/* RetroArch - A frontend for libretro. * Copyright (C) 2011-2017 - Daniel De Matteis * Copyright (C) 2016-2019 - Brad Parker * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdlib.h> #include <sys/types.h> #include <string.h> #include <time.h> #ifdef _WIN32 #include <direct.h> #else #include <unistd.h> #endif #include <compat/strl.h> #include <lists/string_list.h> #include <streams/interface_stream.h> #include <streams/file_stream.h> #include <streams/rzip_stream.h> #include <rthreads/rthreads.h> #include <file/file_path.h> #include <retro_miscellaneous.h> #include <string/stdstring.h> #include <time/rtime.h> #ifdef HAVE_CONFIG_H #include "../config.h" #endif #ifdef HAVE_NETWORKING #include "../network/netplay/netplay.h" #endif #ifdef HAVE_CHEEVOS #include "../cheevos/cheevos.h" #endif #include "../content.h" #include "../core.h" #include "../core_info.h" #include "../file_path_special.h" #include "../configuration.h" #include "../gfx/video_driver.h" #include "../msg_hash.h" #include "../runloop.h" #include "../verbosity.h" #include "tasks_internal.h" #ifdef HAVE_CHEATS #include "../cheat_manager.h" #endif #if defined(HAVE_LIBNX) || defined(_3DS) #define SAVE_STATE_CHUNK 4096 * 10 #else #define SAVE_STATE_CHUNK 4096 #endif #define RASTATE_VERSION 1 #define RASTATE_MEM_BLOCK "MEM " #define RASTATE_CHEEVOS_BLOCK "ACHV" #define RASTATE_END_BLOCK "END " struct ram_type { const char *path; int type; }; struct save_state_buf { void* data; size_t size; char path[PATH_MAX_LENGTH]; }; struct ram_save_state_buf { struct save_state_buf state_buf; bool to_write_file; }; struct sram_block { void *data; size_t size; unsigned type; }; enum save_task_state_flags { SAVE_TASK_FLAG_LOAD_TO_BACKUP_BUFF = (1 << 0), SAVE_TASK_FLAG_AUTOLOAD = (1 << 1), SAVE_TASK_FLAG_AUTOSAVE = (1 << 2), SAVE_TASK_FLAG_UNDO_SAVE = (1 << 3), SAVE_TASK_FLAG_MUTE = (1 << 4), SAVE_TASK_FLAG_THUMBNAIL_ENABLE = (1 << 5), SAVE_TASK_FLAG_HAS_VALID_FB = (1 << 6), SAVE_TASK_FLAG_COMPRESS_FILES = (1 << 7) }; typedef struct { intfstream_t *file; void *data; void *undo_data; ssize_t size; ssize_t undo_size; ssize_t written; ssize_t bytes_read; int state_slot; uint8_t flags; char path[PATH_MAX_LENGTH]; } save_task_state_t; #ifdef HAVE_THREADS typedef struct autosave autosave_t; /* Autosave support. */ struct autosave_st { autosave_t **list; unsigned num; }; enum autosave_flags { AUTOSAVE_FLAG_QUIT = (1 << 0), AUTOSAVE_FLAG_COMPRESS_FILES = (1 << 1) }; struct autosave { void *buffer; const void *retro_buffer; const char *path; slock_t *lock; slock_t *cond_lock; scond_t *cond; sthread_t *thread; size_t bufsize; unsigned interval; uint8_t flags; }; #endif typedef save_task_state_t load_task_data_t; /* Holds the previous saved state * Can be restored to disk with undo_save_state(). */ static struct save_state_buf undo_save_buf; /* Holds the data from before a load_state() operation * Can be restored with undo_load_state(). */ static struct save_state_buf undo_load_buf; /* Buffer that stores state instead of file. * This is useful for devices with slow I/O. */ static struct ram_save_state_buf ram_buf; #ifdef HAVE_THREADS static struct autosave_st autosave_state; #endif static bool save_state_in_background = false; static struct string_list *task_save_files = NULL; typedef struct rastate_size_info { size_t total_size; size_t coremem_size; #ifdef HAVE_CHEEVOS size_t cheevos_size; #endif } rastate_size_info_t; #ifdef HAVE_THREADS /** * autosave_thread: * @data : pointer to autosave object * * Callback function for (threaded) autosave. **/ static void autosave_thread(void *data) { autosave_t *save = (autosave_t*)data; for (;;) { bool differ; slock_lock(save->lock); differ = memcmp(save->buffer, save->retro_buffer, save->bufsize) != 0; if (differ) memcpy(save->buffer, save->retro_buffer, save->bufsize); slock_unlock(save->lock); if (differ) { intfstream_t *file = NULL; /* Should probably deal with this more elegantly. */ if (save->flags & AUTOSAVE_FLAG_COMPRESS_FILES) file = intfstream_open_rzip_file(save->path, RETRO_VFS_FILE_ACCESS_WRITE); else file = intfstream_open_file(save->path, RETRO_VFS_FILE_ACCESS_WRITE, RETRO_VFS_FILE_ACCESS_HINT_NONE); if (file) { intfstream_write(file, save->buffer, save->bufsize); intfstream_flush(file); intfstream_close(file); free(file); } } slock_lock(save->cond_lock); if (save->flags & AUTOSAVE_FLAG_QUIT) { slock_unlock(save->cond_lock); break; } scond_wait_timeout(save->cond, save->cond_lock, #if defined(_MSC_VER) && _MSC_VER <= 1200 save->interval * 1000000 #else save->interval * 1000000LL #endif ); slock_unlock(save->cond_lock); } } /** * autosave_new: * @path : path to autosave file * @data : pointer to buffer * @size : size of @data buffer * @interval : interval at which saves should be performed. * * Create and initialize autosave object. * * @return Pointer to new autosave_t object if successful, otherwise * NULL. **/ static autosave_t *autosave_new(const char *path, const void *data, size_t size, unsigned interval, bool compress) { void *buf = NULL; autosave_t *handle = (autosave_t*)malloc(sizeof(*handle)); if (!handle) return NULL; handle->flags = 0; handle->bufsize = size; handle->interval = interval; if (compress) handle->flags |= AUTOSAVE_FLAG_COMPRESS_FILES; handle->retro_buffer = data; handle->path = path; if (!