/* RetroArch - A frontend for libretro. * Copyright (C) 2016 - Hans-Kristian Arntzen * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #ifdef HAVE_CONFIG_H #include "../../config.h" #endif #ifdef HAVE_X11 #ifdef HAVE_XCB #include #endif #endif #include #include #include "vulkan_common.h" vulkan_context_fp_t vkcfp; static dylib_t vulkan_library; static VkInstance cached_instance; static VkDevice cached_device; #define VKSYM(vk, entrypoint) do { \ vkcfp.vk##entrypoint = (PFN_vk##entrypoint) dylib_proc(vulkan_library, "vk"#entrypoint); \ if (vkcfp.vk##entrypoint == NULL) { \ RARCH_ERR("dylib_proc failed to find vk%s\n", #entrypoint); \ return false; \ } \ } while(0) #define VK_GET_INSTANCE_PROC_ADDR(entrypoint) do { \ vkcfp.vk##entrypoint = (PFN_vk##entrypoint) vkcfp.vkGetInstanceProcAddr(vk->context.instance, \ "vk"#entrypoint); \ if (vkcfp.vk##entrypoint == NULL) \ vkcfp.vk##entrypoint = (PFN_vk##entrypoint) dylib_proc(vulkan_library, "vk"#entrypoint); \ if (vkcfp.vk##entrypoint == NULL) { \ RARCH_ERR("vkGetInstanceProcAddr failed to find vk%s\n", #entrypoint); \ return false; \ } \ } while(0) #define VK_GET_DEVICE_PROC_ADDR(entrypoint) do { \ vkcfp.vk##entrypoint = (PFN_vk##entrypoint) vkcfp.vkGetDeviceProcAddr(vk->context.device, \ "vk" #entrypoint); \ if (vkcfp.vk##entrypoint == NULL) \ vkcfp.vk##entrypoint = (PFN_vk##entrypoint) dylib_proc(vulkan_library, "vk"#entrypoint); \ if (vkcfp.vk##entrypoint == NULL) { \ RARCH_ERR("vkGetDeviceProcAddr failed to find vk%s\n", #entrypoint); \ return false; \ } \ } while(0) uint32_t vulkan_find_memory_type( const VkPhysicalDeviceMemoryProperties *mem_props, uint32_t device_reqs, uint32_t host_reqs) { uint32_t i; for (i = 0; i < VK_MAX_MEMORY_TYPES; i++) { if ((device_reqs & (1u << i)) && (mem_props->memoryTypes[i].propertyFlags & host_reqs) == host_reqs) return i; } RARCH_ERR("[Vulkan]: Failed to find valid memory type. This should never happen."); abort(); } uint32_t vulkan_find_memory_type_fallback( const VkPhysicalDeviceMemoryProperties *mem_props, uint32_t device_reqs, uint32_t host_reqs_first, uint32_t host_reqs_second) { uint32_t i; for (i = 0; i < VK_MAX_MEMORY_TYPES; i++) { if ((device_reqs & (1u << i)) && (mem_props->memoryTypes[i].propertyFlags & host_reqs_first) == host_reqs_first) return i; } if (host_reqs_first == 0) { RARCH_ERR("[Vulkan]: Failed to find valid memory type. This should never happen."); abort(); } return vulkan_find_memory_type_fallback(mem_props, device_reqs, host_reqs_second, 0); } void vulkan_map_persistent_texture( VkDevice device, struct vk_texture *texture) { VKFUNC(vkMapMemory)(device, texture->memory, texture->offset, texture->size, 0, &texture->mapped); } void vulkan_copy_staging_to_dynamic(vk_t *vk, VkCommandBuffer cmd, struct vk_texture *dynamic, struct vk_texture *staging) { VkImageCopy region; retro_assert(dynamic->type == VULKAN_TEXTURE_DYNAMIC); retro_assert(staging->type == VULKAN_TEXTURE_STAGING); vulkan_transition_texture(vk, staging); /* We don't have to sync against previous TRANSFER, * since we observed the completion by fences. * * If we have a single texture_optimal, we would need to sync against * previous transfers to avoid races. * * We would also need to optionally maintain extra textures due to * changes in resolution, so this seems like the sanest and * simplest solution. */ vulkan_image_layout_transition(vk, vk->cmd, dynamic->image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); memset(®ion, 0, sizeof(region)); region.extent.width = dynamic->width; region.extent.height = dynamic->height; region.extent.depth = 1; region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.srcSubresource.layerCount = 1; region.dstSubresource = region.srcSubresource; VKFUNC(vkCmdCopyImage)(vk->cmd, staging->image, VK_IMAGE_LAYOUT_GENERAL, dynamic->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); vulkan_image_layout_transition(vk, vk->cmd, dynamic->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); } #ifdef VULKAN_DEBUG_TEXTURE_ALLOC static VkImage vk_images[4 * 1024]; static unsigned vk_count; void vulkan_log_textures(void) { unsigned i; for (i = 0; i < vk_count; i++) { RARCH_WARN("[Vulkan]: Found leaked texture %llu.\n", (unsigned long long)vk_images[i]); } vk_count = 0; } static unsigned track_seq; static void vulkan_track_alloc(VkImage image) { vk_images[vk_count++] = image; RARCH_LOG("[Vulkan]: Alloc %llu (%u).\n", (unsigned long long)image, track_seq); track_seq++; } static void vulkan_track_dealloc(VkImage image) { unsigned i; for (i = 0; i < vk_count; i++) { if (image == vk_images[i]) { vk_count--; memmove(vk_images + i, vk_images + 1 + i, sizeof(VkImage) * (vk_count - i)); return; } } retro_assert(0 && "Couldn't find VkImage in dealloc!"); } #endif struct vk_texture vulkan_create_texture(vk_t *vk, struct vk_texture *old, unsigned width, unsigned height, VkFormat format, const void *initial, const VkComponentMapping *swizzle, enum vk_texture_type type) { struct vk_texture tex; VkMemoryRequirements mem_reqs; VkSubresourceLayout layout; VkDevice device = vk->context->device; VkImageCreateInfo info = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; VkImageViewCreateInfo view = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO }; VkMemoryAllocateInfo alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; VkImageSubresource subresource = { VK_IMAGE_ASPECT_COLOR_BIT }; VkCommandBufferAllocateInfo cmd_info = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO }; VkSubmitInfo submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO }; VkCommandBufferBeginInfo begin_info = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO }; memset(&tex, 0, sizeof(tex)); info.imageType = VK_IMAGE_TYPE_2D; info.format = format; info.extent.width = width; info.extent.height = height; info.extent.depth = 1; info.mipLevels = 1; info.arrayLayers = 1; info.samples = VK_SAMPLE_COUNT_1_BIT; if (type == VULKAN_TEXTURE_STREAMED) { VkFormatProperties format_properties; VkFormatFeatureFlags required = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT; VKFUNC(vkGetPhysicalDeviceFormatProperties)( vk->context->gpu, format, &format_properties); if ((format_properties.linearTilingFeatures & required) != required) { RARCH_LOG("[Vulkan]: GPU does not support using linear images as textures. Falling back to copy path.