/* * pthread_cond.c * * Description: * This translation unit implements condition variables and their primitives. * * * -------------------------------------------------------------------------- * * Pthreads-embedded (PTE) - POSIX Threads Library for embedded systems * Copyright(C) 2008 Jason Schmidlapp * * Contact Email: jschmidlapp@users.sourceforge.net * * * Based upon Pthreads-win32 - POSIX Threads Library for Win32 * Copyright(C) 1998 John E. Bossom * Copyright(C) 1999,2005 Pthreads-win32 contributors * * Contact Email: rpj@callisto.canberra.edu.au * * The original list of contributors to the Pthreads-win32 project * is contained in the file CONTRIBUTORS.ptw32 included with the * source code distribution. The list can also be seen at the * following World Wide Web location: * http://sources.redhat.com/pthreads-win32/contributors.html * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library in the file COPYING.LIB; * if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include "pthread.h" #include "implement.h" /* * Arguments for cond_wait_cleanup, since we can only pass a * single void * to it. */ typedef struct { pthread_mutex_t *mutexPtr; pthread_cond_t cv; int *resultPtr; } pte_cond_wait_cleanup_args_t; static void pte_cond_wait_cleanup (void *args) { pte_cond_wait_cleanup_args_t *cleanup_args = (pte_cond_wait_cleanup_args_t *) args; pthread_cond_t cv = cleanup_args->cv; int *resultPtr = cleanup_args->resultPtr; int nSignalsWasLeft; int result; /* * Whether we got here as a result of signal/broadcast or because of * timeout on wait or thread cancellation we indicate that we are no * longer waiting. The waiter is responsible for adjusting waiters * (to)unblock(ed) counts (protected by unblock lock). */ if ((result = pthread_mutex_lock (&(cv->mtxUnblockLock))) != 0) { *resultPtr = result; return; } if (0 != (nSignalsWasLeft = cv->nWaitersToUnblock)) { --(cv->nWaitersToUnblock); } else if (INT_MAX / 2 == ++(cv->nWaitersGone)) { /* Use the non-cancellable version of sem_wait() */ // if (sem_wait_nocancel (&(cv->semBlockLock)) != 0) if (sem_wait (&(cv->semBlockLock)) != 0) { *resultPtr = errno; /* * This is a fatal error for this CV, * so we deliberately don't unlock * cv->mtxUnblockLock before returning. */ return; } cv->nWaitersBlocked -= cv->nWaitersGone; if (sem_post (&(cv->semBlockLock)) != 0) { *resultPtr = errno; /* * This is a fatal error for this CV, * so we deliberately don't unlock * cv->mtxUnblockLock before returning. */ return; } cv->nWaitersGone = 0; } if ((result = pthread_mutex_unlock (&(cv->mtxUnblockLock))) != 0) { *resultPtr = result; return; } if (1 == nSignalsWasLeft) { if (sem_post (&(cv->semBlockLock)) != 0) { *resultPtr = errno; return; } } /* * XSH: Upon successful return, the mutex has been locked and is owned * by the calling thread. */ if ((result = pthread_mutex_lock (cleanup_args->mutexPtr)) != 0) *resultPtr = result; } static int pte_cond_timedwait (pthread_cond_t * cond, pthread_mutex_t * mutex, const struct timespec *abstime) { int result = 0; pthread_cond_t cv; pte_cond_wait_cleanup_args_t cleanup_args; if (cond == NULL || *cond == NULL) return EINVAL; /* * We do a quick check to see if we need to do more work * to initialise a static condition variable. We check * again inside the guarded section of pte_cond_check_need_init() * to avoid race conditions. */ if (*cond == PTHREAD_COND_INITIALIZER) result = pte_cond_check_need_init (cond); if (result != 0 && result != EBUSY) return result; cv = *cond; /* Thread can be cancelled in sem_wait() but this is OK */ if (sem_wait (&(cv->semBlockLock)) != 0) return errno; ++(cv->nWaitersBlocked); if (sem_post (&(cv->semBlockLock)) != 0) return errno; /* * Setup this waiter cleanup handler */ cleanup_args.mutexPtr = mutex; cleanup_args.cv = cv; cleanup_args.resultPtr = &result; pthread_cleanup_push (pte_cond_wait_cleanup, (void *) &cleanup_args); /* * Now we can release 'mutex' and... */ if ((result = pthread_mutex_unlock (mutex)) == 0) { /* * ...wait to be awakened by * pthread_cond_signal, or * pthread_cond_broadcast, or * timeout, or * thread cancellation * * Note: * * sem_timedwait is a cancellation point, * hence providing the mechanism for making * pthread_cond_wait