(buf = malloc(size))) { free(handle); return NULL; } handle->buffer = buf; memcpy(handle->buffer, handle->retro_buffer, handle->bufsize); handle->lock = slock_new(); handle->cond_lock = slock_new(); handle->cond = scond_new(); handle->thread = sthread_create(autosave_thread, handle); return handle; } /** * autosave_free: * @handle : pointer to autosave object * * Frees autosave object. **/ static void autosave_free(autosave_t *handle) { slock_lock(handle->cond_lock); handle->flags |= AUTOSAVE_FLAG_QUIT; slock_unlock(handle->cond_lock); scond_signal(handle->cond); sthread_join(handle->thread); slock_free(handle->lock); slock_free(handle->cond_lock); scond_free(handle->cond); if (handle->buffer) free(handle->buffer); handle->buffer = NULL; } bool autosave_init(void) { unsigned i; autosave_t **list = NULL; settings_t *settings = config_get_ptr(); unsigned autosave_interval = settings->uints.autosave_interval; #if defined(HAVE_ZLIB) bool compress_files = settings->bools.save_file_compression; #else bool compress_files = false; #endif if (autosave_interval < 1 || !task_save_files) return false; if (!(list = (autosave_t**) calloc(task_save_files->size, sizeof(*autosave_state.list)))) return false; autosave_state.list = list; autosave_state.num = (unsigned)task_save_files->size; for (i = 0; i < task_save_files->size; i++) { retro_ctx_memory_info_t mem_info; autosave_t *auto_st = NULL; const char *path = task_save_files->elems[i].data; unsigned type = task_save_files->elems[i].attr.i; mem_info.id = type; core_get_memory(&mem_info); if (mem_info.size <= 0) continue; if (!(auto_st = autosave_new(path, mem_info.data, mem_info.size, autosave_interval, compress_files))) { RARCH_WARN("%s\n", msg_hash_to_str(MSG_AUTOSAVE_FAILED)); continue; } autosave_state.list[i] = auto_st; } return true; } void autosave_deinit(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) { autosave_t *handle = autosave_state.list[i]; if (handle) { autosave_free(handle); free(autosave_state.list[i]); } autosave_state.list[i] = NULL; } free(autosave_state.list); autosave_state.list = NULL; autosave_state.num = 0; } /** * autosave_lock: * * Lock autosave. **/ void autosave_lock(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) { autosave_t *handle = autosave_state.list[i]; if (handle) slock_lock(handle->lock); } } /** * autosave_unlock: * * Unlocks autosave. **/ void autosave_unlock(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) { autosave_t *handle = autosave_state.list[i]; if (handle) slock_unlock(handle->lock); } } #endif /** * undo_load_state: * Revert to the state before a state was loaded. * * Returns: true if successful, false otherwise. **/ bool content_undo_load_state(void) { unsigned i; size_t temp_data_size; bool ret = false; unsigned num_blocks = 0; void* temp_data = NULL; struct sram_block *blocks = NULL; if (!core_info_current_supports_savestate()) { RARCH_LOG("[State]: %s\n", msg_hash_to_str(MSG_CORE_DOES_NOT_SUPPORT_SAVESTATES)); return false; } RARCH_LOG("[State]: %s \"%s\", %u %s.\n", msg_hash_to_str(MSG_LOADING_STATE), undo_load_buf.path, (unsigned)undo_load_buf.size, msg_hash_to_str(MSG_BYTES)); /* TODO/FIXME - This checking of SRAM overwrite, * the backing up of it and * its flushing could all be in their * own functions... */ if ( config_get_ptr()->bools.block_sram_overwrite && task_save_files && task_save_files->size) { RARCH_LOG("[SRAM]: %s.\n", msg_hash_to_str(MSG_BLOCKING_SRAM_OVERWRITE)); if ((blocks = (struct sram_block*) calloc(task_save_files->size, sizeof(*blocks)))) { num_blocks = (unsigned)task_save_files->size; for (i = 0; i < num_blocks; i++) blocks[i].type = task_save_files->elems[i].attr.i; } } for (i = 0; i < num_blocks; i++) { retro_ctx_memory_info_t mem_info; mem_info.id = blocks[i].type; core_get_memory(&mem_info); blocks[i].size = mem_info.size; } for (i = 0; i < num_blocks; i++) if (blocks[i].size) blocks[i].data = malloc(blocks[i].size); /* Backup current SRAM which is overwritten by unserialize. */ for (i = 0; i < num_blocks; i++) { if (blocks[i].data) { retro_ctx_memory_info_t mem_info; const void *ptr = NULL; mem_info.id = blocks[i].type; core_get_memory(&mem_info); if ((ptr = mem_info.data)) memcpy(blocks[i].data, ptr, blocks[i].size); } } /* We need to make a temporary copy of the buffer, to allow the swap below */ temp_data = malloc(undo_load_buf.size); temp_data_size = undo_load_buf.size; memcpy(temp_data, undo_load_buf.data, undo_load_buf.size); /* Swap the current state with the backup state. This way, we can undo what we're undoing */ content_save_state("RAM", false, false); ret = content_deserialize_state(temp_data, temp_data_size); /* Clean up the temporary copy */ free(temp_data); temp_data = NULL; /* Flush back. */ for (i = 0; i < num_blocks; i++) { if (blocks[i].data) { retro_ctx_memory_info_t mem_info; void *ptr = NULL; mem_info.id = blocks[i].type; core_get_memory(&mem_info); if ((ptr = mem_info.data)) memcpy(ptr, blocks[i].data, blocks[i].size); } } for (i = 0; i < num_blocks; i++) { free(blocks[i].data); blocks[i].data = NULL; } free(blocks); if (!ret) { RARCH_ERR("[State]: %s \"%s\".