#ifndef STB_VORBIS_INCLUDE_STB_VORBIS_H #define STB_VORBIS_INCLUDE_STB_VORBIS_H #include #ifdef __cplusplus extern "C" { #endif typedef struct { char *alloc_buffer; int alloc_buffer_length_in_bytes; } stb_vorbis_alloc; /* FUNCTIONS USEABLE WITH ALL INPUT MODES */ typedef struct stb_vorbis stb_vorbis; typedef struct { unsigned int sample_rate; int channels; unsigned int setup_memory_required; unsigned int setup_temp_memory_required; unsigned int temp_memory_required; int max_frame_size; } stb_vorbis_info; /* get general information about the file */ extern stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f); /* get the last error detected (clears it, too) */ extern int stb_vorbis_get_error(stb_vorbis *f); /* close an ogg vorbis file and free all memory in use */ extern void stb_vorbis_close(stb_vorbis *f); /* this function returns the offset (in samples) from the beginning of the * file that will be returned by the next decode, if it is known, or -1 * otherwise. after a flush_pushdata() call, this may take a while before * it becomes valid again. * NOT WORKING YET after a seek with PULLDATA API */ extern int stb_vorbis_get_sample_offset(stb_vorbis *f); /* returns the current seek point within the file, or offset from the beginning * of the memory buffer. In pushdata mode it returns 0. */ extern unsigned int stb_vorbis_get_file_offset(stb_vorbis *f); /* PULLING INPUT API */ #ifndef STB_VORBIS_NO_PULLDATA_API /* This API assumes stb_vorbis is allowed to pull data from a source-- * either a block of memory containing the _entire_ vorbis stream, or a * FILE * that you or it create, or possibly some other reading mechanism * if you go modify the source to replace the FILE * case with some kind * of callback to your code. (But if you don't support seeking, you may * just want to go ahead and use pushdata.) */ extern stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len, int *error, stb_vorbis_alloc *alloc_buffer); /* create an ogg vorbis decoder from an ogg vorbis stream in memory (note * this must be the entire stream!). on failure, returns NULL and sets *error */ extern int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number); extern int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number); /* NOT WORKING YET * these functions seek in the Vorbis file to (approximately) 'sample_number'. * after calling seek_frame(), the next call to get_frame_*() will include * the specified sample. after calling stb_vorbis_seek(), the next call to * stb_vorbis_get_samples_* will start with the specified sample. If you * do not need to seek to EXACTLY the target sample when using get_samples_*, * you can also use seek_frame(). */ extern void stb_vorbis_seek_start(stb_vorbis *f); /* this function is equivalent to stb_vorbis_seek(f,0), but it * actually works */ extern unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f); extern float stb_vorbis_stream_length_in_seconds(stb_vorbis *f); /* these functions return the total length of the vorbis stream */ extern int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output); /* decode the next frame and return the number of samples. the number of * channels returned are stored in *channels (which can be NULL--it is always * the same as the number of channels reported by get_info). *output will * contain an array of float* buffers, one per channel. These outputs will * be overwritten on the next call to stb_vorbis_get_frame_*. * * You generally should not intermix calls to stb_vorbis_get_frame_*() * and stb_vorbis_get_samples_*(), since the latter calls the former. */ extern int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats); extern int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples); /* gets