a cancellation point. * We use the cleanup mechanism to ensure we * re-lock the mutex and adjust (to)unblock(ed) waiters * counts if we are cancelled, timed out or signalled. */ if (sem_timedwait (&(cv->semBlockQueue), abstime) != 0) result = errno; } /* * Always cleanup */ pthread_cleanup_pop (1); /* * "result" can be modified by the cleanup handler. */ return result; } int pthread_cond_destroy (pthread_cond_t * cond) /* * ------------------------------------------------------ * DOCPUBLIC * This function destroys a condition variable * * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * * DESCRIPTION * This function destroys a condition variable. * * NOTES: * 1) A condition variable can be destroyed * immediately after all the threads that * are blocked on it are awakened. e.g. * * struct list { * pthread_mutex_t lm; * ... * } * * struct elt { * key k; * int busy; * pthread_cond_t notbusy; * ... * } * * * struct elt * * list_find(struct list *lp, key k) * { * struct elt *ep; * * pthread_mutex_lock(&lp->lm); * while ((ep = find_elt(l,k) != NULL) && ep->busy) * pthread_cond_wait(&ep->notbusy, &lp->lm); * if (ep != NULL) * ep->busy = 1; * pthread_mutex_unlock(&lp->lm); * return(ep); * } * * delete_elt(struct list *lp, struct elt *ep) * { * pthread_mutex_lock(&lp->lm); * assert(ep->busy); * ... remove ep from list ... * ep->busy = 0; * (A) pthread_cond_broadcast(&ep->notbusy); * pthread_mutex_unlock(&lp->lm); * (B) pthread_cond_destroy(&rp->notbusy); * free(ep); * } * * In this example, the condition variable * and its list element may be freed (line B) * immediately after all threads waiting for * it are awakened (line A), since the mutex * and the code ensure that no other thread * can touch the element to be deleted. * * RESULTS * 0 successfully released condition variable, * EINVAL 'cond' is invalid, * EBUSY 'cond' is in use, * * ------------------------------------------------------ */ { pthread_cond_t cv; int result = 0, result1 = 0, result2 = 0; /* * Assuming any race condition here is harmless. */ if (cond == NULL || *cond == NULL) return EINVAL; if (*cond != PTHREAD_COND_INITIALIZER) { pte_osMutexLock (pte_cond_list_lock); cv = *cond; /* * Close the gate; this will synchronize this thread with * all already signaled waiters to let them retract their * waiter status - SEE NOTE 1 ABOVE!!! */ if (sem_wait (&(cv->semBlockLock)) != 0) return errno; /* * !TRY! lock mtxUnblockLock; try will detect busy condition * and will not cause a deadlock with respect to concurrent * signal/broadcast. */ if ((result = pthread_mutex_trylock (&(cv->mtxUnblockLock))) != 0) { (void) sem_post (&(cv->semBlockLock)); return result; } /* * Check whether cv is still busy (still has waiters) */ if (cv->nWaitersBlocked > cv->nWaitersGone) { if (sem_post (&(cv->semBlockLock)) != 0) result = errno; result1 = pthread_mutex_unlock (&(cv->mtxUnblockLock)); result2 = EBUSY; } else { /* * Now it is safe to destroy */ *cond = NULL; if (sem_destroy (&(cv->semBlockLock)) != 0) result = errno; if (sem_destroy (&(cv->semBlockQueue)) != 0) result1 = errno; if ((result2 = pthread_mutex_unlock (&(cv->mtxUnblockLock))) == 0) result2 = pthread_mutex_destroy (&(cv->mtxUnblockLock)); /* Unlink the CV from the list */ if (pte_cond_list_head == cv) pte_cond_list_head = cv->next; else cv->prev->next = cv->next; if (pte_cond_list_tail == cv) pte_cond_list_tail = cv->prev; else cv->next->prev = cv->prev; (void) free (cv); } pte_osMutexUnlock(pte_cond_list_lock); } else { /* * See notes in pte_cond_check_need_init() above also. */ pte_osMutexLock (pte_cond_test_init_lock); /* * Check again. */ if (*cond == PTHREAD_COND_INITIALIZER) { /* * This is all we need to do to destroy a statically * initialised cond that has not yet been used (initialised). * If we get to here, another thread waiting to initialise * this cond will get an EINVAL. That's OK. */ *cond = NULL; } else { /* * The cv has been initialised while we were waiting * so assume it's in use. */ result = EBUSY; } pte_osMutexUnlock(pte_cond_test_init_lock); } return ((result != 0) ? result : ((result1 != 0) ? result1 : result2)); } int pthread_cond_init (pthread_cond_t * cond, const pthread_condattr_t * attr) /* * ------------------------------------------------------ * DOCPUBLIC * This function initializes a condition variable. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * attr * specifies optional creation attributes. * * * DESCRIPTION * This function initializes a condition variable. * * RESULTS * 0 successfully created condition variable, * EINVAL 'attr' is invalid, * EAGAIN insufficient resources (other than * memory, * ENOMEM insufficient memory, * EBUSY 'cond' is already initialized, * * ------------------------------------------------------ */ { int result; pthread_cond_t cv = NULL; if (cond == NULL) return EINVAL; if ((attr != NULL && *attr != NULL) && ((*attr)->pshared == PTHREAD_PROCESS_SHARED)) { /* * Creating condition variable that can be shared between * processes. */ result = ENOSYS; goto DONE; } cv = (pthread_cond_t) calloc (1, sizeof (*cv)); if (cv == NULL) { result = ENOMEM; goto DONE; } cv->nWaitersBlocked = 0; cv->nWaitersToUnblock = 0; cv->nWaitersGone = 0; if (sem_init (&(cv->semBlockLock), 0, 1) != 0) { result = errno; goto FAIL0; } if (sem_init (&(cv->semBlockQueue), 0, 0) != 0) { result = errno; goto FAIL1; } if ((result = pthread_mutex_init (&(cv->mtxUnblockLock), 0)) != 0) { goto FAIL2; } result = 0; goto DONE; /* * ------------- * Failed... * ------------- */ FAIL2: (void) sem_destroy (&(cv->semBlockQueue)); FAIL1: (void) sem_destroy (&(cv->semBlockLock)); FAIL0: (void) free (cv); cv = NULL; DONE: if (0 == result) { pte_osMutexLock (pte_cond_list_lock); cv->next = NULL; cv->prev = pte_cond_list_tail; if (pte_cond_list_tail != NULL) pte_cond_list_tail->next = cv; pte_cond_list_tail = cv; if (pte_cond_list_head == NULL) pte_cond_list_head = cv; pte_osMutexUnlock(pte_cond_list_lock); } *cond = cv; return result; } static int pte_cond_unblock (pthread_cond_t * cond, int unblockAll) /* * Notes. * * Does not use the external mutex for synchronisation, * therefore semBlockLock is needed. * mtxUnblockLock is for LEVEL-2 synch. LEVEL-2 is the * state where the external mutex is not necessarily locked by * any thread, ie. between cond_wait unlocking and re-acquiring * the lock after having been signaled or a timeout or * cancellation. * * Uses the following CV elements: * nWaitersBlocked * nWaitersToUnblock * nWaitersGone * mtxUnblockLock * semBlockLock * semBlockQueue */ { int result; pthread_cond_t cv; int nSignalsToIssue; if (cond == NULL || *cond == NULL) return EINVAL; cv = *cond; /* * No-op if the CV is static and hasn't been initialised yet. * Assuming that any race condition is harmless. */ if (cv == PTHREAD_COND_INITIALIZER) return 0; if ((result = pthread_mutex_lock (&(cv->mtxUnblockLock))) != 0) return result; if (0 != cv->nWaitersToUnblock) { if (0 == cv->nWaitersBlocked) return pthread_mutex_unlock (&(cv->mtxUnblockLock)); if (unblockAll) { cv->nWaitersToUnblock += (nSignalsToIssue = cv->nWaitersBlocked); cv->nWaitersBlocked = 0; } else { nSignalsToIssue = 1; cv->nWaitersToUnblock++; cv->nWaitersBlocked--; } } else if (cv->nWaitersBlocked > cv->nWaitersGone) { /* Use the non-cancellable version of sem_wait() */ // if (sem_wait_nocancel (&(cv->semBlockLock)) != 0) if (sem_wait (&(cv->semBlockLock)) != 0) { result = errno; (void) pthread_mutex_unlock (&(cv->mtxUnblockLock)); return result; } if (0 != cv->nWaitersGone) { cv->nWaitersBlocked -= cv->nWaitersGone; cv->nWaitersGone = 0; } if (unblockAll) { nSignalsToIssue = cv->nWaitersToUnblock = cv->nWaitersBlocked; cv->nWaitersBlocked = 0; } else { nSignalsToIssue = cv->nWaitersToUnblock = 1; cv->nWaitersBlocked--; } } else return pthread_mutex_unlock (&(cv->mtxUnblockLock)); if ((result = pthread_mutex_unlock (&(cv->mtxUnblockLock))) == 0) { if (sem_post_multiple (&(cv->semBlockQueue), nSignalsToIssue) != 0) result = errno; } return result; } int pthread_cond_signal (pthread_cond_t * cond) /* * ------------------------------------------------------ * DOCPUBLIC * This function signals a condition variable, waking * one waiting thread. * If SCHED_FIFO or SCHED_RR policy threads are waiting * the highest priority waiter is awakened; otherwise, * an unspecified waiter is awakened. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * * DESCRIPTION * This function signals a condition variable, waking * one waiting thread. * If SCHED_FIFO or SCHED_RR policy threads are waiting * the highest priority waiter is awakened; otherwise, * an unspecified waiter is awakened. * * NOTES: * * 1) Use when any waiter can respond and only one need * respond (all waiters being equal). * * RESULTS * 0 successfully signaled condition, * EINVAL 'cond' is invalid, * * ------------------------------------------------------ */ { /* * The '0'(FALSE) unblockAll arg means unblock ONE waiter. */ return (pte_cond_unblock (cond, 0)); } /* pthread_cond_signal */ int pthread_cond_broadcast (pthread_cond_t * cond) /* * ------------------------------------------------------ * DOCPUBLIC * This function broadcasts the condition variable, * waking all current waiters. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * * DESCRIPTION * This function signals a condition variable, waking * all waiting threads. * * NOTES: * * 1) Use when more than one waiter may respond to * predicate change or if any waiting thread may * not be able to respond * * RESULTS * 0 successfully signalled condition to all * waiting threads, * EINVAL 'cond' is invalid * ENOSPC a required resource has been exhausted, * * ------------------------------------------------------ */ { /* * The TRUE unblockAll arg means unblock ALL waiters. */ return (pte_cond_unblock (cond, PTE_TRUE)); } int pthread_cond_wait (pthread_cond_t * cond, pthread_mutex_t * mutex) /* * ------------------------------------------------------ * DOCPUBLIC * This function waits on a condition variable until * awakened by a signal or broadcast. * * Caller MUST be holding the mutex lock; the * lock is released and the caller is blocked waiting * on 'cond'. When 'cond' is signaled, the mutex * is re-acquired before returning to the caller. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * mutex * pointer to an instance of pthread_mutex_t * * * DESCRIPTION * This function waits on a condition variable until * awakened by a signal or broadcast. * * NOTES: * * 1) The function must be called with 'mutex' LOCKED * by the calling thread, or undefined behaviour * will result. * * 2) This routine atomically releases 'mutex' and causes * the calling thread to block on the condition variable. * The blocked thread may be awakened by * pthread_cond_signal or * pthread_cond_broadcast. * * Upon successful completion, the 'mutex' has been locked and * is owned by the calling thread. * * * RESULTS * 0 caught condition; mutex released, * EINVAL 'cond' or 'mutex' is invalid, * EINVAL different mutexes for concurrent waits, * EINVAL mutex is not held by the calling thread, * * ------------------------------------------------------ */ { /* * The NULL abstime arg means INFINITE waiting. */ return (pte_cond_timedwait (cond, mutex, NULL)); } /* pthread_cond_wait */ int pthread_cond_timedwait (pthread_cond_t * cond, pthread_mutex_t * mutex, const struct timespec *abstime) /* * ------------------------------------------------------ * DOCPUBLIC * This function waits on a condition variable either until * awakened by a signal or broadcast; or until the time * specified by abstime passes. * * PARAMETERS * cond * pointer to an instance of pthread_cond_t * * mutex * pointer to an instance of pthread_mutex_t * * abstime * pointer to an instance of (const struct timespec) * * * DESCRIPTION * This function waits on a condition variable either until * awakened by a signal or broadcast; or until the time * specified by abstime passes. * * NOTES: * 1) The function must be called with 'mutex' LOCKED * by the calling thread, or undefined behaviour * will result. * * 2) This routine atomically releases 'mutex' and causes * the calling thread to block on the condition variable. * The blocked thread may be awakened by * pthread_cond_signal or * pthread_cond_broadcast. * * * RESULTS * 0 caught condition; mutex released, * EINVAL 'cond', 'mutex', or abstime is invalid, * EINVAL different mutexes for concurrent waits, * EINVAL mutex is not held by the calling thread, * ETIMEDOUT abstime ellapsed before cond was signaled. * * ------------------------------------------------------ */ { if (abstime == NULL) { return EINVAL; } return (pte_cond_timedwait (cond, mutex, abstime)); }