\n", msg_hash_to_str(MSG_FAILED_TO_UNDO_LOAD_STATE), undo_load_buf.path); return false; } return true; } static void undo_save_state_cb(retro_task_t *task, void *task_data, void *user_data, const char *error) { save_task_state_t *state = (save_task_state_t*)task_data; /* Wipe the save file buffer as it's intended to be one use only */ undo_save_buf.path[0] = '\0'; undo_save_buf.size = 0; if (undo_save_buf.data) { free(undo_save_buf.data); undo_save_buf.data = NULL; } free(state); } /** * task_save_handler_finished: * @task : the task to finish * @state : the state associated with this task * * Close the save state file and finish the task. **/ static void task_save_handler_finished(retro_task_t *task, save_task_state_t *state) { save_task_state_t *task_data = NULL; task_set_finished(task, true); intfstream_close(state->file); free(state->file); if (!task_get_error(task) && task_get_cancelled(task)) task_set_error(task, strdup("Task canceled")); task_data = (save_task_state_t*)calloc(1, sizeof(*task_data)); memcpy(task_data, state, sizeof(*state)); task_set_data(task, task_data); if (state->data) { if ( (state->flags & SAVE_TASK_FLAG_UNDO_SAVE) && (state->data == undo_save_buf.data)) undo_save_buf.data = NULL; free(state->data); state->data = NULL; } free(state); } /* Align to 8-byte boundary */ #define CONTENT_ALIGN_SIZE(size) ((((size) + 7) & ~7)) static size_t content_get_rastate_size(rastate_size_info_t* size) { retro_ctx_size_info_t info; core_serialize_size(&info); if (!info.size) return 0; size->coremem_size = info.size; /* 8-byte identifier, 8-byte block header, content, 8-byte terminator */ size->total_size = 8 + 8 + CONTENT_ALIGN_SIZE(info.size) + 8; #ifdef HAVE_CHEEVOS /* 8-byte block header + content */ if ((size->cheevos_size = rcheevos_get_serialize_size()) > 0) size->total_size += 8 + CONTENT_ALIGN_SIZE(size->cheevos_size); #endif return size->total_size; } size_t content_get_serialized_size(void) { rastate_size_info_t size; return content_get_rastate_size(&size); } static void content_write_block_header(unsigned char* output, const char* header, size_t size) { memcpy(output, header, 4); output[4] = ((size) & 0xFF); output[5] = ((size >> 8) & 0xFF); output[6] = ((size >> 16) & 0xFF); output[7] = ((size >> 24) & 0xFF); } static bool content_write_serialized_state(void* buffer, rastate_size_info_t* size) { retro_ctx_serialize_info_t serial_info; unsigned char* output = (unsigned char*)buffer; /* 8-byte identifier "RASTATE1" where 1 is the version */ memcpy(output, "RASTATE", 7); output[7] = RASTATE_VERSION; output += 8; /* important - write the unaligned size - some cores fail if they aren't passed the exact right size. */ content_write_block_header(output, RASTATE_MEM_BLOCK, size->coremem_size); output += 8; /* important - pass the unaligned size to the core. some fail if it isn't exactly what they're expecting. */ serial_info.size = size->coremem_size; serial_info.data = (void*)output; if (!core_serialize(&serial_info)) return false; output += CONTENT_ALIGN_SIZE(size->coremem_size); #ifdef HAVE_CHEEVOS if (size->cheevos_size) { content_write_block_header(output, RASTATE_CHEEVOS_BLOCK, size->cheevos_size); if (rcheevos_get_serialized_data(output + 8)) output += CONTENT_ALIGN_SIZE(size->cheevos_size) + 8; } #endif content_write_block_header(output, RASTATE_END_BLOCK, 0); return true; } bool content_serialize_state(void* buffer, size_t buffer_size) { rastate_size_info_t size; size_t len = content_get_rastate_size(&size); if (len == 0 || len > buffer_size) return false; return content_write_serialized_state(buffer, &size); } static void *content_get_serialized_data(size_t* serial_size) { size_t len; void* data; rastate_size_info_t size; if ((len = content_get_rastate_size(&size)) == 0) return NULL; /* Ensure buffer is initialised to zero * > Prevents inconsistent compressed state file * sizes when core requests a larger buffer * than it needs (and leaves the excess * as uninitialised garbage) */ if (!(data = calloc(len, 1))) return NULL; if (!content_write_serialized_state(data, &size)) { free(data); return NULL; } *serial_size = size.total_size; return data; } /** * task_save_handler: * @task : the task being worked on * * Write a chunk of data to the save state file. **/ static void task_save_handler(retro_task_t *task) { ssize_t remaining; int written = 0; save_task_state_t *state = (save_task_state_t*)task->state; if (!state->file) { if (state->flags & SAVE_TASK_FLAG_COMPRESS_FILES) state->file = intfstream_open_rzip_file( state->path, RETRO_VFS_FILE_ACCESS_WRITE); else state->file = intfstream_open_file( state->path, RETRO_VFS_FILE_ACCESS_WRITE, RETRO_VFS_FILE_ACCESS_HINT_NONE); if (!state->file) return; } if (!state->data) { size_t size = 0; state->data = content_get_serialized_data(&size); state->size = (ssize_t)size; } remaining = MIN(state->size - state->written, SAVE_STATE_CHUNK); if (state->data) { written = (int)intfstream_write(state->file, (uint8_t*)state->data + state->written, remaining); state->written += written; } task_set_progress(task, (state->written / (float)state->size) * 100); if (task_get_cancelled(task) || written != remaining) { size_t err_size = 8192 * sizeof(char); char *err = (char*)malloc(err_size); if (state->flags & SAVE_TASK_FLAG_UNDO_SAVE) { const char *failed_undo_str = msg_hash_to_str( MSG_FAILED_TO_UNDO_SAVE_STATE); RARCH_ERR("[State]: %s \"%s\".\n", failed_undo_str, undo_save_buf.path); err[0] = '\0'; snprintf(err, err_size - 1, "%s \"RAM\".", failed_undo_str); } else { size_t _len = strlcpy(err, msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO), err_size - 1); err[_len ] = ' '; err[_len+1] = '\0'; strlcat(err, state->path, err_size - 1); } task_set_error(task, strdup(err)); free(err); task_save_handler_finished(task, state); return; } if (state->written == state->size) { char *msg = NULL; task_free_title(task); if (state->flags & SAVE_TASK_FLAG_UNDO_SAVE) msg = strdup(msg_hash_to_str(MSG_RESTORED_OLD_SAVE_STATE)); else if (state->state_slot < 0) msg = strdup(msg_hash_to_str(MSG_SAVED_STATE_TO_SLOT_AUTO)); else { char new_msg[128]; new_msg[0] = '\0'; snprintf(new_msg, sizeof(new_msg), msg_hash_to_str(MSG_SAVED_STATE_TO_SLOT), state->state_slot); msg = strdup(new_msg); } if (!task_get_mute(task) && msg) { task_set_title(task, msg); msg = NULL; } task_save_handler_finished(task, state); if (!string_is_empty(msg)) free(msg); } } /** * task_push_undo_save_state: * @path : file path of the save state * @data : the save state data to write * @size : the total size of the save state * * Create a new task to undo the last save of the content state. **/ static bool task_push_undo_save_state(const char *path, void *data, size_t size) { settings_t *settings; retro_task_t *task = task_init(); save_task_state_t *state = (save_task_state_t*) calloc(1, sizeof(*state)); if (!task || !state) goto error; settings = config_get_ptr(); strlcpy(state->path, path, sizeof(state->path)); state->data = data; state->size = size; state->flags |= SAVE_TASK_FLAG_UNDO_SAVE; state->state_slot = settings->ints.state_slot; if (video_driver_cached_frame_has_valid_framebuffer()) state->flags |= SAVE_TASK_FLAG_HAS_VALID_FB; #if defined(HAVE_ZLIB) if (settings->bools.savestate_file_compression) state->flags |= SAVE_TASK_FLAG_COMPRESS_FILES; #endif task->type = TASK_TYPE_BLOCKING; task->state = state; task->handler = task_save_handler; task->callback = undo_save_state_cb; task->title = strdup(msg_hash_to_str(MSG_UNDOING_SAVE_STATE)); task_queue_push(task); return true; error: if (data) free(data); if (state) free(state); if (task) free(task); return false; } /** * undo_save_state: * Reverts the last save operation * * Returns: true if successful, false otherwise. **/ bool content_undo_save_state(void) { if (core_info_current_supports_savestate()) return task_push_undo_save_state( undo_save_buf.path, undo_save_buf.data, undo_save_buf.size); RARCH_LOG("[State]: %s\n", msg_hash_to_str(MSG_CORE_DOES_NOT_SUPPORT_SAVESTATES)); return false; } /** * task_load_handler_finished: * @task : the task to finish * @state : the state associated with this task * * Close the loaded state file and finish the task. **/ static void task_load_handler_finished(retro_task_t *task, save_task_state_t *state) { load_task_data_t *task_data = NULL; task_set_finished(task, true); if (state->file) { intfstream_close(state->file); free(state->file); } if (!task_get_error(task) && task_get_cancelled(task)) task_set_error(task, strdup("Task canceled")); if (!(task_data = (load_task_data_t*)calloc(1, sizeof(*task_data)))) return; memcpy(task_data, state, sizeof(*task_data)); task_set_data(task, task_data); free(state); } /** * task_load_handler: * @task : the task being worked on * * Load a chunk of data from the save state file. **/ static void task_load_handler(retro_task_t *task) { ssize_t remaining, bytes_read; save_task_state_t *state = (save_task_state_t*)task->state; if (!state->file) { #if defined(HAVE_ZLIB) /* Always use RZIP interface when reading state * files - this will automatically handle uncompressed * data */ if (!(state->file = intfstream_open_rzip_file(state->path, RETRO_VFS_FILE_ACCESS_READ))) goto end; #else if (!(state->file = intfstream_open_file(state->path, RETRO_VFS_FILE_ACCESS_READ, RETRO_VFS_FILE_ACCESS_HINT_NONE))) goto end; #endif if ((state->size = intfstream_get_size(state->file)) < 0) goto end; if (!(state->data = malloc(state->size + 1))) goto end; } #ifdef HAVE_CHEEVOS if (rcheevos_hardcore_active()) task_set_cancelled(task, true); #endif remaining = MIN(state->size - state->bytes_read, SAVE_STATE_CHUNK); bytes_read = intfstream_read(state->file, (uint8_t*)state->data + state->bytes_read, remaining); state->bytes_read += bytes_read; if (state->size > 0) task_set_progress(task, (state->bytes_read / (float)state->size) * 100); if (task_get_cancelled(task) || bytes_read != remaining) { if (state->flags & SAVE_TASK_FLAG_AUTOLOAD) { char *msg = (char*)malloc(8192 * sizeof(char)); msg[0] = '\0'; snprintf(msg, 8192 * sizeof(char), msg_hash_to_str(MSG_AUTOLOADING_SAVESTATE_FAILED), state->path); task_set_error(task, strdup(msg)); free(msg); } else task_set_error(task, strdup(msg_hash_to_str(MSG_FAILED_TO_LOAD_STATE))); free(state->data); state->data = NULL; task_load_handler_finished(task, state); return; } if (state->bytes_read == state->size) { task_free_title(task); if (!task_get_mute(task)) { size_t msg_size = 8192 * sizeof(char); char *msg = (char*)malloc(msg_size); if (state->flags & SAVE_TASK_FLAG_AUTOLOAD) { msg[0] = '\0'; snprintf(msg, msg_size - 1, msg_hash_to_str(MSG_AUTOLOADING_SAVESTATE_SUCCEEDED), state->path); } else { if (state->state_slot < 0) strlcpy(msg, msg_hash_to_str(MSG_LOADED_STATE_FROM_SLOT_AUTO), msg_size - 1); else { msg[0] = '\0'; snprintf(msg, msg_size - 1, msg_hash_to_str(MSG_LOADED_STATE_FROM_SLOT), state->state_slot); } } task_set_title(task, strdup(msg)); free(msg); } goto end; } return; end: task_load_handler_finished(task, state); } static bool content_load_rastate1(unsigned char* input, size_t size) { unsigned char *stop = input + size; bool seen_core = false; #ifdef HAVE_CHEEVOS bool seen_cheevos = false; #endif input += 8; while (input < stop) { size_t block_size = ( input[7] << 24 | input[6] << 16 | input[5] << 8 | input[4]); unsigned char *marker = input; input += 8; if (memcmp(marker, RASTATE_MEM_BLOCK, 4) == 0) { retro_ctx_serialize_info_t serial_info; serial_info.data_const = (void*)input; serial_info.size = block_size; if (!core_unserialize(&serial_info)) return false; seen_core = true; } #ifdef HAVE_CHEEVOS else if (memcmp(marker, RASTATE_CHEEVOS_BLOCK, 4) == 0) { if (rcheevos_set_serialized_data((void*)input)) seen_cheevos = true; } #endif else if (memcmp(marker, RASTATE_END_BLOCK, 4) == 0) break; input += CONTENT_ALIGN_SIZE(block_size); } if (!seen_core) return false; #ifdef HAVE_CHEEVOS if (!seen_cheevos) rcheevos_set_serialized_data(NULL); #endif return true; } bool content_deserialize_state( const void* serialized_data, size_t