/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2012 - Hans-Kristian Arntzen * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ // Bog-standard windowed SINC implementation. // Only suitable as an upsampler, as there is no low-pass filter stage. #include "resampler.h" #include #include #include #include #ifndef RESAMPLER_TEST #include "../general.h" #else #define RARCH_LOG(...) #endif #if __SSE__ #include #endif #define PHASE_BITS 8 #define SUBPHASE_BITS 15 #define PHASES (1 << PHASE_BITS) #define PHASES_SHIFT (SUBPHASE_BITS) #define SUBPHASES (1 << SUBPHASE_BITS) #define SUBPHASES_SHIFT 0 #define SUBPHASES_MASK ((1 << SUBPHASE_BITS) - 1) #define PHASES_WRAP (1 << (PHASE_BITS + SUBPHASE_BITS)) #define FRAMES_SHIFT (PHASE_BITS + SUBPHASE_BITS) #define SIDELOBES 8 #define TAPS (SIDELOBES * 2) #define CUTOFF 1.0 #define PHASE_INDEX 0 #define DELTA_INDEX 1 struct rarch_resampler { sample_t phase_table[PHASES][2][TAPS]; sample_t buffer_l[2 * TAPS]; sample_t buffer_r[2 * TAPS]; unsigned ptr; uint32_t time; }; static inline double sinc(double val) { if (fabs(val) < 0.00001) return 1.0; else return sin(val) / val; } static inline double lanzcos(double index) { return sinc(index); } static void init_sinc_table(rarch_resampler_t *resamp) { // Sinc phases: [..., p + 3, p + 2, p + 1, p + 0, p - 1, p - 2, p - 3, p - 4, ...] for (int i = 0; i < PHASES; i++) { for (int j = 0; j < TAPS; j++) { double p = (double)i / PHASES; double sinc_phase = M_PI * (p + (SIDELOBES - 1 - j)); float val = CUTOFF * sinc(CUTOFF * sinc_phase) * lanzcos(sinc_phase / SIDELOBES); #ifdef HAVE_FIXED_POINT resamp->phase_table[i][PHASE_INDEX][j] = (int16_t)(val * 0x7fff); #else resamp->phase_table[i][PHASE_INDEX][j] = val; #endif } } // Optimize linear interpolation. for (int i = 0; i < PHASES - 1; i++) { for (int j = 0; j < TAPS; j++) { #ifdef HAVE_FIXED_POINT resamp->phase_table[i][DELTA_INDEX][j] = (resamp->phase_table[i + 1][PHASE_INDEX][j] - resamp->phase_table[i][PHASE_INDEX][j]); #else resamp->phase_table[i][DELTA_INDEX][j] = (resamp->phase_table[i + 1][PHASE_INDEX][j] - resamp->phase_table[i][PHASE_INDEX][j]) / SUBPHASES; #endif } } // Interpolation between [PHASES - 1] => [PHASES] for (int j = 0; j < TAPS; j++) { double p = 1.0; double sinc_phase = M_PI * (p + (SIDELOBES - 1 - j)); double phase = CUTOFF * sinc(CUTOFF * sinc_phase) * lanzcos(sinc_phase / SIDELOBES); #ifdef HAVE_FIXED_POINT int16_t result = 0x7fff * phase - resamp->phase_table[PHASES - 1][PHASE_INDEX][j]; #else float result = (phase - resamp->phase_table[PHASES - 1][PHASE_INDEX][j]) / SUBPHASES; #endif resamp->phase_table[PHASES - 1][DELTA_INDEX][j] = result; } } // No memalign() for us on Win32 ... static void *aligned_alloc__(size_t boundary, size_t size) { void *ptr = malloc(boundary + size + sizeof(uintptr_t)); if (!ptr) return NULL; uintptr_t addr = ((uintptr_t)ptr + sizeof(uintptr_t) + boundary) & ~(boundary - 1); void **place = (void**)addr; place[-1] = ptr; return (void*)addr; } static void aligned_free__(void *ptr) { void **p = (void**)ptr; free(p[-1]); } rarch_resampler_t *resampler_new(void) { rarch_resampler_t *re = (rarch_resampler_t*)aligned_alloc__(16, sizeof(*re)); if (!re) return NULL; memset(re, 0, sizeof(*re)); init_sinc_table(re); #ifdef HAVE_FIXED_POINT RARCH_LOG("Sinc resampler [Fixed]\n"); #elif __SSE__ RARCH_LOG("Sinc resampler [SSE]\n"); #else RARCH_LOG("Sinc resampler [C]\n"); #endif return re; } #ifdef HAVE_FIXED_POINT static inline int16_t saturate(int32_t val) { if (val > 0x7fff) return 0x7fff; else if (val < -0x8000) return -0x8000; else return val; } static void process_sinc(rarch_resampler_t *resamp, int16_t *out_buffer) { int32_t sum_l = 