mirror of
https://github.com/libretro/RetroArch
synced 2025-01-18 04:12:07 +00:00
558 lines
17 KiB
C
558 lines
17 KiB
C
/* Copyright (C) 2010-2015 The RetroArch team
|
|
*
|
|
* ---------------------------------------------------------------------------------------
|
|
* The following license statement only applies to this file (rhash.c).
|
|
* ---------------------------------------------------------------------------------------
|
|
*
|
|
* Permission is hereby granted, free of charge,
|
|
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
|
|
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#ifdef _WIN32
|
|
#include <io.h>
|
|
#else
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <rhash.h>
|
|
#include <retro_miscellaneous.h>
|
|
#include <retro_endianness.h>
|
|
#include <retro_file.h>
|
|
|
|
#define LSL32(x, n) ((uint32_t)(x) << (n))
|
|
#define LSR32(x, n) ((uint32_t)(x) >> (n))
|
|
#define ROR32(x, n) (LSR32(x, n) | LSL32(x, 32 - (n)))
|
|
|
|
/* First 32 bits of the fractional parts of the square roots of the first 8 primes 2..19 */
|
|
static const uint32_t T_H[8] = {
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
|
|
};
|
|
|
|
/* First 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311 */
|
|
static const uint32_t T_K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
|
|
};
|
|
|
|
/* SHA256 implementation from bSNES. Written by valditx. */
|
|
|
|
struct sha256_ctx
|
|
{
|
|
union
|
|
{
|
|
uint8_t u8[64];
|
|
uint32_t u32[16];
|
|
} in;
|
|
unsigned inlen;
|
|
|
|
uint32_t w[64];
|
|
uint32_t h[8];
|
|
uint64_t len;
|
|
};
|
|
|
|
static void sha256_init(struct sha256_ctx *p)
|
|
{
|
|
memset(p, 0, sizeof(struct sha256_ctx));
|
|
memcpy(p->h, T_H, sizeof(T_H));
|
|
}
|
|
|
|
static void sha256_block(struct sha256_ctx *p)
|
|
{
|
|
unsigned i;
|
|
uint32_t s0, s1;
|
|
uint32_t a, b, c, d, e, f, g, h;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
p->w[i] = load32be(p->in.u32 + i);
|
|
|
|
for (i = 16; i < 64; i++)
|
|
{
|
|
s0 = ROR32(p->w[i - 15], 7) ^ ROR32(p->w[i - 15], 18) ^ LSR32(p->w[i - 15], 3);
|
|
s1 = ROR32(p->w[i - 2], 17) ^ ROR32(p->w[i - 2], 19) ^ LSR32(p->w[i - 2], 10);
|
|
p->w[i] = p->w[i - 16] + s0 + p->w[i - 7] + s1;
|
|
}
|
|
|
|
a = p->h[0]; b = p->h[1]; c = p->h[2]; d = p->h[3];
|
|
e = p->h[4]; f = p->h[5]; g = p->h[6]; h = p->h[7];
|
|
|
|
for (i = 0; i < 64; i++)
|
|
{
|
|
uint32_t t1, t2, maj, ch;
|
|
|
|
s0 = ROR32(a, 2) ^ ROR32(a, 13) ^ ROR32(a, 22);
|
|
maj = (a & b) ^ (a & c) ^ (b & c);
|
|
t2 = s0 + maj;
|
|
s1 = ROR32(e, 6) ^ ROR32(e, 11) ^ ROR32(e, 25);
|
|
ch = (e & f) ^ (~e & g);
|
|
t1 = h + s1 + ch + T_K[i] + p->w[i];
|
|
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + t1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = t1 + t2;
|
|
}
|
|
|
|
p->h[0] += a; p->h[1] += b; p->h[2] += c; p->h[3] += d;
|
|
p->h[4] += e; p->h[5] += f; p->h[6] += g; p->h[7] += h;
|
|
|
|
/* Next block */
|
|
p->inlen = 0;
|
|
}
|
|
|
|
static void sha256_chunk(struct sha256_ctx *p,
|
|
const uint8_t *s, unsigned len)
|
|
{
|
|
p->len += len;
|
|
|
|
while (len)
|
|
{
|
|
unsigned l = 64 - p->inlen;
|
|
|
|
if (len < l)
|
|
l = len;
|
|
|
|
memcpy(p->in.u8 + p->inlen, s, l);
|
|
|
|
s += l;
|
|
p->inlen += l;
|
|
len -= l;
|
|
|
|
if (p->inlen == 64)
|
|
sha256_block(p);
|
|
}
|
|
}
|
|
|
|
static void sha256_final(struct sha256_ctx *p)
|
|
{
|
|
uint64_t len;
|
|
p->in.u8[p->inlen++] = 0x80;
|
|
|
|
if (p->inlen > 56)
|
|
{
|
|
memset(p->in.u8 + p->inlen, 0, 64 - p->inlen);
|
|
sha256_block(p);
|
|
}
|
|
|
|
memset(p->in.u8 + p->inlen, 0, 56 - p->inlen);
|
|
|
|
len = p->len << 3;
|
|
store32be(p->in.u32 + 14, (uint32_t)(len >> 32));
|
|
store32be(p->in.u32 + 15, (uint32_t)len);
|
|
sha256_block(p);
|
|
}
|
|
|
|
static void sha256_subhash(struct sha256_ctx *p, uint32_t *t)
|
|
{
|
|
unsigned i;
|
|
for (i = 0; i < 8; i++)
|
|
store32be(t++, p->h[i]);
|
|
}
|
|
|
|
/**
|
|
* sha256_hash:
|
|
* @s : Output.