serialized_size) { if (memcmp(serialized_data, "RASTATE", 7) != 0) { /* old format is just core data, load it directly */ retro_ctx_serialize_info_t serial_info; serial_info.data_const = serialized_data; serial_info.size = serialized_size; if (!core_unserialize(&serial_info)) return false; #ifdef HAVE_CHEEVOS rcheevos_set_serialized_data(NULL); #endif } else { unsigned char* input = (unsigned char*)serialized_data; switch (input[7]) /* version */ { case 1: if (content_load_rastate1(input, serialized_size)) break; /* fall-through intentional */ default: return false; } } return true; } /** * content_load_state_cb: * @path : path that state will be loaded from. * Load a state from disk to memory. * **/ static void content_load_state_cb(retro_task_t *task, void *task_data, void *user_data, const char *error) { unsigned i; bool ret; load_task_data_t *load_data = (load_task_data_t*)task_data; ssize_t size = load_data->size; unsigned num_blocks = 0; void *buf = load_data->data; struct sram_block *blocks = NULL; settings_t *settings = config_get_ptr(); bool block_sram_overwrite = settings->bools.block_sram_overwrite; #ifdef HAVE_CHEEVOS if (rcheevos_hardcore_active()) goto error; #endif RARCH_LOG("[State]: %s \"%s\", %u %s.\n", msg_hash_to_str(MSG_LOADING_STATE), load_data->path, (unsigned)size, msg_hash_to_str(MSG_BYTES)); if (size < 0 || !buf) goto error; /* This means we're backing up the file in memory, * so content_undo_save_state() * can restore it */ if (load_data->flags & SAVE_TASK_FLAG_LOAD_TO_BACKUP_BUFF) { /* If we were previously backing up a file, let go of it first */ if (undo_save_buf.data) { free(undo_save_buf.data); undo_save_buf.data = NULL; } if (!(undo_save_buf.data = malloc(size))) goto error; memcpy(undo_save_buf.data, buf, size); undo_save_buf.size = size; strlcpy(undo_save_buf.path, load_data->path, sizeof(undo_save_buf.path)); free(buf); free(load_data); return; } if (block_sram_overwrite && task_save_files && task_save_files->size) { RARCH_LOG("[SRAM]: %s.\n", msg_hash_to_str(MSG_BLOCKING_SRAM_OVERWRITE)); if ((blocks = (struct sram_block*) calloc(task_save_files->size, sizeof(*blocks)))) { num_blocks = (unsigned)task_save_files->size; for (i = 0; i < num_blocks; i++) blocks[i].type = task_save_files->elems[i].attr.i; } } for (i = 0; i < num_blocks; i++) { retro_ctx_memory_info_t mem_info; mem_info.id = blocks[i].type; core_get_memory(&mem_info); blocks[i].size = mem_info.size; } for (i = 0; i < num_blocks; i++) if (blocks[i].size) blocks[i].data = malloc(blocks[i].size); /* Backup current SRAM which is overwritten by unserialize. */ for (i = 0; i < num_blocks; i++) { if (blocks[i].data) { retro_ctx_memory_info_t mem_info; const void *ptr = NULL; mem_info.id = blocks[i].type; core_get_memory(&mem_info); if ((ptr = mem_info.data)) memcpy(blocks[i].data, ptr, blocks[i].size); } } /* Backup the current state so we can undo this load */ content_save_state("RAM", false, false); ret = content_deserialize_state(buf, size); /* Flush back. */ for (i = 0; i < num_blocks; i++) { if (blocks[i].data) { retro_ctx_memory_info_t mem_info; void *ptr = NULL; mem_info.id = blocks[i].type; core_get_memory(&mem_info); if ((ptr = mem_info.data)) memcpy(ptr, blocks[i].data, blocks[i].size); } } for (i = 0; i < num_blocks; i++) free(blocks[i].data); free(blocks); if (!ret) goto error; free(buf); free(load_data); return; error: RARCH_ERR("[State]: %s \"%s\".\n", msg_hash_to_str(MSG_FAILED_TO_LOAD_STATE), load_data->path); if (buf) free(buf); free(load_data); } /** * save_state_cb: * * Called after the save state is done. Takes a screenshot if needed. **/ static void save_state_cb(retro_task_t *task, void *task_data, void *user_data, const char *error) { save_task_state_t *state = (save_task_state_t*)task_data; #ifdef HAVE_SCREENSHOTS char *path = strdup(state->path); settings_t *settings = config_get_ptr(); const char *dir_screenshot = settings->paths.directory_screenshot; if (state->flags & SAVE_TASK_FLAG_THUMBNAIL_ENABLE) take_screenshot(dir_screenshot, path, true, state->flags & SAVE_TASK_FLAG_HAS_VALID_FB, false, true); free(path); #endif free(state); } /** * task_push_save_state: * @path : file path of the save state * @data : the save state data to write * @size : the total size of the save state * * Create a new task to save the content state. **/ static void task_push_save_state(const char *path, void *data, size_t size, bool autosave) { settings_t *settings = config_get_ptr(); retro_task_t *task = task_init(); save_task_state_t *state = (save_task_state_t*)calloc(1, sizeof(*state)); if (!task || !state) goto error; strlcpy(state->path, path, sizeof(state->path)); state->data = data; state->size = size; /* Don't show OSD messages if we are auto-saving */ if (autosave) state->flags |= (SAVE_TASK_FLAG_AUTOSAVE | SAVE_TASK_FLAG_MUTE); if (settings->bools.savestate_thumbnail_enable) { /* Delay OSD messages and widgets for a few frames * to prevent GPU screenshots from having notifications */ runloop_state_t *runloop_st = runloop_state_get_ptr(); runloop_st->msg_queue_delay = 10; state->flags |= SAVE_TASK_FLAG_THUMBNAIL_ENABLE; } state->state_slot = settings->ints.state_slot; if (video_driver_cached_frame_has_valid_framebuffer()) state->flags |= SAVE_TASK_FLAG_HAS_VALID_FB; #if defined(HAVE_ZLIB) if (settings->bools.savestate_file_compression) state->flags |= SAVE_TASK_FLAG_COMPRESS_FILES; #endif task->type = TASK_TYPE_BLOCKING; task->state = state; task->handler = task_save_handler; task->callback = save_state_cb; task->title = strdup(msg_hash_to_str(MSG_SAVING_STATE)); task->mute = state->flags & SAVE_TASK_FLAG_MUTE; if (!task_queue_push(task)) { /* Another blocking task is already active. */ if (data) free(data); if (task->title) task_free_title(task); free(task); free(state); } return; error: if (data) free(data); if (state) free(state); if (task) { if (task->title) task_free_title(task); free(task); } } /** * content_load_and_save_state_cb: * @path : path that state will be loaded from. * Load then save a state. * **/ static void content_load_and_save_state_cb(retro_task_t *task, void *task_data, void *user_data, const char *error) { load_task_data_t *load_data = (load_task_data_t*)task_data; char *path = strdup(load_data->path); void *data = load_data->undo_data; size_t size = load_data->undo_size; bool autosave = load_data->flags & SAVE_TASK_FLAG_AUTOSAVE; content_load_state_cb(task, task_data, user_data, error); task_push_save_state(path, data, size, autosave); free(path); } /** * task_push_load_and_save_state: * @path : file path of the save state * @data : the save state data to write * @size : the total size of the save state * @load_to_backup_buffer : If true, the state will be loaded into undo_save_buf. * * Create a new task to load current state first into a backup buffer (for undo) * and then save the content state. **/ static void task_push_load_and_save_state(const char *path, void *data, size_t size, bool load_to_backup_buffer, bool autosave) { retro_task_t *task = NULL; settings_t *settings = config_get_ptr(); save_task_state_t *state = (save_task_state_t*) calloc(1, sizeof(*state)); if (!state) return; if (!(task = task_init())) { free(state); return; } strlcpy(state->path, path, sizeof(state->path)); if (load_to_backup_buffer) state->flags |= SAVE_TASK_FLAG_LOAD_TO_BACKUP_BUFF; state->undo_size = size; state->undo_data = data; /* Don't show OSD messages if we are auto-saving */ if (autosave) state->flags |= (SAVE_TASK_FLAG_AUTOSAVE | SAVE_TASK_FLAG_MUTE); if (load_to_backup_buffer) state->flags |= SAVE_TASK_FLAG_MUTE; state->state_slot = settings->ints.state_slot; if (video_driver_cached_frame_has_valid_framebuffer()) state->flags |= SAVE_TASK_FLAG_HAS_VALID_FB; #if defined(HAVE_ZLIB) if (settings->bools.savestate_file_compression) state->flags |= SAVE_TASK_FLAG_COMPRESS_FILES; #endif task->state = state; task->type = TASK_TYPE_BLOCKING; task->handler = task_load_handler; task->callback = content_load_and_save_state_cb; task->title = strdup(msg_hash_to_str(MSG_LOADING_STATE)); task->mute = state->flags & SAVE_TASK_FLAG_MUTE; if (!task_queue_push(task)) { /* Another blocking task is already active. */ if (data) free(data); if (task->title) task_free_title(task); free(task); free(state); } } /** * content_save_state: * @path : path of saved state that shall be written to. * @save_to_disk: If false, saves the state onto undo_load_buf. * Save a state from memory to disk. * * Returns: true if successful, false otherwise. **/ bool content_save_state(const char *path, bool save_to_disk, bool autosave) { size_t serial_size; retro_ctx_size_info_t info; void *data = NULL; if (!core_info_current_supports_savestate()) { RARCH_LOG("[State]: %s\n", msg_hash_to_str(MSG_CORE_DOES_NOT_SUPPORT_SAVESTATES)); return false; } core_serialize_size(&info); if (info.size == 0) return false; serial_size = info.size; if (!save_state_in_background) { if (!(data = content_get_serialized_data(&serial_size))) { RARCH_ERR("[State]: %s \"%s\".\n", msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO), path); return false; } RARCH_LOG("[State]: %s \"%s\", %u %s.\n", msg_hash_to_str(MSG_SAVING_STATE), path, (unsigned)serial_size, msg_hash_to_str(MSG_BYTES)); } if (save_to_disk) { if (path_is_valid(path) && !autosave) { /* Before overwriting the savestate file, load it into a buffer to allow undo_save_state() to work */ /* TODO/FIXME - Use msg_hash_to_str here */ RARCH_LOG("[State]: %s ...\n", msg_hash_to_str(MSG_FILE_ALREADY_EXISTS_SAVING_TO_BACKUP_BUFFER)); task_push_load_and_save_state(path, data, serial_size, true, autosave); } else task_push_save_state(path, data, serial_size, autosave); } else { if (!data) { if (!(data = content_get_serialized_data(&serial_size))) { RARCH_ERR("[State]: %s \"%s\".\n", msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO), path); return false; } } /* save_to_disk is false, which means we are saving the state in undo_load_buf to allow content_undo_load_state() to restore it */ /* If we were holding onto an old state already, clean it up first */ if (undo_load_buf.data) { free(undo_load_buf.data); undo_load_buf.data = NULL; } if (!(undo_load_buf.data = malloc(serial_size))) { free(data); return false; } memcpy(undo_load_buf.data, data, serial_size); free(data); undo_load_buf.size = serial_size; strlcpy(undo_load_buf.path, path, sizeof(undo_load_buf.path)); } return true; } /** * content_ram_state_pending: * Check a RAM state write to disk. * * @return true if need to write, false otherwise. **/ bool content_ram_state_pending(void) { return ram_buf.to_write_file; } static bool task_save_state_finder(retro_task_t *task, void *user_data) { return (task && task->handler == task_save_handler); } /* Returns true if a save state task is in progress */ static bool content_save_state_in_progress(void* data) { task_finder_data_t find_data; find_data.func = task_save_state_finder; find_data.userdata = NULL; return task_queue_find(&find_data); } void content_wait_for_save_state_task(void) { task_queue_wait(content_save_state_in_progress, NULL); } /** * content_load_state: * @path : path that state will be loaded from. * @load_to_backup_buffer : If true, state will be loaded into undo_save_buf. * Load a