\n"); type = VULKAN_TEXTURE_STAGING; } } switch (type) { case VULKAN_TEXTURE_STATIC: retro_assert(initial && "Static textures must have initial data.\n"); info.tiling = VK_IMAGE_TILING_OPTIMAL; info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; break; case VULKAN_TEXTURE_DYNAMIC: retro_assert(!initial && "Dynamic textures must not have initial data.\n"); info.tiling = VK_IMAGE_TILING_OPTIMAL; info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; break; case VULKAN_TEXTURE_STREAMED: info.usage = VK_IMAGE_USAGE_SAMPLED_BIT; info.tiling = VK_IMAGE_TILING_LINEAR; info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; break; case VULKAN_TEXTURE_STAGING: info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; info.tiling = VK_IMAGE_TILING_LINEAR; info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; break; case VULKAN_TEXTURE_READBACK: info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT; info.tiling = VK_IMAGE_TILING_LINEAR; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; break; } VKFUNC(vkCreateImage)(device, &info, NULL, &tex.image); #if 0 vulkan_track_alloc(tex.image); #endif VKFUNC(vkGetImageMemoryRequirements)(device, tex.image, &mem_reqs); alloc.allocationSize = mem_reqs.size; switch (type) { case VULKAN_TEXTURE_STATIC: case VULKAN_TEXTURE_DYNAMIC: alloc.memoryTypeIndex = vulkan_find_memory_type_fallback( &vk->context->memory_properties, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, 0); break; default: alloc.memoryTypeIndex = vulkan_find_memory_type_fallback( &vk->context->memory_properties, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); break; } /* If the texture is STREAMED and it's not DEVICE_LOCAL, we expect to hit a slower path, * so fallback to copy path. */ if (type == VULKAN_TEXTURE_STREAMED && (vk->context->memory_properties.memoryTypes[alloc.memoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) == 0) { /* Recreate texture but for STAGING this time ... */ RARCH_LOG("[Vulkan]: GPU supports linear images as textures, but not DEVICE_LOCAL. Falling back to copy path.\n"); type = VULKAN_TEXTURE_STAGING; VKFUNC(vkDestroyImage)(device, tex.image, NULL); info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; VKFUNC(vkCreateImage)(device, &info, NULL, &tex.image); VKFUNC(vkGetImageMemoryRequirements)(device, tex.image, &mem_reqs); alloc.allocationSize = mem_reqs.size; alloc.memoryTypeIndex = vulkan_find_memory_type_fallback(&vk->context->memory_properties, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); } /* We're not reusing the objects themselves. */ if (old && old->view != VK_NULL_HANDLE) VKFUNC(vkDestroyImageView)(vk->context->device, old->view, NULL); if (old && old->image != VK_NULL_HANDLE) { VKFUNC(vkDestroyImage)(vk->context->device, old->image, NULL); #ifdef VULKAN_DEBUG_TEXTURE_ALLOC vulkan_track_dealloc(old->image); #endif } /* We can pilfer the old memory and move it over to the new texture. */ if (old && old->memory_size >= mem_reqs.size && old->memory_type == alloc.memoryTypeIndex) { tex.memory = old->memory; tex.memory_size = old->memory_size; tex.memory_type = old->memory_type; if (old->mapped) VKFUNC(vkUnmapMemory)(device, old->memory); old->memory = VK_NULL_HANDLE; } else { VKFUNC(vkAllocateMemory)(device, &alloc, NULL, &tex.memory); tex.memory_size = alloc.allocationSize; tex.memory_type = alloc.memoryTypeIndex; } if (old) { if (old->memory != VK_NULL_HANDLE) VKFUNC(vkFreeMemory)(device, old->memory, NULL); memset(old, 0, sizeof(*old)); } VKFUNC(vkBindImageMemory)(device, tex.image, tex.memory, 0); view.image = tex.image; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; if (swizzle) view.components = *swizzle; else { view.components.r = VK_COMPONENT_SWIZZLE_R; view.components.g = VK_COMPONENT_SWIZZLE_G; view.components.b = VK_COMPONENT_SWIZZLE_B; view.components.a = VK_COMPONENT_SWIZZLE_A; } view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.levelCount = 1; view.subresourceRange.layerCount = 1; VKFUNC(vkCreateImageView)(device, &view, NULL, &tex.view); VKFUNC(vkGetImageSubresourceLayout)(device, tex.image, &subresource, &layout); tex.stride = layout.rowPitch; tex.offset = layout.offset; tex.size = layout.size; tex.layout = info.initialLayout; tex.width = width; tex.height = height; tex.format = format; tex.type = type; if (initial && (type == VULKAN_TEXTURE_STREAMED || type == VULKAN_TEXTURE_STAGING)) { unsigned y; uint8_t *dst = NULL; const uint8_t *src = NULL; void *ptr = NULL; unsigned bpp = vulkan_format_to_bpp(tex.format); unsigned stride = tex.width * bpp; VKFUNC(vkMapMemory)(device, tex.memory, tex.offset, tex.size, 0, &ptr); dst = (uint8_t*)ptr; src = (const uint8_t*)initial; for (y = 0; y < tex.height; y++, dst += tex.stride, src += stride) memcpy(dst, src, width * bpp); VKFUNC(vkUnmapMemory)(device, tex.memory); } else if (initial && type == VULKAN_TEXTURE_STATIC) { VkImageCopy region; VkCommandBuffer staging; struct vk_texture tmp = vulkan_create_texture(vk, NULL, width, height, format, initial, NULL, VULKAN_TEXTURE_STAGING); cmd_info.commandPool = vk->staging_pool; cmd_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cmd_info.commandBufferCount = 1; VKFUNC(vkAllocateCommandBuffers)(vk->context->device, &cmd_info, &staging); begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; VKFUNC(vkBeginCommandBuffer)(staging, &begin_info); vulkan_image_layout_transition(vk, staging, tmp.image, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_GENERAL, 0, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); vulkan_image_layout_transition(vk, staging, tex.