/* The MIT License (MIT) Copyright (c) 2015 Lachlan Tychsen-Smith (lachlan.ts@gmail.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* Based on: log10(x) = log10((1+m) * (2^n)) log(x) = n * log10(2) + log10(1 + m) log(1+m) = Poly(1+m) where Poly(x) is the Minimax approximation of log10(x) over the range [1, 2] Test func : log10f(x) Test Range: 1 < x < 10000 Peak Error: ~0.000040% RMS Error: ~0.000008% */ #include "math.h" #include "math_neon.h" const float __log10f_rng = 0.3010299957f; const float __log10f_lut[8] = { -0.99697286229624, //p0 -1.07301643912502, //p4 -2.46980061535534, //p2 -0.07176870463131, //p6 2.247870219989470, //p1 0.366547581117400, //p5 1.991005185100089, //p3 0.006135635201050, //p7 }; float log10f_c(float x) { float a, b, c, d, xx; int m; union { float f; int i; } r; //extract exponent r.f = x; m = (r.i >> 23); m = m - 127; r.i = r.i - (m << 23); //Taylor Polynomial (Estrins) xx = r.f * r.f; a = (__log10f_lut[4] * r.f) + (__log10f_lut[0]); b = (__log10f_lut[6] * r.f) + (__log10f_lut[2]); c = (__log10f_lut[5] * r.f) + (__log10f_lut[1]); d = (__log10f_lut[7] * r.f) + (__log10f_lut[3]); a = a + b * xx; c = c + d * xx; xx = xx * xx; r.f = a + c * xx; //add exponent r.f = r.f + ((float) m) * __log10f_rng; return r.f; } float log10f_neon_hfp(float x) { #ifdef __MATH_NEON asm volatile ( "vdup.f32 d0, d0[0] \n\t" //d0 = {x,x}; //extract exponent "vmov.i32 d2, #127 \n\t" //d2 = 127; "vshr.u32 d6, d0, #23 \n\t" //d6 = d0 >> 23; "vsub.i32 d6, d6, d2 \n\t" //d6 = d6 - d2; "vshl.u32 d1, d6, #23 \n\t" //d1 = d6 << 23; "vsub.i32 d0, d0, d1 \n\t" //d0 = d0 + d1; //polynomial: "vmul.f32 d1, d0, d0 \n\t" //d1 = d0*d0 = {x^2, x^2} "vld1.32 {d2, d3, d4, d5}, [%1] \n\t" //q1 = {p0, p4, p2, p6}, q2 = {p1, p5, p3, p7} ; "vmla.f32 q1, q2, d0[0] \n\t" //q1 = q1 + q2 * d0[0] "vmla.f32 d2, d3, d1[0] \n\t" //d2 = d2 + d3 * d1[0] "vmul.f32 d1, d1, d1 \n\t" //d1 = d1 * d1 = {x^4, x^4} "vmla.f32 d2, d1, d2[1] \n\t" //d2 = d2 + d1 * d2[1] //add exponent "vdup.32 d7, %0 \n\t" //d7 = {rng, rng} "vcvt.f32.s32 d6, d6 \n\t" //d6 = (float) d6 "vmla.f32 d2, d6, d7 \n\t" //d2 = d2 + d6 * d7 "vmov.f32 s0, s4 \n\t" //s0 = s4 :: "r"(__log10f_rng), "r"(__log10f_lut) : "d0", "d1", "q1", "q2", "d6", "d7" ); #endif } float log10f_neon_sfp(float x) { #ifdef __MATH_NEON asm volatile ("vmov.f32 s0, r0 \n\t"); log10f_neon_hfp(x); asm volatile ("vmov.f32 r0, s0 \n\t"); #else return log10f_c(x); #endif };