|
|
* @in : Input.
|
|
* @size : Size of @s.
|
|
*
|
|
* Hashes SHA256 and outputs a human readable string.
|
|
**/
|
|
void sha256_hash(char *s, const uint8_t *in, size_t size)
|
|
{
|
|
unsigned i;
|
|
struct sha256_ctx sha;
|
|
|
|
union
|
|
{
|
|
uint32_t u32[8];
|
|
uint8_t u8[32];
|
|
} shahash;
|
|
|
|
sha256_init(&sha);
|
|
sha256_chunk(&sha, in, size);
|
|
sha256_final(&sha);
|
|
sha256_subhash(&sha, shahash.u32);
|
|
|
|
for (i = 0; i < 32; i++)
|
|
snprintf(s + 2 * i, 3, "%02x", (unsigned)shahash.u8[i]);
|
|
}
|
|
|
|
#ifndef HAVE_ZLIB
|
|
/* Zlib CRC32. */
|
|
static const uint32_t crc32_table[256] = {
|
|
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
|
|
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
|
|
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
|
|
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
|
|
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
|
|
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
|
|
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
|
|
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
|
|
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
|
|
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
|
|
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
|
|
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
|
|
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
|
|
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
|
|
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
|
|
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
|
|
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
|
|
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
|
|
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
|
|
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
|
|
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
|
|
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
|
|
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
|
|
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
|
|
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
|
|
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
|
|
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
|
|
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
|
|
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
|
|
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
|
|
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
|
|
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
|
|
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
|
|
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
|
|
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
|
|
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
|
|
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
|
|
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
|
|
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
|
|
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
|
|
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
|
|
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
|
|
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
|
|
};
|
|
|
|
uint32_t crc32_adjust(uint32_t checksum, uint8_t input)
|
|
{
|
|
return ((checksum >> 8) & 0x00ffffff) ^ crc32_table[(checksum ^ input) & 0xff];
|
|
}
|
|
|
|
uint32_t crc32_calculate(const uint8_t *data, size_t length)
|
|
{
|
|
size_t i;
|
|
uint32_t checksum = ~0;
|
|
for (i = 0; i < length; i++)
|
|
checksum = crc32_adjust(checksum, data[i]);
|
|
return ~checksum;
|
|
}
|
|
#endif
|
|
|
|
/* SHA-1 implementation. */
|
|
|
|
/*
|
|
* sha1.c
|
|
*
|
|
* Copyright (C) 1998, 2009
|
|
* Paul E. Jones <paulej@packetizer.com>
|
|
* All Rights Reserved
|
|
*
|
|
*****************************************************************************
|
|
* $Id: sha1.c 12 2009-06-22 19:34:25Z paulej $
|
|
*****************************************************************************
|
|
*
|
|
* Description:
|
|
* This file implements the Secure Hashing Standard as defined
|
|
* in FIPS PUB 180-1 published April 17, 1995.
|
|
*
|
|
* The Secure Hashing Standard, which uses the Secure Hashing
|
|
* Algorithm (SHA), produces a 160-bit message digest for a
|
|
* given data stream. In theory, it is highly improbable that
|
|
* two messages will produce the same message digest. Therefore,
|
|
* this algorithm can serve as a means of providing a "fingerprint"
|
|
* for a message.