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); memset(®ion, 0, sizeof(region)); region.extent.width = width; region.extent.height = height; region.extent.depth = 1; region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.srcSubresource.layerCount = 1; region.dstSubresource = region.srcSubresource; VKFUNC(vkCmdCopyImage)(staging, tmp.image, VK_IMAGE_LAYOUT_GENERAL, tex.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); vulkan_image_layout_transition(vk, staging, tex.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); VKFUNC(vkEndCommandBuffer)(staging); submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &staging; slock_lock(vk->context->queue_lock); VKFUNC(vkQueueSubmit)(vk->context->queue, 1, &submit_info, VK_NULL_HANDLE); /* TODO: Very crude, but texture uploads only happen * during init, so waiting for GPU to complete transfer * and blocking isn't a big deal. */ VKFUNC(vkQueueWaitIdle)(vk->context->queue); slock_unlock(vk->context->queue_lock); VKFUNC(vkFreeCommandBuffers)(vk->context->device, vk->staging_pool, 1, &staging); vulkan_destroy_texture( vk->context->device, &tmp); tex.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } return tex; } void vulkan_destroy_texture( VkDevice device, struct vk_texture *tex) { if (tex->mapped) VKFUNC(vkUnmapMemory)(device, tex->memory); VKFUNC(vkFreeMemory)(device, tex->memory, NULL); VKFUNC(vkDestroyImageView)(device, tex->view, NULL); VKFUNC(vkDestroyImage)(device, tex->image, NULL); #ifdef VULKAN_DEBUG_TEXTURE_ALLOC vulkan_track_dealloc(tex->image); #endif memset(tex, 0, sizeof(*tex)); } static void vulkan_write_quad_descriptors( VkDevice device, VkDescriptorSet set, VkBuffer buffer, VkDeviceSize offset, VkDeviceSize range, const struct vk_texture *texture, VkSampler sampler) { VkDescriptorImageInfo image_info; VkDescriptorBufferInfo buffer_info; VkWriteDescriptorSet write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET }; image_info.sampler = sampler; image_info.imageView = texture->view; image_info.imageLayout = texture->layout; buffer_info.buffer = buffer; buffer_info.offset = offset; buffer_info.range = range; write.dstSet = set; write.dstBinding = 0; write.descriptorCount = 1; write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; write.pBufferInfo = &buffer_info; VKFUNC(vkUpdateDescriptorSets)(device, 1, &write, 0, NULL); write.dstSet = set; write.dstBinding = 1; write.descriptorCount = 1; write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; write.pImageInfo = &image_info; VKFUNC(vkUpdateDescriptorSets)(device, 1, &write, 0, NULL); } void vulkan_transition_texture(vk_t *vk, struct vk_texture *texture) { /* Transition to GENERAL layout for linear streamed textures. * We're using linear textures here, so only * GENERAL layout is supported. * If we're already in GENERAL, add a host -> shader read memory barrier * to invalidate texture caches. */ if (texture->layout != VK_IMAGE_LAYOUT_PREINITIALIZED && texture->layout != VK_IMAGE_LAYOUT_GENERAL) return; switch (texture->type) { case VULKAN_TEXTURE_STREAMED: vulkan_image_layout_transition(vk, vk->cmd, texture->image, texture->layout, VK_IMAGE_LAYOUT_GENERAL, 0, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); break; case VULKAN_TEXTURE_STAGING: vulkan_image_layout_transition(vk, vk->cmd, texture->image, texture->layout, VK_IMAGE_LAYOUT_GENERAL, 0, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); break; default: retro_assert(0 && "Attempting to transition invalid texture type.\n"); break; } texture->layout = VK_IMAGE_LAYOUT_GENERAL; } static void vulkan_check_dynamic_state( vk_t *vk) { if (vk->tracker.dirty & VULKAN_DIRTY_DYNAMIC_BIT) { const VkRect2D sci = { { vk->vp.x, vk->vp.y }, { vk->vp.width, vk->vp.height }}; VKFUNC(vkCmdSetViewport)(vk->cmd, 0, 1, &vk->vk_vp); VKFUNC(vkCmdSetScissor) (vk->cmd, 0, 1, &sci); vk->tracker.dirty &= ~VULKAN_DIRTY_DYNAMIC_BIT; } } void vulkan_draw_triangles(vk_t *vk, const struct vk_draw_triangles *call) { vulkan_transition_texture(vk, call->texture); if (call->pipeline != vk->tracker.pipeline) { VKFUNC(vkCmdBindPipeline)(vk->cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, call->pipeline); vk->tracker.pipeline = call->pipeline; /* Changing pipeline invalidates dynamic state. */ vk->tracker.dirty |= VULKAN_DIRTY_DYNAMIC_BIT; } vulkan_check_dynamic_state(vk); /* Upload descriptors */ { VkDescriptorSet set; if (memcmp(call->mvp, &vk->tracker.mvp, sizeof(*call->mvp)) || (call->texture->view != vk->tracker.view) || (call->sampler != vk->tracker.sampler)) { /* Upload UBO */ struct vk_buffer_range range; if (!vulkan_buffer_chain_alloc(vk->context, &vk->chain->ubo, sizeof(*call->mvp), &range)) return; memcpy(range.data, call->mvp, sizeof(*call->mvp)); set = vulkan_descriptor_manager_alloc( vk->context->device, &vk->chain->descriptor_manager); vulkan_write_quad_descriptors( vk->context->device, set, range.buffer, range.offset, sizeof(*call->mvp), call->texture, call->sampler); VKFUNC(vkCmdBindDescriptorSets)(vk->cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, vk->pipelines.layout, 0, 1, &set, 0, NULL); vk->tracker.view = call->texture->view; vk->tracker.sampler = call->sampler; vk->tracker.mvp = *call->mvp; } } /* VBO is already uploaded. */ VKFUNC(vkCmdBindVertexBuffers)(vk->cmd, 0, 1, &call->vbo->buffer, &call->vbo->offset); /* Draw the quad */ VKFUNC(vkCmdDraw)(vk->cmd, call->vertices, 1, 0, 0); } void vulkan_draw_quad(vk_t *vk, const struct vk_draw_quad *quad) { vulkan_transition_texture(vk, quad->texture); if (quad->pipeline != vk->tracker.pipeline) { VKFUNC(vkCmdBindPipeline)(vk->cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, quad->pipeline); vk->tracker.pipeline = quad->pipeline; /* Changing pipeline invalidates dynamic state. */ vk->tracker.dirty |= VULKAN_DIRTY_DYNAMIC_BIT; } vulkan_check_dynamic_state(vk); /* Upload