0; int32_t sum_r = 0; const int16_t *buffer_l = resamp->buffer_l + resamp->ptr; const int16_t *buffer_r = resamp->buffer_r + resamp->ptr; unsigned phase = resamp->time >> PHASES_SHIFT; unsigned delta = (resamp->time >> SUBPHASES_SHIFT) & SUBPHASES_MASK; const int16_t *phase_table = resamp->phase_table[phase][PHASE_INDEX]; const int16_t *delta_table = resamp->phase_table[phase][DELTA_INDEX]; for (unsigned i = 0; i < TAPS; i++) { int16_t sinc_val = phase_table[i] + ((delta * delta_table[i] + 0x4000) >> 15); sum_l += (buffer_l[i] * sinc_val + 0x4000) >> 15; sum_r += (buffer_r[i] * sinc_val + 0x4000) >> 15; } out_buffer[0] = saturate(sum_l); out_buffer[1] = saturate(sum_r); } #elif __SSE__ static void process_sinc(rarch_resampler_t *resamp, float *out_buffer) { __m128 sum_l = _mm_setzero_ps(); __m128 sum_r = _mm_setzero_ps(); const float *buffer_l = resamp->buffer_l + resamp->ptr; const float *buffer_r = resamp->buffer_r + resamp->ptr; unsigned phase = resamp->time >> PHASES_SHIFT; unsigned delta = (resamp->time >> SUBPHASES_SHIFT) & SUBPHASES_MASK; __m128 delta_f = _mm_set1_ps(delta); const float *phase_table = resamp->phase_table[phase][PHASE_INDEX]; const float *delta_table = resamp->phase_table[phase][DELTA_INDEX]; for (unsigned i = 0; i < TAPS; i += 4) { __m128 buf_l = _mm_loadu_ps(buffer_l + i); __m128 buf_r = _mm_loadu_ps(buffer_r + i); __m128 phases = _mm_load_ps(phase_table + i); __m128 deltas = _mm_load_ps(delta_table + i); __m128 sinc = _mm_add_ps(phases, _mm_mul_ps(deltas, delta_f)); sum_l = _mm_add_ps(sum_l, _mm_mul_ps(buf_l, sinc)); sum_r = _mm_add_ps(sum_r, _mm_mul_ps(buf_r, sinc)); } // Them annoying shuffles :V // sum_l = { l3, l2, l1, l0 } // sum_r = { r3, r2, r1, r0 } __m128 sum = _mm_add_ps(_mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(1, 0, 1, 0)), _mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(3, 2, 3, 2))); // sum = { r1, r0, l1, l0 } + { r3, r2, l3, l2 } // sum = { R1, R0, L1, L0 } sum = _mm_add_ps(_mm_shuffle_ps(sum, sum, _MM_SHUFFLE(3, 3, 1, 1)), sum); // sum = {R1, R1, L1, L1 } + { R1, R0, L1, L0 } // sum = { X, R, X, L } // Store L _mm_store_ss(out_buffer + 0, sum); // movehl { X, R, X, L } == { X, R, X, R } _mm_store_ss(out_buffer + 1, _mm_movehl_ps(sum, sum)); } #else // Plain ol' C99 static void process_sinc(rarch_resampler_t *resamp, float *out_buffer) { float sum_l = 0.0f; float sum_r = 0.0f; const float *buffer_l = resamp->buffer_l + resamp->ptr; const float *buffer_r = resamp->buffer_r + resamp->ptr; unsigned phase = resamp->time >> PHASES_SHIFT; unsigned delta = (resamp->time >> SUBPHASES_SHIFT) & SUBPHASES_MASK; float delta_f = (float)delta; const float *phase_table = resamp->phase_table[phase][PHASE_INDEX]; const float *delta_table = resamp->phase_table[phase][DELTA_INDEX]; for (unsigned i = 0; i < TAPS; i++) { float sinc_val = phase_table[i] + delta_f * delta_table[i]; sum_l += buffer_l[i] * sinc_val; sum_r += buffer_r[i] * sinc_val; } out_buffer[0] = sum_l; out_buffer[1] = sum_r; } #endif void resampler_process(rarch_resampler_t *re, struct resampler_data *data) { uint32_t ratio = PHASES_WRAP / data->ratio; const sample_t *input = data->data_in; sample_t *output = data->data_out; size_t frames = data->input_frames; size_t out_frames = 0; while (frames) { process_sinc(re, output); output += 2; out_frames++; re->time += ratio; while (re->time >= PHASES_WRAP) { re->buffer_l[re->ptr + TAPS] = re->buffer_l[re->ptr] = *input++; re->buffer_r[re->ptr + TAPS] = re->buffer_r[re->ptr] = *input++; re->ptr = (re->ptr + 1) & (TAPS - 1); re->time -= PHASES_WRAP; frames--; } } data->output_frames = out_frames; } void resampler_free(rarch_resampler_t *re) { aligned_free__(re); }