num_samples samples, not necessarily on a frame boundary--this requires * buffering so you have to supply the buffers. DOES NOT APPLY THE COERCION RULES. * Returns the number of samples stored per channel; it may be less than requested * at the end of the file. If there are no more samples in the file, returns 0. */ #endif /* ERROR CODES */ enum STBVorbisError { VORBIS__no_error, VORBIS_need_more_data=1, /* not a real error */ VORBIS_invalid_api_mixing, /* can't mix API modes */ VORBIS_outofmem, /* not enough memory */ VORBIS_feature_not_supported, /* uses floor 0 */ VORBIS_too_many_channels, /* STB_VORBIS_MAX_CHANNELS is too small */ VORBIS_file_open_failure, /* fopen() failed */ VORBIS_seek_without_length, /* can't seek in unknown-length file */ VORBIS_unexpected_eof=10, /* file is truncated? */ VORBIS_seek_invalid, /* seek past EOF */ /* decoding errors (corrupt/invalid stream) -- you probably * don't care about the exact details of these */ /* vorbis errors: */ VORBIS_invalid_setup=20, VORBIS_invalid_stream, /* ogg errors: */ VORBIS_missing_capture_pattern=30, VORBIS_invalid_stream_structure_version, VORBIS_continued_packet_flag_invalid, VORBIS_incorrect_stream_serial_number, VORBIS_invalid_first_page, VORBIS_bad_packet_type, VORBIS_cant_find_last_page, VORBIS_seek_failed }; #ifdef __cplusplus } #endif #endif /* STB_VORBIS_INCLUDE_STB_VORBIS_H */ #ifndef STB_VORBIS_HEADER_ONLY /* global configuration settings (e.g. set these in the project/makefile), * or just set them in this file at the top (although ideally the first few * should be visible when the header file is compiled too, although it's not * crucial) */ /* STB_VORBIS_NO_PULLDATA_API * does not compile the code for the non-pushdata APIs */ #if 0 #define STB_VORBIS_NO_PULLDATA_API #endif /* STB_VORBIS_MAX_CHANNELS [number] * globally define this to the maximum number of channels you need. * The spec does not put a restriction on channels except that * the count is stored in a byte, so 255 is the hard limit. * Reducing this saves about 16 bytes per value, so using 16 saves * (255-16)*16 or around 4KB. Plus anything other memory usage * I forgot to account for. Can probably go as low as 8 (7.1 audio), * 6 (5.1 audio), or 2 (stereo only). */ #ifndef STB_VORBIS_MAX_CHANNELS #define STB_VORBIS_MAX_CHANNELS 16 /* enough for anyone? */ #endif /* STB_VORBIS_FAST_HUFFMAN_LENGTH [number] * sets the log size of the huffman-acceleration table. Maximum * supported value is 24. with larger numbers, more decodings are O(1), * but the table size is larger so worse cache missing, so you'll have * to probe (and try multiple ogg vorbis files) to find the sweet spot. */ #ifndef STB_VORBIS_FAST_HUFFMAN_LENGTH #define STB_VORBIS_FAST_HUFFMAN_LENGTH 10 #endif /* STB_VORBIS_FAST_BINARY_LENGTH [number] * sets the log size of the binary-search acceleration table. this * is used in similar fashion to the fast-huffman size to set initial * parameters for the binary search * STB_VORBIS_FAST_HUFFMAN_INT * The fast huffman tables are much more efficient if they can be * stored as 16-bit results instead of 32-bit results. This restricts * the codebooks to having only 65535 possible outcomes, though. * (At least, accelerated by the huffman table.) */ #ifndef STB_VORBIS_FAST_HUFFMAN_INT #define STB_VORBIS_FAST_HUFFMAN_SHORT #endif /* STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH * If the 'fast huffman' search doesn't succeed, then stb_vorbis falls * back on binary searching for the correct one. This requires storing * extra tables with the huffman codes in sorted order. Defining this * symbol trades off space for speed by forcing a linear search in the * non-fast case, except for "sparse" codebooks. */ #if 0 #define STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH #endif /* STB_VORBIS_CODEBOOK_SHORTS * The vorbis file format encodes VQ codebook floats as ax+b where a and * b are floating point per-codebook constants, and x is a 16-bit int. * Normally, stb_vorbis decodes them to floats rather than leaving them * as 16-bit ints and computing ax+b while decoding. This is a speed/space * tradeoff; you can save space by defining this flag. */ #ifndef STB_VORBIS_CODEBOOK_SHORTS #define STB_VORBIS_CODEBOOK_FLOATS #endif #include #define MAX_BLOCKSIZE_LOG 13 /* from specification */ #define MAX_BLOCKSIZE (1 << MAX_BLOCKSIZE_LOG) #ifndef TRUE #define TRUE 1 #define FALSE 0 #endif #ifdef STB_VORBIS_CODEBOOK_FLOATS typedef float stb_vorbis_codetype; #else typedef uint16_t stb_vorbis_codetype; #endif /* @NOTE * * Some arrays below are tagged "//varies", which means it's actually * a variable-sized piece of data, but rather than malloc I assume it's * small enough it's better to just allocate it all together with the * main thing * * Most of the variables are specified with the smallest size I could pack * them into. It might give better performance to make them all full-sized * integers. It should be safe to freely rearrange the structures or change * the sizes larger--nothing relies on silently truncating etc., nor the * order of variables. */ #define FAST_HUFFMAN_TABLE_SIZE (1 << STB_VORBIS_FAST_HUFFMAN_LENGTH) #define FAST_HUFFMAN_TABLE_MASK (FAST_HUFFMAN_TABLE_SIZE - 1) typedef struct { int dimensions, entries; uint8_t *codeword_lengths; float minimum_value; float delta_value; uint8_t value_bits; uint8_t lookup_type; uint8_t sequence_p; uint8_t sparse; uint32_t lookup_values; stb_vorbis_codetype *multiplicands; uint32_t *codewords; #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT int16_t fast_huffman[FAST_HUFFMAN_TABLE_SIZE]; #else int32_t fast_huffman[FAST_HUFFMAN_TABLE_SIZE]; #endif uint32_t *sorted_codewords; int *sorted_values; int sorted_entries; } Codebook; typedef struct { uint8_t order; uint16_t rate; uint16_t bark_map_size; uint8_t amplitude_bits; uint8_t amplitude_offset; uint8_t number_of_books; uint8_t book_list[16]; /* varies */ } Floor0; typedef struct { uint8_t partitions; uint8_t partition_class_list[32]; /* varies */ uint8_t class_dimensions[16]; /* varies */ uint8_t class_subclasses[16]; /* varies */ uint8_t class_masterbooks[16]; /* varies */ int16_t subclass_books[16][8]; /* varies */ uint16_t Xlist[31*8+2]; /* varies */ uint8_t sorted_order[31*8+2]; uint8_t neighbors[31*8+2][2]; uint8_t floor1_multiplier; uint8_t rangebits; int values; } Floor1; typedef union { Floor0 floor0; Floor1 floor1; } Floor; typedef struct { uint32_t begin, end; uint32_t part_size; uint8_t classifications; uint8_t classbook; uint8_t **classdata; int16_t (*residue_books)[8]; } Residue; typedef struct { uint8_t magnitude; uint8_t angle; uint8_t mux; } MappingChannel; typedef struct { uint16_t coupling_steps; MappingChannel *chan; uint8_t submaps; uint8_t submap_floor[15]; /* varies */ uint8_t submap_residue[15]; /* varies */ } Mapping; typedef struct { uint8_t blockflag; uint8_t mapping; uint16_t windowtype; uint16_t transformtype; } Mode; typedef struct { uint32_t goal_crc; /* expected crc if match */ int bytes_left; /* bytes left in packet */ uint32_t crc_so_far; /* running crc */ int bytes_done; /* bytes processed in _current_ chunk */ uint32_t sample_loc; /* granule pos encoded in page */ } CRCscan; typedef struct { uint32_t page_start, page_end; uint32_t after_previous_page_start; uint32_t first_decoded_sample; uint32_t last_decoded_sample; } ProbedPage; struct stb_vorbis { /* user-accessible info */ unsigned