descriptors */ { VkDescriptorSet set; struct vk_buffer_range range; if (!vulkan_buffer_chain_alloc(vk->context, &vk->chain->ubo, sizeof(*quad->mvp), &range)) return; if (memcmp(quad->mvp, &vk->tracker.mvp, sizeof(*quad->mvp)) || quad->texture->view != vk->tracker.view || quad->sampler != vk->tracker.sampler) { /* Upload UBO */ struct vk_buffer_range range; if (!vulkan_buffer_chain_alloc(vk->context, &vk->chain->ubo, sizeof(*quad->mvp), &range)) return; memcpy(range.data, quad->mvp, sizeof(*quad->mvp)); set = vulkan_descriptor_manager_alloc( vk->context->device, &vk->chain->descriptor_manager); vulkan_write_quad_descriptors( vk->context->device, set, range.buffer, range.offset, sizeof(*quad->mvp), quad->texture, quad->sampler); VKFUNC(vkCmdBindDescriptorSets)(vk->cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, vk->pipelines.layout, 0, 1, &set, 0, NULL); vk->tracker.view = quad->texture->view; vk->tracker.sampler = quad->sampler; vk->tracker.mvp = *quad->mvp; } } /* Upload VBO */ { struct vk_buffer_range range; if (!vulkan_buffer_chain_alloc(vk->context, &vk->chain->vbo, 6 * sizeof(struct vk_vertex), &range)) return; vulkan_write_quad_vbo((struct vk_vertex*)range.data, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, &quad->color); VKFUNC(vkCmdBindVertexBuffers)(vk->cmd, 0, 1, &range.buffer, &range.offset); } /* Draw the quad */ VKFUNC(vkCmdDraw)(vk->cmd, 6, 1, 0, 0); } void vulkan_image_layout_transition( vk_t *vk, VkCommandBuffer cmd, VkImage image, VkImageLayout old_layout, VkImageLayout new_layout, VkAccessFlags srcAccess, VkAccessFlags dstAccess, VkPipelineStageFlags srcStages, VkPipelineStageFlags dstStages) { VkImageMemoryBarrier barrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER }; barrier.srcAccessMask = srcAccess; barrier.dstAccessMask = dstAccess; barrier.oldLayout = old_layout; barrier.newLayout = new_layout; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.image = image; barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; barrier.subresourceRange.levelCount = 1; barrier.subresourceRange.layerCount = 1; VKFUNC(vkCmdPipelineBarrier)(cmd, srcStages, dstStages, 0, 0, NULL, 0, NULL, 1, &barrier); } struct vk_buffer vulkan_create_buffer( const struct vulkan_context *context, size_t size, VkBufferUsageFlags usage) { struct vk_buffer buffer; VkMemoryRequirements mem_reqs; VkMemoryAllocateInfo alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; VkBufferCreateInfo info = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; info.size = size; info.usage = usage; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VKFUNC(vkCreateBuffer)(context->device, &info, NULL, &buffer.buffer); VKFUNC(vkGetBufferMemoryRequirements)(context->device, buffer.buffer, &mem_reqs); alloc.allocationSize = mem_reqs.size; alloc.memoryTypeIndex = vulkan_find_memory_type( &context->memory_properties, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VKFUNC(vkAllocateMemory)(context->device, &alloc, NULL, &buffer.memory); VKFUNC(vkBindBufferMemory)(context->device, buffer.buffer, buffer.memory, 0); buffer.size = alloc.allocationSize; VKFUNC(vkMapMemory)(context->device, buffer.memory, 0, buffer.size, 0, &buffer.mapped); return buffer; } void vulkan_destroy_buffer( VkDevice device, struct vk_buffer *buffer) { VKFUNC(vkUnmapMemory)(device, buffer->memory); VKFUNC(vkFreeMemory)(device, buffer->memory, NULL); VKFUNC(vkDestroyBuffer)(device, buffer->buffer, NULL); memset(buffer, 0, sizeof(*buffer)); } static struct vk_descriptor_pool *vulkan_alloc_descriptor_pool( VkDevice device, const struct vk_descriptor_manager *manager) { unsigned i; VkDescriptorPoolCreateInfo pool_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO }; VkDescriptorSetAllocateInfo alloc_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO }; struct vk_descriptor_pool *pool = (struct vk_descriptor_pool*)calloc(1, sizeof(*pool)); if (!pool) return NULL; pool_info.maxSets = VULKAN_DESCRIPTOR_MANAGER_BLOCK_SETS; pool_info.poolSizeCount = manager->num_sizes; pool_info.pPoolSizes = manager->sizes; pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT; VKFUNC(vkCreateDescriptorPool)(device, &pool_info, NULL, &pool->pool); /* Just allocate all descriptor sets up front. */ alloc_info.descriptorPool = pool->pool; alloc_info.descriptorSetCount = 1; alloc_info.pSetLayouts = &manager->set_layout; for (i = 0; i < VULKAN_DESCRIPTOR_MANAGER_BLOCK_SETS; i++) VKFUNC(vkAllocateDescriptorSets)(device, &alloc_info, &pool->sets[i]); return pool; } VkDescriptorSet vulkan_descriptor_manager_alloc( VkDevice device, struct vk_descriptor_manager *manager) { if (manager->count < VULKAN_DESCRIPTOR_MANAGER_BLOCK_SETS) return manager->current->sets[manager->count++]; while (manager->current->next) { manager->current = manager->current->next; manager->count = 0; return manager->current->sets[manager->count++]; } manager->current->next = vulkan_alloc_descriptor_pool(device, manager); retro_assert(manager->current->next); manager->current = manager->current->next; manager->count = 0; return manager->current->sets[manager->count++]; } void vulkan_descriptor_manager_restart(struct vk_descriptor_manager *manager) { manager->current = manager->head; manager->count = 0; } struct vk_descriptor_manager vulkan_create_descriptor_manager( VkDevice device, const VkDescriptorPoolSize *sizes, unsigned num_sizes, VkDescriptorSetLayout set_layout) { struct vk_descriptor_manager manager; memset(&manager, 0, sizeof(manager)); retro_assert(num_sizes <= VULKAN_MAX_DESCRIPTOR_POOL_SIZES); memcpy(manager.sizes, sizes, num_sizes * sizeof(*sizes)); manager.num_sizes = num_sizes; manager.set_layout = set_layout; manager.head = vulkan_alloc_descriptor_pool(device, &manager); retro_assert(manager.head); return manager; } void vulkan_destroy_descriptor_manager( VkDevice device, struct vk_descriptor_manager *manager) { struct vk_descriptor_pool *node = manager->head; while (node) { struct vk_descriptor_pool *next = node->next; VKFUNC(vkFreeDescriptorSets)(device, node->pool, VULKAN_DESCRIPTOR_MANAGER_BLOCK_SETS, node->sets); VKFUNC(vkDestroyDescriptorPool)(device, node->pool, NULL); free(node); node = next; } memset(manager, 0, sizeof(*manager)); } static void vulkan_buffer_chain_step(struct vk_buffer_chain *chain) { chain->current = chain->current->next; chain->offset = 0; } static bool vulkan_buffer_chain_suballoc(struct vk_buffer_chain *chain, size_t size, struct vk_buffer_range *range) { VkDeviceSize next_offset = chain->offset + size; if (next_offset <= chain->current->buffer.size) { range->data = (uint8_t*)chain->current->buffer.mapped + chain->offset; range->buffer = chain->current->buffer.buffer; range->offset = chain->offset; chain->offset = (next_offset + chain->alignment - 1) & ~(chain->alignment - 1); return true; } return false; } static struct vk_buffer_node *vulkan_buffer_chain_alloc_node( const struct vulkan_context *context, size_t size, VkBufferUsageFlags usage) { struct vk_buffer_node *node = (struct vk_buffer_node*) calloc(1, sizeof(*node)); if (!node) return NULL; node->buffer = vulkan_create_buffer( context, size, usage); return node; } struct vk_buffer_chain vulkan_buffer_chain_init( VkDeviceSize block_size, VkDeviceSize alignment, VkBufferUsageFlags usage) { struct vk_buffer_chain chain = { block_size, alignment, 0, usage, NULL, NULL }; return chain; } void vulkan_buffer_chain_discard(struct vk_buffer_chain *chain) { chain->current = chain->head; chain->offset = 0; } bool vulkan_buffer_chain_alloc(const struct vulkan_context *context, struct vk_buffer_chain *chain, size_t size, struct vk_buffer_range *range) { if (!chain->head) { chain->head = vulkan_buffer_chain_alloc_node(context, chain->block_size, chain->usage); if (!chain->head) return false; chain->current = chain->head; chain->offset = 0; } if (vulkan_buffer_chain_suballoc(chain, size, range)) return true; /* We've exhausted the current chain, traverse list until we * can find a block we can use. Usually, we just step once. */ while (chain->current->next) { vulkan_buffer_chain_step(chain); if (vulkan_buffer_chain_suballoc(chain, size, range)) return true; } /* We have to allocate a new node, might allocate larger * buffer here than block_size in case we have * a very large allocation. */ if (size < chain->block_size) size = chain->block_size; chain->current->next = vulkan_buffer_chain_alloc_node( context, size, chain->usage); if (!chain->current->next) return false; vulkan_buffer_chain_step(chain); /* This cannot possibly fail. */ retro_assert(vulkan_buffer_chain_suballoc(chain, size, range)); return true; } void vulkan_buffer_chain_free( VkDevice device, struct vk_buffer_chain *chain) { struct vk_buffer_node *node = chain->head; while (node) { struct vk_buffer_node *next = node->next; vulkan_destroy_buffer(device, &node->buffer); free(node); node = next; } memset(chain, 0, sizeof(*chain)); } static bool vulkan_load_instance_symbols(gfx_ctx_vulkan_data_t *vk) { VK_GET_INSTANCE_PROC_ADDR(GetDeviceProcAddr); VK_GET_INSTANCE_PROC_ADDR(DestroyInstance); VK_GET_INSTANCE_PROC_ADDR(GetPhysicalDeviceFormatProperties); VK_GET_INSTANCE_PROC_ADDR(EnumeratePhysicalDevices); VK_GET_INSTANCE_PROC_ADDR(GetPhysicalDeviceProperties); VK_GET_INSTANCE_PROC_ADDR(GetPhysicalDeviceMemoryProperties); VK_GET_INSTANCE_PROC_ADDR(GetPhysicalDeviceQueueFamilyProperties); VK_GET_INSTANCE_PROC_ADDR(CreateDevice); VK_GET_INSTANCE_PROC_ADDR(GetPhysicalDeviceSurfaceSupportKHR); VK_GET_INSTANCE_PROC_ADDR(GetPhysicalDeviceSurfaceCapabilitiesKHR); VK_GET_INSTANCE_PROC_ADDR(GetPhysicalDeviceSurfaceFormatsKHR); VK_GET_INSTANCE_PROC_ADDR(GetPhysicalDeviceSurfacePresentModesKHR); VK_GET_INSTANCE_PROC_ADDR(DestroySurfaceKHR); return true; } static bool vulkan_load_device_symbols(gfx_ctx_vulkan_data_t *vk) { /* Memory */ VK_GET_DEVICE_PROC_ADDR(AllocateMemory); VK_GET_DEVICE_PROC_ADDR(FreeMemory); /* Device destruction */ VK_GET_DEVICE_PROC_ADDR(DestroyDevice); /* Waiting */ VK_GET_DEVICE_PROC_ADDR(DeviceWaitIdle); /* Queues */ VK_GET_DEVICE_PROC_ADDR(GetDeviceQueue); VK_GET_DEVICE_PROC_ADDR(QueueWaitIdle); VK_GET_DEVICE_PROC_ADDR(QueueSubmit); /* Semaphores */ VK_GET_DEVICE_PROC_ADDR(CreateSemaphore); VK_GET_DEVICE_PROC_ADDR(DestroySemaphore); /* Buffers */ VK_GET_DEVICE_PROC_ADDR(CreateBuffer); VK_GET_DEVICE_PROC_ADDR(DestroyBuffer); /* Fences */ VK_GET_DEVICE_PROC_ADDR(CreateFence); VK_GET_DEVICE_PROC_ADDR(DestroyFence); VK_GET_DEVICE_PROC_ADDR(ResetFences); VK_GET_DEVICE_PROC_ADDR(WaitForFences); /* Images */ VK_GET_DEVICE_PROC_ADDR(CreateImage); VK_GET_DEVICE_PROC_ADDR(DestroyImage); VK_GET_DEVICE_PROC_ADDR(GetImageSubresourceLayout); /* Images (Resource Memory Association) */ VK_GET_DEVICE_PROC_ADDR(GetBufferMemoryRequirements); VK_GET_DEVICE_PROC_ADDR(BindBufferMemory); VK_GET_DEVICE_PROC_ADDR(BindImageMemory); /* Image Views */ VK_GET_DEVICE_PROC_ADDR(CreateImageView); VK_GET_DEVICE_PROC_ADDR(DestroyImageView); /* Resource Memory Associations */ VK_GET_DEVICE_PROC_ADDR(GetImageMemoryRequirements); /* Descriptor pools */ VK_GET_DEVICE_PROC_ADDR(CreateDescriptorPool); VK_GET_DEVICE_PROC_ADDR(DestroyDescriptorPool); /* Descriptor sets */ VK_GET_DEVICE_PROC_ADDR(AllocateDescriptorSets); VK_GET_DEVICE_PROC_ADDR(FreeDescriptorSets); VK_GET_DEVICE_PROC_ADDR(UpdateDescriptorSets); /* Descriptor Set Layout */ VK_GET_DEVICE_PROC_ADDR(CreateDescriptorSetLayout); VK_GET_DEVICE_PROC_ADDR(DestroyDescriptorSetLayout); /* Framebuffers */ VK_GET_DEVICE_PROC_ADDR(CreateFramebuffer); VK_GET_DEVICE_PROC_ADDR(DestroyFramebuffer); VK_GET_DEVICE_PROC_ADDR(AllocateCommandBuffers); VK_GET_DEVICE_PROC_ADDR(FreeCommandBuffers); /* Memory allocation */ VK_GET_DEVICE_PROC_ADDR(MapMemory); VK_GET_DEVICE_PROC_ADDR(UnmapMemory); /* Render Passes */ VK_GET_DEVICE_PROC_ADDR(CreateRenderPass); VK_GET_DEVICE_PROC_ADDR(DestroyRenderPass); /* Pipelines */ VK_GET_DEVICE_PROC_ADDR(DestroyPipeline); VK_GET_DEVICE_PROC_ADDR(CreateGraphicsPipelines); /* Shaders */ VK_GET_DEVICE_PROC_ADDR(CreateShaderModule); VK_GET_DEVICE_PROC_ADDR(DestroyShaderModule); /* Pipeline Layouts */ VK_GET_DEVICE_PROC_ADDR(CreatePipelineLayout); VK_GET_DEVICE_PROC_ADDR(DestroyPipelineLayout); /* Pipeline Cache */ VK_GET_DEVICE_PROC_ADDR(CreatePipelineCache); VK_GET_DEVICE_PROC_ADDR(DestroyPipelineCache); /* Command buffers */ VK_GET_DEVICE_PROC_ADDR(CreateCommandPool); VK_GET_DEVICE_PROC_ADDR(DestroyCommandPool); VK_GET_DEVICE_PROC_ADDR(BeginCommandBuffer); VK_GET_DEVICE_PROC_ADDR(ResetCommandBuffer); VK_GET_DEVICE_PROC_ADDR(EndCommandBuffer); /* Image commands */ VK_GET_DEVICE_PROC_ADDR(CmdCopyImage); /* Vertex input descriptions */ VK_GET_DEVICE_PROC_ADDR(CmdBindVertexBuffers); /* Descriptor Set commands */ VK_GET_DEVICE_PROC_ADDR(CmdBindDescriptorSets); /* Fragment operations */ VK_GET_DEVICE_PROC_ADDR(CmdSetScissor); /* Render Pass commands */ VK_GET_DEVICE_PROC_ADDR(CmdBeginRenderPass); VK_GET_DEVICE_PROC_ADDR(CmdEndRenderPass); /* Samplers */ VK_GET_DEVICE_PROC_ADDR(CreateSampler); VK_GET_DEVICE_PROC_ADDR(DestroySampler); /* Fixed-function vertex postprocessing */ VK_GET_DEVICE_PROC_ADDR(CmdSetViewport); /* Clear commands */ VK_GET_DEVICE_PROC_ADDR(CmdClearAttachments); /* Pipeline */ VK_GET_DEVICE_PROC_ADDR(CmdBindPipeline); /* Pipeline Barriers */ VK_GET_DEVICE_PROC_ADDR(CmdPipelineBarrier); /* Drawing commands */ VK_GET_DEVICE_PROC_ADDR(CmdDraw); /* Swapchain */ VK_GET_DEVICE_PROC_ADDR(CreateSwapchainKHR); VK_GET_DEVICE_PROC_ADDR(DestroySwapchainKHR); VK_GET_DEVICE_PROC_ADDR(GetSwapchainImagesKHR); VK_GET_DEVICE_PROC_ADDR(AcquireNextImageKHR); VK_GET_DEVICE_PROC_ADDR(QueuePresentKHR); return true; } bool vulkan_context_init(gfx_ctx_vulkan_data_t *vk, enum vulkan_wsi_type type) { unsigned i; uint32_t queue_count; VkResult res; VkQueueFamilyProperties queue_properties[32]; VkInstanceCreateInfo info = { VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO }; VkApplicationInfo app = { VK_STRUCTURE_TYPE_APPLICATION_INFO }; VkPhysicalDeviceFeatures features = { false }; VkDeviceQueueCreateInfo queue_info = { VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO }; VkDeviceCreateInfo device_info = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO }; uint32_t gpu_count = 1; bool found_queue = false; VkPhysicalDevice *gpus = NULL; static const float one = 1.0f; static const char *device_extensions[] = { "VK_KHR_swapchain", }; static const char *instance_extensions[2]; instance_extensions[0] = "VK_KHR_surface"; switch (type) { case VULKAN_WSI_WAYLAND: instance_extensions[1] = "VK_KHR_wayland_surface"; break; case VULKAN_WSI_ANDROID: instance_extensions[1] = "VK_KHR_android_surface"; break; case VULKAN_WSI_WIN32: instance_extensions[1] = "VK_KHR_win32_surface"; break; case VULKAN_WSI_XLIB: instance_extensions[1] = "VK_KHR_xlib_surface"; break; case VULKAN_WSI_XCB: instance_extensions[1] = "VK_KHR_xcb_surface"; break; case VULKAN_WSI_MIR: instance_extensions[1] = "VK_KHR_mir_surface"; break; case VULKAN_WSI_NONE: default: instance_extensions[1] = NULL; break; } #ifdef _WIN32 vulkan_library = dylib_load("vulkan-1.dll"); #else vulkan_library = dylib_load("libvulkan.so"); #endif if (!vulkan_library) return false; RARCH_LOG("Vulkan dynamic library loaded.\n"); VKSYM(vk, GetInstanceProcAddr); app.pApplicationName = "RetroArch"; app.applicationVersion = 0; app.pEngineName = "RetroArch"; app.engineVersion = 0; app.apiVersion = VK_MAKE_VERSION(1, 0, 6); info.pApplicationInfo = &app; info.enabledExtensionCount = ARRAY_SIZE(instance_extensions); info.ppEnabledExtensionNames = instance_extensions; if (cached_instance) { vk->context.instance = cached_instance; cached_instance = NULL; res = VK_SUCCESS; } else { /* This will be called with a NULL instance, which * is what we want. */ VK_GET_INSTANCE_PROC_ADDR(CreateInstance); res = VKFUNC(vkCreateInstance)(&info, NULL, &vk->context.instance); } /* Try different API versions if driver has compatible * but slightly different VK_API_VERSION. */ for (i = 1; i < 4 && res == VK_ERROR_INCOMPATIBLE_DRIVER; i++) { app.apiVersion = VK_MAKE_VERSION(1, 0, i); res = VKFUNC(vkCreateInstance)(&info, NULL, &vk->context.instance); } if (res == VK_ERROR_INCOMPATIBLE_DRIVER) { RARCH_ERR("Failed to create Vulkan instance.\n"); return false; } if (!vulkan_load_instance_symbols(vk)) return false; if (VKFUNC(vkEnumeratePhysicalDevices)(vk->context.instance, &gpu_count, NULL) != VK_SUCCESS) return false; gpus = (VkPhysicalDevice*)calloc(gpu_count, sizeof(*gpus)); if (!gpus) return false; if (VKFUNC(vkEnumeratePhysicalDevices)(vk->context.instance, &gpu_count, gpus) != VK_SUCCESS) return false; if (gpu_count < 1) { RARCH_ERR("[Vulkan]: Failed to enumerate Vulkan physical device.\n"); free(gpus); return false; } vk->context.gpu = gpus[0]; free(gpus); VKFUNC(vkGetPhysicalDeviceProperties)(vk->context.gpu, &vk->context.gpu_properties); VKFUNC(vkGetPhysicalDeviceMemoryProperties)(vk->context.gpu, &vk->context.memory_properties); VKFUNC(vkGetPhysicalDeviceQueueFamilyProperties)(vk->context.gpu, &queue_count, NULL); if (queue_count < 1 || queue_count > 32) return false; VKFUNC(vkGetPhysicalDeviceQueueFamilyProperties)(vk->context.gpu, &queue_count, queue_properties); for (i = 0; i < queue_count; i++) { VkQueueFlags required = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT; if ((queue_properties[i].queueFlags & required) == required) { vk->context.graphics_queue_index = i; RARCH_LOG("[Vulkan]: Device supports %u sub-queues.\n", queue_properties[i].queueCount); found_queue = true; break; } } if (!found_queue) { RARCH_ERR("[Vulkan]: Did not find suitable graphics queue.