|
fprintf(stderr, "Sanity checking FFT ...\n");
|
|
float signal[32];
|
|
complex double butterfly_buf[16];
|
|
complex double buf_tmp[16];
|
|
|
|
const float cos_freqs[] = {
|
|
1.0, 4.0, 6.0,
|
|
};
|
|
|
|
const float sin_freqs[] = {
|
|
-2.0, 5.0, 7.0,
|
|
};
|
|
|
|
for (unsigned i = 0; i < 16; i++)
|
|
{
|
|
signal[2 * i] = 0.0;
|
|
for (unsigned j = 0; j < sizeof(cos_freqs) / sizeof(cos_freqs[0]); j++)
|
|
signal[2 * i] += cos(2.0 * M_PI * i * cos_freqs[j] / 16.0);
|
|
for (unsigned j = 0; j < sizeof(sin_freqs) / sizeof(sin_freqs[0]); j++)
|
|
signal[2 * i] += sin(2.0 * M_PI * i * sin_freqs[j] / 16.0);
|
|
}
|
|
|
|
calculate_fft(signal, butterfly_buf, 16);
|
|
memcpy(buf_tmp, butterfly_buf, sizeof(buf_tmp));
|
|
calculate_fft_adjust(buf_tmp, 1.0 / 16, true, 16);
|
|
|
|
fprintf(stderr, "FFT: { ");
|
|
for (unsigned i = 0; i < 7; i++)
|
|
fprintf(stderr, "(%4.2lf, %4.2lf), ", creal(buf_tmp[i]), cimag(buf_tmp[i]));
|
|
fprintf(stderr, "(%4.2lf, %4.2lf) }\n", creal(buf_tmp[7]), cimag(buf_tmp[7]));
|
|
|
|
calculate_ifft(butterfly_buf, 16, true);
|
|
|
|
fprintf(stderr, "Original: { ");
|
|
for (unsigned i = 0; i < 15; i++)
|
|
fprintf(stderr, "%5.2f, ", signal[2 * i]);
|
|
fprintf(stderr, "%5.2f }\n", signal[2 * 15]);
|
|
|
|
fprintf(stderr, "FFT => IFFT: { ");
|
|
for (unsigned i = 0; i < 15; i++)
|
|
fprintf(stderr, "%5.2lf, ", creal(butterfly_buf[i]));
|
|
fprintf(stderr, "%5.2lf }\n", creal(butterfly_buf[15]));
|
|
}
|
|
|
|
static void set_alias_power(struct snr_result *res, unsigned freq, double power)
|
|
{
|
|
for (unsigned i = 0; i < 3; i++)
|
|
{
|
|
if (power >= res->alias_power[i])
|
|
{
|
|
memmove(res->alias_freq + i + 1, res->alias_freq + i, (2 - i) * sizeof(res->alias_freq[0]));
|
|
memmove(res->alias_power + i + 1, res->alias_power + i, (2 - i) * sizeof(res->alias_power[0]));
|
|
res->alias_power[i] = power;
|
|
res->alias_freq[i] = freq;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void calculate_snr(struct snr_result *res,
|
|
unsigned in_rate, unsigned max_rate,
|
|
const float *resamp, complex double *butterfly_buf, size_t samples)
|
|
{
|
|
samples >>= 1;
|
|
calculate_fft(resamp, butterfly_buf, samples);
|
|
calculate_fft_adjust(butterfly_buf, 1.0 / samples, true, samples);
|
|
|
|
memset(res, 0, sizeof(*res));
|
|
|
|
double signal = cabs(butterfly_buf[in_rate] * butterfly_buf[in_rate]);
|
|
butterfly_buf[in_rate] = 0.0;
|
|
|
|
double noise = 0.0;
|
|
|
|
// Aliased frequencies above half the original sampling rate are not considered.
|
|
for (unsigned i = 0; i <= max_rate; i++)
|
|
{
|
|
double power = cabs(butterfly_buf[i] * butterfly_buf[i]);
|
|
set_alias_power(res, i, power);
|
|
noise += power;
|
|
}
|
|
|
|
res->snr = 10.0 * log10(signal / noise);
|
|
res->gain = 10.0 * log10(signal);
|
|
|
|
for (unsigned i = 0; i < 3; i++)
|
|
res->alias_power[i] = 10.0 * log10(res->alias_power[i]);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
if (argc != 2)
|
|
{
|
|
fprintf(stderr, "Usage: %s <ratio> (out-rate is fixed for FFT).\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
double ratio = strtod(argv[1], NULL);
|
|
|
|
const unsigned fft_samples = 1024 * 128;
|
|
unsigned out_rate = fft_samples / 2;
|
|
unsigned in_rate = out_rate / ratio;
|
|
ratio = (double)out_rate / in_rate;
|
|
|
|
if (ratio <= 1.0)
|
|
{
|
|
fprintf(stderr, "Ratio too low ...\n");
|
|
return 1;
|
|
}
|
|
|
|
static const float freq_list[] = {
|
|
0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009,
|
|
0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050,
|
|
0.060, 0.070, 0.080, 0.090,
|
|
0.10, 0.15, 0.20, 0.25, 0.30, 0.35,
|
|
0.40, 0.41, 0.42, 0.43, 0.44, 0.45,
|
|
0.46, 0.47, 0.48, 0.49,
|
|
0.495, 0.496, 0.497, 0.498, 0.499,
|
|
};
|
|
|
|
unsigned samples = in_rate * 4;
|
|
float *input = calloc(sizeof(float), samples);
|
|
float *output = calloc(sizeof(float), (fft_samples + 1) * 2);
|
|
complex double *butterfly_buf = calloc(sizeof(complex double), fft_samples / 2);
|
|
assert(input);
|
|
assert(output);
|
|
|
|
rarch_resampler_t *re = resampler_new();
|
|
assert(re);
|
|
|
|
test_fft();
|
|
|
|
printf("Omega,SNR,Gain\n");
|
|
for (unsigned i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]); i++)
|
|
{
|
|
unsigned freq = freq_list[i] * in_rate;
|
|
double omega = 2.0 * M_PI * freq / in_rate;
|
|
gen_signal(input, omega, 0, samples);
|
|
|
|
struct resampler_data data = {
|
|
.data_in = input,
|
|
.data_out = output,
|
|
.input_frames = in_rate * 2,
|
|
.ratio = ratio,
|
|
};
|
|
|
|
resampler_process(re, &data);
|
|
|
|
unsigned out_samples = data.output_frames * 2;
|
|
assert(out_samples >= fft_samples * 2);
|
|
|
|
// We generate 2 seconds worth of audio, however, only the last second is considered so phase has stabilized.
|
|
struct snr_result res;
|
|
calculate_snr(&res, freq, in_rate / 2, output + fft_samples, butterfly_buf, fft_samples);
|
|
|
|
printf("SNR @ w = %5.3f : %6.2lf dB, Gain: %6.1lf dB\n",
|
|
freq_list[i], res.snr, res.gain);
|
|
|
|
printf("\tAliases: #1 (w = %5.3f, %6.2lf dB), #2 (w = %5.3f, %6.2lf dB), #3 (w = %5.3f, %6.2lf dB)\n",
|
|
res.alias_freq[0] / (float)in_rate, res.alias_power[0],
|
|
res.alias_freq[1] / (float)in_rate, res.alias_power[1],
|
|
res.alias_freq[2] / (float)in_rate, res.alias_power[2]);
|
|
}
|
|
|
|
resampler_free(re);
|
|
free(input);
|
|
free(output);
|
|
free(butterfly_buf);
|
|
}
|
|
|