|
|
*
|
|
* Portability Issues:
|
|
* SHA-1 is defined in terms of 32-bit "words". This code was
|
|
* written with the expectation that the processor has at least
|
|
* a 32-bit machine word size. If the machine word size is larger,
|
|
* the code should still function properly. One caveat to that
|
|
* is that the input functions taking characters and character
|
|
* arrays assume that only 8 bits of information are stored in each
|
|
* character.
|
|
*
|
|
* Caveats:
|
|
* SHA-1 is designed to work with messages less than 2^64 bits
|
|
* long. Although SHA-1 allows a message digest to be generated for
|
|
* messages of any number of bits less than 2^64, this
|
|
* implementation only works with messages with a length that is a
|
|
* multiple of the size of an 8-bit character.
|
|
*
|
|
*/
|
|
|
|
/* Define the circular shift macro */
|
|
#define SHA1CircularShift(bits,word) ((((word) << (bits)) & 0xFFFFFFFF) | ((word) >> (32-(bits))))
|
|
|
|
static void SHA1Reset(SHA1Context *context)
|
|
{
|
|
if (!context)
|
|
return;
|
|
|
|
context->Length_Low = 0;
|
|
context->Length_High = 0;
|
|
context->Message_Block_Index = 0;
|
|
|
|
context->Message_Digest[0] = 0x67452301;
|
|
context->Message_Digest[1] = 0xEFCDAB89;
|
|
context->Message_Digest[2] = 0x98BADCFE;
|
|
context->Message_Digest[3] = 0x10325476;
|
|
context->Message_Digest[4] = 0xC3D2E1F0;
|
|
|
|
context->Computed = 0;
|
|
context->Corrupted = 0;
|
|
}
|
|
|
|
static void SHA1ProcessMessageBlock(SHA1Context *context)
|
|
{
|
|
const unsigned K[] = /* Constants defined in SHA-1 */
|
|
{
|
|
0x5A827999,
|
|
0x6ED9EBA1,
|
|
0x8F1BBCDC,
|
|
0xCA62C1D6
|
|
};
|
|
int t; /* Loop counter */
|
|
unsigned temp; /* Temporary word value */
|
|
unsigned W[80]; /* Word sequence */
|
|
unsigned A, B, C, D, E; /* Word buffers */
|
|
|
|
/* Initialize the first 16 words in the array W */
|
|
for(t = 0; t < 16; t++)
|
|
{
|
|
W[t] = ((unsigned) context->Message_Block[t * 4]) << 24;
|
|
W[t] |= ((unsigned) context->Message_Block[t * 4 + 1]) << 16;
|
|
W[t] |= ((unsigned) context->Message_Block[t * 4 + 2]) << 8;
|
|
W[t] |= ((unsigned) context->Message_Block[t * 4 + 3]);
|
|
}
|
|
|
|
for(t = 16; t < 80; t++)
|
|
W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
|
|
|
|
A = context->Message_Digest[0];
|
|
B = context->Message_Digest[1];
|
|
C = context->Message_Digest[2];
|
|
D = context->Message_Digest[3];
|
|
E = context->Message_Digest[4];
|
|
|
|
for(t = 0; t < 20; t++)
|
|
{
|
|
temp = SHA1CircularShift(5,A) +
|
|
((B & C) | ((~B) & D)) + E + W[t] + K[0];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = SHA1CircularShift(30,B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for(t = 20; t < 40; t++)
|
|
{
|
|
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = SHA1CircularShift(30,B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for(t = 40; t < 60; t++)
|
|
{
|
|
temp = SHA1CircularShift(5,A) +
|
|
((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = SHA1CircularShift(30,B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for(t = 60; t < 80; t++)
|
|
{
|
|
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = SHA1CircularShift(30,B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
context->Message_Digest[0] =
|
|
(context->Message_Digest[0] + A) & 0xFFFFFFFF;
|
|
context->Message_Digest[1] =
|
|
(context->Message_Digest[1] + B) & 0xFFFFFFFF;
|
|
context->Message_Digest[2] =
|
|
(context->Message_Digest[2] + C) & 0xFFFFFFFF;
|
|
context->Message_Digest[3] =
|
|
(context->Message_Digest[3] + D) & 0xFFFFFFFF;
|
|
context->Message_Digest[4] =
|
|
(context->Message_Digest[4] + E) & 0xFFFFFFFF;
|
|
|
|
context->Message_Block_Index = 0;
|
|
}
|
|
|
|
static void SHA1PadMessage(SHA1Context *context)
|
|
{
|
|
if (!context)
|
|
return;
|
|
|
|
/*
|
|
* Check to see if the current message block is too small to hold
|
|
* the initial padding bits and length. If so, we will pad the
|
|
* block, process it, and then continue padding into a second
|
|
* block.