\n"); return false; } queue_info.queueFamilyIndex = vk->context.graphics_queue_index; queue_info.queueCount = 1; queue_info.pQueuePriorities = &one; device_info.queueCreateInfoCount = 1; device_info.pQueueCreateInfos = &queue_info; device_info.enabledExtensionCount = ARRAY_SIZE(device_extensions); device_info.ppEnabledExtensionNames = device_extensions; device_info.pEnabledFeatures = &features; if (cached_device) { vk->context.device = cached_device; cached_device = NULL; video_driver_ctl(RARCH_DISPLAY_CTL_SET_VIDEO_CACHE_CONTEXT_ACK, NULL); RARCH_LOG("[Vulkan]: Using cached Vulkan context.\n"); } else if (VKFUNC(vkCreateDevice)(vk->context.gpu, &device_info, NULL, &vk->context.device) != VK_SUCCESS) return false; if (!vulkan_load_device_symbols(vk)) return false; VKFUNC(vkGetDeviceQueue)(vk->context.device, vk->context.graphics_queue_index, 0, &vk->context.queue); switch (type) { case VULKAN_WSI_WAYLAND: #ifdef HAVE_WAYLAND VK_GET_INSTANCE_PROC_ADDR(CreateWaylandSurfaceKHR); #endif break; case VULKAN_WSI_ANDROID: #ifdef ANDROID VK_GET_INSTANCE_PROC_ADDR(CreateAndroidSurfaceKHR); #endif break; case VULKAN_WSI_WIN32: #ifdef _WIN32 VK_GET_INSTANCE_PROC_ADDR(CreateWin32SurfaceKHR); #endif break; case VULKAN_WSI_XLIB: #ifdef HAVE_XLIB VK_GET_INSTANCE_PROC_ADDR(CreateXlibSurfaceKHR); #endif break; case VULKAN_WSI_XCB: #ifdef HAVE_XCB VK_GET_INSTANCE_PROC_ADDR(CreateXcbSurfaceKHR); #endif break; case VULKAN_WSI_MIR: #ifdef HAVE_MIR VK_GET_INSTANCE_PROC_ADDR(CreateMirSurfaceKHR); #endif break; case VULKAN_WSI_NONE: default: break; } vk->context.queue_lock = slock_new(); if (!vk->context.queue_lock) return false; return true; } bool vulkan_surface_create(gfx_ctx_vulkan_data_t *vk, enum vulkan_wsi_type type, void *display, void *surface, unsigned width, unsigned height, unsigned swap_interval) { switch (type) { case VULKAN_WSI_WAYLAND: #ifdef HAVE_WAYLAND { VkWaylandSurfaceCreateInfoKHR surf_info; memset(&surf_info, 0, sizeof(surf_info)); surf_info.sType = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR; surf_info.pNext = NULL; surf_info.flags = 0; surf_info.display = (struct wl_display*)display; surf_info.surface = (struct wl_surface*)surface; if (VKFUNC(vkCreateWaylandSurfaceKHR)(vk->context.instance, &surf_info, NULL, &vk->vk_surface) != VK_SUCCESS) return false; } #endif break; case VULKAN_WSI_ANDROID: #ifdef ANDROID { VkAndroidSurfaceCreateInfoKHR surf_info; memset(&surf_info, 0, sizeof(surf_info)); surf_info.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR; surf_info.flags = 0; surf_info.window = (ANativeWindow*)surface; if (VKFUNC(vkCreateAndroidSurfaceKHR)(vk->context.instance, &surf_info, NULL, &vk->vk_surface) != VK_SUCCESS) return false; } #endif break; case VULKAN_WSI_WIN32: #ifdef _WIN32 { VkWin32SurfaceCreateInfoKHR surf_info; memset(&surf_info, 0, sizeof(surf_info)); surf_info.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR; surf_info.flags = 0; surf_info.hinstance = display; surf_info.hwnd = surface; if (VKFUNC(vkCreateWin32SurfaceKHR)(vk->context.instance, &surf_info, NULL, &vk->vk_surface) != VK_SUCCESS) return false; } #endif break; case VULKAN_WSI_XLIB: #ifdef HAVE_XLIB { VkXlibSurfaceCreateInfoKHR surf_info; memset(&surf_info, 0, sizeof(surf_info)); surf_info.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR; surf_info.flags = 0; surf_info.dpy = (Display*)display; surf_info.window = *(const Window*)surface; if (VKFUNC(vkCreateXlibSurfaceKHR)(vk->context.instance, &surf_info, NULL, &vk->vk_surface) != VK_SUCCESS) return false; } #endif break; case VULKAN_WSI_XCB: #ifdef HAVE_X11 #ifdef HAVE_XCB { VkXcbSurfaceCreateInfoKHR surf_info; memset(&surf_info, 0, sizeof(surf_info)); surf_info.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR; surf_info.flags = 0; surf_info.connection = XGetXCBConnection((Display*)display); surf_info.window = *(const xcb_window_t*)surface; if (VKFUNC(vkCreateXcbSurfaceKHR)(vk->context.instance, &surf_info, NULL, &vk->vk_surface) != VK_SUCCESS) return false; } #endif #endif break; case VULKAN_WSI_MIR: #ifdef HAVE_MIR { VkMirSurfaceCreateInfoKHR surf_info; memset(&surf_info, 0, sizeof(surf_info)); surf_info.sType = VK_STRUCTURE_TYPE_MIR_SURFACE_CREATE_INFO_KHR; surf_info.connection = display; surf_info.mirSurface = surface; if (VKFUNC(vkCreateMirSurfaceKHR)(vk->context.instance, &surf_info, NULL, &vk->vk_surface) != VK_SUCCESS) return false; } #endif break; case VULKAN_WSI_NONE: default: return false; } if (!vulkan_create_swapchain( vk, width, height, swap_interval)) return false; return true; } void vulkan_present(gfx_ctx_vulkan_data_t *vk, unsigned index) { VkPresentInfoKHR present; VkResult result = VK_SUCCESS; VkResult err = VK_SUCCESS; present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; present.swapchainCount = 1; present.pSwapchains = &vk->swapchain; present.pImageIndices = &index; present.pResults = &result; present.waitSemaphoreCount = 1; present.pWaitSemaphores = &vk->context.swapchain_semaphores[index]; /* Better hope QueuePresent doesn't block D: */ slock_lock(vk->context.queue_lock); err = VKFUNC(vkQueuePresentKHR)(vk->context.queue, &present); if (err != VK_SUCCESS || result != VK_SUCCESS) { RARCH_LOG("[Vulkan]: QueuePresent failed, invalidating swapchain.