state from disk to memory. * * @return true if successful, false otherwise. **/ bool content_load_state(const char *path, bool load_to_backup_buffer, bool autoload) { retro_task_t *task = NULL; save_task_state_t *state = NULL; settings_t *settings = config_get_ptr(); if (!core_info_current_supports_savestate()) { RARCH_LOG("[State]: %s\n", msg_hash_to_str(MSG_CORE_DOES_NOT_SUPPORT_SAVESTATES)); goto error; } task = task_init(); state = (save_task_state_t*)calloc(1, sizeof(*state)); if (!task || !state) goto error; strlcpy(state->path, path, sizeof(state->path)); if (load_to_backup_buffer) state->flags |= SAVE_TASK_FLAG_LOAD_TO_BACKUP_BUFF; if (autoload) state->flags |= SAVE_TASK_FLAG_AUTOLOAD; state->state_slot = settings->ints.state_slot; if (video_driver_cached_frame_has_valid_framebuffer()) state->flags |= SAVE_TASK_FLAG_HAS_VALID_FB; #if defined(HAVE_ZLIB) if (settings->bools.savestate_file_compression) state->flags |= SAVE_TASK_FLAG_COMPRESS_FILES; #endif task->type = TASK_TYPE_BLOCKING; task->state = state; task->handler = task_load_handler; task->callback = content_load_state_cb; task->title = strdup(msg_hash_to_str(MSG_LOADING_STATE)); task_queue_push(task); return true; error: if (state) free(state); if (task) free(task); return false; } bool content_rename_state(const char *origin, const char *dest) { if (filestream_exists(dest)) filestream_delete(dest); if (!filestream_rename(origin, dest)) return true; RARCH_ERR("[State]: Error renaming file \"%s\".\n", origin); return false; } /* * * TODO/FIXME: Figure out when and where this should be called. * As it is, when e.g. closing Gambatte, we get the * same printf message 4 times. */ void content_reset_savestate_backups(void) { if (undo_save_buf.data) { free(undo_save_buf.data); undo_save_buf.data = NULL; } undo_save_buf.path[0] = '\0'; undo_save_buf.size = 0; if (undo_load_buf.data) { free(undo_load_buf.data); undo_load_buf.data = NULL; } undo_load_buf.path[0] = '\0'; undo_load_buf.size = 0; if (ram_buf.state_buf.data) { free(ram_buf.state_buf.data); ram_buf.state_buf.data = NULL; } ram_buf.state_buf.path[0] = '\0'; ram_buf.state_buf.size = 0; ram_buf.to_write_file = false; } bool content_undo_load_buf_is_empty(void) { return undo_load_buf.data == NULL || undo_load_buf.size == 0; } bool content_undo_save_buf_is_empty(void) { return undo_save_buf.data == NULL || undo_save_buf.size == 0; } static bool content_get_memory(retro_ctx_memory_info_t *mem_info, struct ram_type *ram, unsigned slot) { ram->type = task_save_files->elems[slot].attr.i; ram->path = task_save_files->elems[slot].data; mem_info->id = ram->type; core_get_memory(mem_info); if (!mem_info->data || mem_info->size == 0) return false; return true; } /** * content_load_ram_file: * @path : path of RAM state that will be loaded from. * @type : type of memory * * Load a RAM state from disk to memory. */ bool content_load_ram_file(unsigned slot) { int64_t rc; struct ram_type ram; retro_ctx_memory_info_t mem_info; void *buf = NULL; if (!content_get_memory(&mem_info, &ram, slot)) return false; /* On first run of content, SRAM file will * not exist. This is a common enough occurrence * that we should check before attempting to * invoke the relevant read_file() function */ if ( string_is_empty(ram.path) || !path_is_valid(ram.path)) return false; #if defined(HAVE_ZLIB) /* Always use RZIP interface when reading SRAM * files - this will automatically handle uncompressed * data */ if (!rzipstream_read_file(ram.path, &buf, &rc)) #else if (!filestream_read_file(ram.path, &buf, &rc)) #endif return false; if (rc > 0) { if (rc > (ssize_t)mem_info.size) { RARCH_WARN("[SRAM]: SRAM is larger than implementation expects, " "doing partial load (truncating %u %s %s %u).\n", (unsigned)rc, msg_hash_to_str(MSG_BYTES), msg_hash_to_str(MSG_TO), (unsigned)mem_info.size); rc = mem_info.size; } memcpy(mem_info.data, buf, (size_t)rc); } if (buf) free(buf); return true; } /** * dump_to_file_desperate: * @data : pointer to data buffer. * @size : size of @data. * @type : type of file to be saved. * * Attempt to save valuable RAM data somewhere. **/ static bool dump_to_file_desperate(const void *data, size_t size, unsigned type) { time_t time_; struct tm tm_; char timebuf[256]; char path[PATH_MAX_LENGTH + 256 + 32]; char application_data[PATH_MAX_LENGTH]; application_data[0] = '\0'; path [0] = '\0'; timebuf [0] = '\0'; if (!fill_pathname_application_data(application_data, sizeof(application_data))) return false; time(&time_); rtime_localtime(&time_, &tm_); strftime(timebuf, 256 * sizeof(char), "%Y-%m-%d-%H-%M-%S", &tm_); snprintf(path, sizeof(path), "%s/RetroArch-recovery-%u%s", application_data, type, timebuf); /* Fallback (emergency) saves are always * uncompressed * > If a regular save fails, then the host * system is experiencing serious technical * difficulties (most likely some kind of * hardware failure) * > In this case, we don't want to further * complicate matters by introducing zlib * compression overheads */ if (!filestream_write_file(path, data, size)) return false; RARCH_WARN("[SRAM]: Succeeded in saving RAM data to \"%s\".\n", path); return true; } /** * content_load_state_from_ram: * Load a state from RAM. * * @return true if successful, false otherwise. **/ bool content_load_state_from_ram(void) { size_t temp_data_size; bool ret = false; void* temp_data = NULL; if (!core_info_current_supports_savestate()) { RARCH_LOG("[State]: %s\n", msg_hash_to_str(MSG_CORE_DOES_NOT_SUPPORT_SAVESTATES)); return false; } if (!ram_buf.state_buf.data) return false; RARCH_LOG("[State]: %s, %u %s.