|
|
*/
|
|
context->Message_Block[context->Message_Block_Index++] = 0x80;
|
|
|
|
if (context->Message_Block_Index > 55)
|
|
{
|
|
while(context->Message_Block_Index < 64)
|
|
context->Message_Block[context->Message_Block_Index++] = 0;
|
|
|
|
SHA1ProcessMessageBlock(context);
|
|
}
|
|
|
|
while(context->Message_Block_Index < 56)
|
|
context->Message_Block[context->Message_Block_Index++] = 0;
|
|
|
|
/* Store the message length as the last 8 octets */
|
|
context->Message_Block[56] = (context->Length_High >> 24) & 0xFF;
|
|
context->Message_Block[57] = (context->Length_High >> 16) & 0xFF;
|
|
context->Message_Block[58] = (context->Length_High >> 8) & 0xFF;
|
|
context->Message_Block[59] = (context->Length_High) & 0xFF;
|
|
context->Message_Block[60] = (context->Length_Low >> 24) & 0xFF;
|
|
context->Message_Block[61] = (context->Length_Low >> 16) & 0xFF;
|
|
context->Message_Block[62] = (context->Length_Low >> 8) & 0xFF;
|
|
context->Message_Block[63] = (context->Length_Low) & 0xFF;
|
|
|
|
SHA1ProcessMessageBlock(context);
|
|
}
|
|
|
|
static int SHA1Result(SHA1Context *context)
|
|
{
|
|
if (context->Corrupted)
|
|
return 0;
|
|
|
|
if (!context->Computed)
|
|
{
|
|
SHA1PadMessage(context);
|
|
context->Computed = 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void SHA1Input(SHA1Context *context,
|
|
const unsigned char *message_array,
|
|
unsigned length)
|
|
{
|
|
if (!length)
|
|
return;
|
|
|
|
if (context->Computed || context->Corrupted)
|
|
{
|
|
context->Corrupted = 1;
|
|
return;
|
|
}
|
|
|
|
while(length-- && !context->Corrupted)
|
|
{
|
|
context->Message_Block[context->Message_Block_Index++] =
|
|
(*message_array & 0xFF);
|
|
|
|
context->Length_Low += 8;
|
|
/* Force it to 32 bits */
|
|
context->Length_Low &= 0xFFFFFFFF;
|
|
if (context->Length_Low == 0)
|
|
{
|
|
context->Length_High++;
|
|
/* Force it to 32 bits */
|
|
context->Length_High &= 0xFFFFFFFF;
|
|
if (context->Length_High == 0)
|
|
context->Corrupted = 1; /* Message is too long */
|
|
}
|
|
|
|
if (context->Message_Block_Index == 64)
|
|
SHA1ProcessMessageBlock(context);
|
|
|
|
message_array++;
|
|
}
|
|
}
|
|
|
|
int sha1_calculate(const char *path, char *result)
|
|
{
|
|
unsigned char buff[4096] = {0};
|
|
SHA1Context sha;
|
|
int rv = 1;
|
|
RFILE *fd = retro_fopen(path, RFILE_MODE_READ, -1);
|
|
|
|
if (!fd)
|
|
goto error;
|
|
|
|
SHA1Reset(&sha);
|
|
|
|
do
|
|
{
|
|
rv = retro_fread(fd, buff, 4096);
|
|
if (rv < 0)
|
|
goto error;
|
|
|
|
SHA1Input(&sha, buff, rv);
|
|
}while(rv);
|
|
|
|
if (!SHA1Result(&sha))
|
|
goto error;
|
|
|
|
sprintf(result, "%08X%08X%08X%08X%08X",
|
|
sha.Message_Digest[0],
|
|
sha.Message_Digest[1],
|
|
sha.Message_Digest[2],
|
|
sha.Message_Digest[3], sha.Message_Digest[4]);
|
|
|
|
retro_fclose(fd);
|
|
return 0;
|
|
|
|
error:
|
|
if (fd)
|
|
retro_fclose(fd);
|
|
return -1;
|
|
}
|
|
|
|
uint32_t djb2_calculate(const char *str)
|
|
{
|
|
const unsigned char *aux = (const unsigned char*)str;
|
|
uint32_t hash = 5381;
|
|
|
|
while ( *aux )
|
|
hash = ( hash << 5 ) + hash + *aux++;
|
|
|
|
return hash;
|
|
}
|