/* The MIT License (MIT) Copyright (c) 2015 Lachlan Tychsen-Smith (lachlan.ts@gmail.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* Test func : sqrtf(x) Test Range: 0 < x < 1,000,000,000 Peak Error: ~0.0010% RMS Error: ~0.0005% */ #include "math.h" #include "math_neon.h" void sqrtfv_c(float *x, int n, float *r) { float x0, x1; float b0, b1, c0, c1; int m0, m1; union { float f; int i; } a0, a1; if (n & 0x1){ *r++ = sqrtf_c(*x++); n--; } while(n > 0){ x0 = *x++; x1 = *x++; //fast invsqrt approx a0.f = x0; a1.f = x1; a0.i = 0x5F3759DF - (a0.i >> 1); //VRSQRTE a1.i = 0x5F3759DF - (a1.i >> 1); //VRSQRTE c0 = x0 * a0.f; c1 = x1 * a1.f; b0 = (3.0f - c0 * a0.f) * 0.5; //VRSQRTS b1 = (3.0f - c1 * a1.f) * 0.5; //VRSQRTS a0.f = a0.f * b0; a1.f = a1.f * b1; c0 = x0 * a0.f; c1 = x1 * a1.f; b0 = (3.0f - c0 * a0.f) * 0.5; //VRSQRTS b1 = (3.0f - c1 * a1.f) * 0.5; //VRSQRTS a0.f = a0.f * b0; a1.f = a1.f * b1; //fast inverse approx c0 = a0.f; c0 = a1.f; m0 = 0x3F800000 - (a0.i & 0x7F800000); m1 = 0x3F800000 - (a1.i & 0x7F800000); a0.i = a0.i + m0; a1.i = a1.i + m1; a0.f = 1.41176471f - 0.47058824f * a0.f; a1.f = 1.41176471f - 0.47058824f * a1.f; a0.i = a0.i + m0; a1.i = a1.i + m1; b0 = 2.0 - a0.f * c0; b1 = 2.0 - a1.f * c1; a0.f = a0.f * b0; a1.f = a1.f * b1; b0 = 2.0 - a0.f * c0; b1 = 2.0 - a1.f * c1; a0.f = a0.f * b0; a1.f = a1.f * b1; *r++ = a0.f; *r++ = a1.f; n -= 2; } } void sqrtfv_neon(float *x, int n, float *r) { #if 0 asm volatile ( "tst r1, #1 \n\t" //r1 & 1 "beq 1f \n\t" // "vld1.32 d0[0], [r0]! \n\t" //s0 = *x++ "mov ip, lr \n\t" //ip = lr //"bl sqrtf_neon_hfp \n\t" //sqrtf_neon "mov lr, ip \n\t" //lr = ip "vst1.32 d0[0], [r2]! \n\t" //*r++ = r0 "subs r1, r1, #1 \n\t" //r1 = r1 - 1; "bxeq lr \n\t" // "1: \n\t" // "vld1.32 d0, [r0]! \n\t" //d0 = (*x[0], *x[1]), x+=2; //fast invsqrt approx "vmov.f32 d1, d0 \n\t" //d1 = d0 "vrsqrte.f32 d0, d0 \n\t" //d0 = ~ 1.0 / sqrt(d0) "vmul.f32 d2, d0, d1 \n\t" //d3 = d0 * d2 "vrsqrts.f32 d3, d2, d0 \n\t" //d4 = (3 - d0 * d3) / 2 "vmul.f32 d0, d0, d3 \n\t" //d0 = d0 * d4 "vmul.f32 d2, d0, d1 \n\t" //d3 = d0 * d2 "vrsqrts.f32 d3, d2, d0 \n\t" //d4 = (3 - d0 * d3) / 2 "vmul.f32 d0, d0, d3 \n\t" //d0 = d0 * d4 //fast reciporical approximation "vrecpe.f32 d1, d0 \n\t" //d1 = ~ 1 / d0; "vrecps.f32 d2, d1, d0 \n\t" //d2 = 2.0 - d1 * d0; "vmul.f32 d1, d1, d2 \n\t" //d1 = d1 * d2; "vrecps.f32 d2, d1, d0 \n\t" //d2 = 2.0 - d1 * d0; "vmul.f32 d0, d1, d2 \n\t" //d0 = d1 * d2; "vst1.64 d0, [r2]! \n\t" //*r++ = d0; "subs r1, r1, #2 \n\t" //n = n - 2; update flags "bgt 1b \n\t" // ::: "d0", "d1", "d2", "d3" ); #else sqrtfv_c(x, n, r); #endif }