\n", msg_hash_to_str(MSG_LOADING_STATE), (unsigned)ram_buf.state_buf.size, msg_hash_to_str(MSG_BYTES)); /* We need to make a temporary copy of the buffer, to allow the swap below */ temp_data = malloc(ram_buf.state_buf.size); temp_data_size = ram_buf.state_buf.size; memcpy(temp_data, ram_buf.state_buf.data, ram_buf.state_buf.size); /* Swap the current state with the backup state. This way, we can undo what we're undoing */ content_save_state("RAM", false, false); ret = content_deserialize_state(temp_data, temp_data_size); /* Clean up the temporary copy */ free(temp_data); temp_data = NULL; if (!ret) { RARCH_ERR("[State]: %s.\n", msg_hash_to_str(MSG_FAILED_TO_LOAD_SRAM)); return false; } return true; } /** * content_save_state_from_ram: * Save a state to RAM. * * @return true if successful, false otherwise. **/ bool content_save_state_to_ram(void) { retro_ctx_size_info_t info; void *data = NULL; size_t serial_size; if (!core_info_current_supports_savestate()) { RARCH_LOG("[State]: %s\n", msg_hash_to_str(MSG_CORE_DOES_NOT_SUPPORT_SAVESTATES)); return false; } core_serialize_size(&info); if (info.size == 0) return false; serial_size = info.size; if (!save_state_in_background) { if (!(data = content_get_serialized_data(&serial_size))) { RARCH_ERR("[State]: %s.\n", msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM)); return false; } RARCH_LOG("[State]: %s, %u %s.\n", msg_hash_to_str(MSG_SAVING_STATE), (unsigned)serial_size, msg_hash_to_str(MSG_BYTES)); } if (!data) { if (!(data = content_get_serialized_data(&serial_size))) { RARCH_ERR("[State]: %s.\n", msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM)); return false; } } /* If we were holding onto an old state already, clean it up first */ if (ram_buf.state_buf.data) { free(ram_buf.state_buf.data); ram_buf.state_buf.data = NULL; } if (!(ram_buf.state_buf.data = malloc(serial_size))) { free(data); return false; } memcpy(ram_buf.state_buf.data, data, serial_size); free(data); ram_buf.state_buf.size = serial_size; ram_buf.to_write_file = true; return true; } /** * content_ram_state_to_file: * @path : path of RAM state that shall be written to. * * Save a RAM state from memory to disk. * * @return true if successful, false otherwise. **/ bool content_ram_state_to_file(const char *path) { if ( path && ram_buf.state_buf.data && ram_buf.to_write_file) { #if defined(HAVE_ZLIB) settings_t *settings = config_get_ptr(); if (settings->bools.save_file_compression) { if (rzipstream_write_file( path, ram_buf.state_buf.data, ram_buf.state_buf.size)) goto success; } else #endif { if (filestream_write_file( path, ram_buf.state_buf.data, ram_buf.state_buf.size)) goto success; } } return false; success: ram_buf.to_write_file = false; return true; } /** * content_save_ram_file: * @path : path of RAM state that shall be written to. * @type : type of memory * * Save a RAM state from memory to disk. * */ bool content_save_ram_file(unsigned slot, bool compress) { struct ram_type ram; retro_ctx_memory_info_t mem_info; if (!content_get_memory(&mem_info, &ram, slot)) return false; RARCH_LOG("[SRAM]: %s #%u %s \"%s\".\n", msg_hash_to_str(MSG_SAVING_RAM_TYPE), ram.type, msg_hash_to_str(MSG_TO), ram.path); #if defined(HAVE_ZLIB) if (compress) { if (!rzipstream_write_file( ram.path, mem_info.data, mem_info.size)) goto fail; } else #endif { if (!filestream_write_file( ram.path, mem_info.data, mem_info.size)) goto fail; } RARCH_LOG("[SRAM]: %s \"%s\".\n", msg_hash_to_str(MSG_SAVED_SUCCESSFULLY_TO), ram.path); return true; fail: RARCH_ERR("[SRAM]: %s.\n", msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM)); RARCH_WARN("[SRAM]: Attempting to recover ...\n"); /* In case the file could not be written to, * the fallback function 'dump_to_file_desperate' * will be called. */ if (!dump_to_file_desperate( mem_info.data, mem_info.size, ram.type)) RARCH_WARN("[SRAM]: Failed ... Cannot recover save file.\n"); return false; } bool event_save_files(bool is_sram_used) { unsigned i; settings_t *settings = config_get_ptr(); #ifdef HAVE_CHEATS const char *path_cheat_database = settings->paths.path_cheat_database; #endif #if defined(HAVE_ZLIB) bool compress_files = settings->bools.save_file_compression; #endif #ifdef HAVE_CHEATS cheat_manager_save_game_specific_cheats( path_cheat_database); #endif if (!task_save_files || !is_sram_used) return false; for (i = 0; i < task_save_files->size; i++) { #if defined(HAVE_ZLIB) content_save_ram_file(i, compress_files); #else content_save_ram_file(i, false); #endif } return true; } bool event_load_save_files(bool is_sram_load_disabled) { unsigned i; bool success = false; if (!task_save_files || is_sram_load_disabled) return false; /* Report a successful load operation if * any type of RAM file is found and * processed correctly */ for (i = 0; i < task_save_files->size; i++) success |= content_load_ram_file(i); return success; } void path_init_savefile_rtc(const char *savefile_path) { union string_list_elem_attr attr; char savefile_name_rtc[PATH_MAX_LENGTH]; attr.i = RETRO_MEMORY_SAVE_RAM; string_list_append(task_save_files, savefile_path, attr); /* Infer .rtc save path from save RAM path. */ attr.i = RETRO_MEMORY_RTC; fill_pathname(savefile_name_rtc, savefile_path, ".rtc", sizeof(savefile_name_rtc)); string_list_append(task_save_files, savefile_name_rtc, attr); } void path_deinit_savefile(void) { if (task_save_files) string_list_free(task_save_files); task_save_files = NULL; } void path_init_savefile_new(void) { task_save_files = string_list_new(); } void *savefile_ptr_get(void) { return task_save_files; } void set_save_state_in_background(bool state) { save_state_in_background = state; }