\n"); vk->context.invalid_swapchain = true; } slock_unlock(vk->context.queue_lock); } void vulkan_context_destroy(gfx_ctx_vulkan_data_t *vk, bool destroy_surface) { unsigned i; if (vk->context.queue) VKFUNC(vkQueueWaitIdle)(vk->context.queue); if (vk->swapchain) VKFUNC(vkDestroySwapchainKHR)(vk->context.device, vk->swapchain, NULL); if (destroy_surface && vk->vk_surface != VK_NULL_HANDLE) VKFUNC(vkDestroySurfaceKHR)(vk->context.instance, vk->vk_surface, NULL); for (i = 0; i < VULKAN_MAX_SWAPCHAIN_IMAGES; i++) { if (vk->context.swapchain_semaphores[i] != VK_NULL_HANDLE) VKFUNC(vkDestroySemaphore)(vk->context.device, vk->context.swapchain_semaphores[i], NULL); if (vk->context.swapchain_fences[i] != VK_NULL_HANDLE) VKFUNC(vkDestroyFence)(vk->context.device, vk->context.swapchain_fences[i], NULL); } if (video_driver_ctl(RARCH_DISPLAY_CTL_IS_VIDEO_CACHE_CONTEXT, NULL)) { cached_device = vk->context.device; cached_instance = vk->context.instance; } else { if (vk->context.device) VKFUNC(vkDestroyDevice)(vk->context.device, NULL); if (vk->context.instance) VKFUNC(vkDestroyInstance)(vk->context.instance, NULL); } if (vulkan_library) dylib_close(vulkan_library); } void vulkan_acquire_next_image(gfx_ctx_vulkan_data_t *vk) { unsigned index; VkResult err; VkFence fence; VkSemaphoreCreateInfo sem_info; VkFenceCreateInfo fence_info; VkFence *next_fence = NULL; sem_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; VKFUNC(vkCreateFence)(vk->context.device, &fence_info, NULL, &fence); err = VKFUNC(vkAcquireNextImageKHR)(vk->context.device, vk->swapchain, UINT64_MAX, VK_NULL_HANDLE, fence, &vk->context.current_swapchain_index); index = vk->context.current_swapchain_index; if (vk->context.swapchain_semaphores[index] == VK_NULL_HANDLE) VKFUNC(vkCreateSemaphore)(vk->context.device, &sem_info, NULL, &vk->context.swapchain_semaphores[index]); VKFUNC(vkWaitForFences)(vk->context.device, 1, &fence, true, UINT64_MAX); VKFUNC(vkDestroyFence)(vk->context.device, fence, NULL); next_fence = &vk->context.swapchain_fences[index]; if (*next_fence != VK_NULL_HANDLE) { VKFUNC(vkWaitForFences)(vk->context.device, 1, next_fence, true, UINT64_MAX); VKFUNC(vkResetFences)(vk->context.device, 1, next_fence); } else VKFUNC(vkCreateFence)(vk->context.device, &fence_info, NULL, next_fence); if (err != VK_SUCCESS) { RARCH_LOG("[Vulkan]: AcquireNextImage failed, invalidating swapchain.\n"); vk->context.invalid_swapchain = true; } } bool vulkan_create_swapchain(gfx_ctx_vulkan_data_t *vk, unsigned width, unsigned height, unsigned swap_interval) { unsigned i; uint32_t format_count; uint32_t desired_swapchain_images; VkSwapchainCreateInfoKHR info; VkSurfaceCapabilitiesKHR surface_properties; VkSurfaceFormatKHR formats[256]; VkSurfaceFormatKHR format; VkExtent2D swapchain_size; VkSwapchainKHR old_swapchain; VkSurfaceTransformFlagBitsKHR pre_transform; /* TODO: Properly query these. */ VkPresentModeKHR swapchain_present_mode = swap_interval ? VK_PRESENT_MODE_FIFO_KHR : VK_PRESENT_MODE_MAILBOX_KHR; RARCH_LOG("[Vulkan]: Creating swapchain with present mode: %u\n", (unsigned)swapchain_present_mode); VKFUNC(vkGetPhysicalDeviceSurfaceCapabilitiesKHR)(vk->context.gpu, vk->vk_surface, &surface_properties); VKFUNC(vkGetPhysicalDeviceSurfaceFormatsKHR)(vk->context.gpu, vk->vk_surface, &format_count, NULL); VKFUNC(vkGetPhysicalDeviceSurfaceFormatsKHR)(vk->context.gpu, vk->vk_surface, &format_count, formats); if (format_count == 1 && formats[0].format == VK_FORMAT_UNDEFINED) { format = formats[0]; format.format = VK_FORMAT_B8G8R8A8_UNORM; } else { if (format_count == 0) { RARCH_ERR("[Vulkan]: Surface has no formats.\n"); return false; } format = formats[0]; } if (surface_properties.currentExtent.width == -1) { swapchain_size.width = width; swapchain_size.height = height; } else swapchain_size = surface_properties.currentExtent; desired_swapchain_images = surface_properties.minImageCount + 1; /* Limit latency. */ if (desired_swapchain_images > 3) desired_swapchain_images = 3; if (desired_swapchain_images < surface_properties.minImageCount) desired_swapchain_images = surface_properties.minImageCount; if ((surface_properties.maxImageCount > 0) && (desired_swapchain_images > surface_properties.maxImageCount)) desired_swapchain_images = surface_properties.maxImageCount; if (surface_properties.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) pre_transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; else pre_transform = surface_properties.currentTransform; old_swapchain = vk->swapchain; info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; info.surface = vk->vk_surface; info.minImageCount = desired_swapchain_images; info.imageFormat = format.format; info.imageColorSpace = format.colorSpace; info.imageExtent.width = swapchain_size.width; info.imageExtent.height = swapchain_size.height; info.imageArrayLayers = 1; info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; info.preTransform = pre_transform; info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; info.presentMode = swapchain_present_mode; info.clipped = true; info.oldSwapchain = old_swapchain; info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; VKFUNC(vkCreateSwapchainKHR)(vk->context.device, &info, NULL, &vk->swapchain); if (old_swapchain != VK_NULL_HANDLE) VKFUNC(vkDestroySwapchainKHR)(vk->context.device, old_swapchain, NULL); vk->context.swapchain_width = swapchain_size.width; vk->context.swapchain_height = swapchain_size.height; /* Make sure we create a backbuffer format that is as we expect. */ switch (format.format) { case VK_FORMAT_B8G8R8A8_SRGB: vk->context.swapchain_format = VK_FORMAT_B8G8R8A8_UNORM; vk->context.swapchain_is_srgb = true; break; case VK_FORMAT_R8G8B8A8_SRGB: vk->context.swapchain_format = VK_FORMAT_R8G8B8A8_UNORM; vk->context.swapchain_is_srgb = true; break; case VK_FORMAT_R8G8B8_SRGB: vk->context.swapchain_format = VK_FORMAT_R8G8B8_UNORM; vk->context.swapchain_is_srgb = true; break; case VK_FORMAT_B8G8R8_SRGB: vk->context.swapchain_format = VK_FORMAT_B8G8R8_UNORM; vk->context.swapchain_is_srgb = true; break; default: vk->context.swapchain_format = format.format; break; } VKFUNC(vkGetSwapchainImagesKHR)(vk->context.device, vk->swapchain, &vk->context.num_swapchain_images, NULL); VKFUNC(vkGetSwapchainImagesKHR)(vk->context.device, vk->swapchain, &vk->context.num_swapchain_images, vk->context.swapchain_images); RARCH_LOG("[Vulkan]: Got %u swapchain images.\n", vk->context.num_swapchain_images); for (i = 0; i < vk->context.num_swapchain_images; i++) { if (vk->context.swapchain_fences[i]) { VKFUNC(vkDestroyFence)(vk->context.device, vk->context.swapchain_fences[i], NULL); vk->context.swapchain_fences[i] = VK_NULL_HANDLE; } } vulkan_acquire_next_image(vk); return true; }