int sample_rate; int channels; unsigned int setup_memory_required; unsigned int temp_memory_required; unsigned int setup_temp_memory_required; uint8_t *stream; uint8_t *stream_start; uint8_t *stream_end; uint32_t stream_len; uint8_t push_mode; uint32_t first_audio_page_offset; ProbedPage p_first, p_last; /* memory management */ stb_vorbis_alloc alloc; int setup_offset; int temp_offset; /* run-time results */ int eof; enum STBVorbisError error; /* user-useful data */ /* header info */ int blocksize[2]; int blocksize_0, blocksize_1; int codebook_count; Codebook *codebooks; int floor_count; uint16_t floor_types[64]; /* varies */ Floor *floor_config; int residue_count; uint16_t residue_types[64]; /* varies */ Residue *residue_config; int mapping_count; Mapping *mapping; int mode_count; Mode mode_config[64]; /* varies */ uint32_t total_samples; /* decode buffer */ float *channel_buffers[STB_VORBIS_MAX_CHANNELS]; float *outputs [STB_VORBIS_MAX_CHANNELS]; float *previous_window[STB_VORBIS_MAX_CHANNELS]; int previous_length; int16_t *finalY[STB_VORBIS_MAX_CHANNELS]; uint32_t current_loc; /* sample location of next frame to decode */ int current_loc_valid; /* per-blocksize precomputed data */ /* twiddle factors */ float *A[2],*B[2],*C[2]; float *window[2]; uint16_t *bit_reverse[2]; /* current page/packet/segment streaming info */ uint32_t serial; /* stream serial number for verification */ int last_page; int segment_count; uint8_t segments[255]; uint8_t page_flag; uint8_t bytes_in_seg; uint8_t first_decode; int next_seg; int last_seg; /* flag that we're on the last segment */ int last_seg_which; /* what was the segment number of the last seg? */ uint32_t acc; int valid_bits; int packet_bytes; int end_seg_with_known_loc; uint32_t known_loc_for_packet; int discard_samples_deferred; uint32_t samples_output; /* push mode scanning */ int page_crc_tests; /* only in push_mode: number of tests active; -1 if not searching */ /* sample-access */ int channel_buffer_start; int channel_buffer_end; }; #define IS_PUSH_MODE(f) FALSE typedef struct stb_vorbis vorb; static int error(vorb *f, enum STBVorbisError e) { f->error = e; if (!f->eof && e != VORBIS_need_more_data) { f->error=e; /* breakpoint for debugging */ } return 0; } /* these functions are used for allocating temporary memory * while decoding. if you can afford the stack space, use * alloca(); otherwise, provide a temp buffer and it will * allocate out of those. */ #define array_size_required(count,size) (count*(sizeof(void *)+(size))) #define temp_alloc(f,size) (f->alloc.alloc_buffer ? setup_temp_malloc(f,size) : alloca(size)) #define temp_alloc_save(f) ((f)->temp_offset) #define temp_alloc_restore(f,p) ((f)->temp_offset = (p)) #define temp_block_array(f,count,size) make_block_array(temp_alloc(f,array_size_required(count,size)), count, size) /* given a sufficiently large block of memory, make an array of pointers to subblocks of it */ static void *make_block_array(void *mem, int count, int size) { int i; void ** p = (void **) mem; char *q = (char *) (p + count); for (i=0; i < count; ++i) { p[i] = q; q += size; } return p; } static void *setup_malloc(vorb *f, int sz) { sz = (sz+3) & ~3; f->setup_memory_required += sz; if (f->alloc.alloc_buffer) { void *p = (char *) f->alloc.alloc_buffer + f->setup_offset; if (f->setup_offset + sz > f->temp_offset) return NULL; f->setup_offset += sz; return p; } return sz ? malloc(sz) : NULL; } static void setup_free(vorb *f, void *p) { if (f->alloc.alloc_buffer) return; /* do nothing; setup mem is not a stack */ free(p); } static void *setup_temp_malloc(vorb *f, int sz) { sz = (sz+3) & ~3; if (f->alloc.alloc_buffer) { if (f->temp_offset - sz < f->setup_offset) return NULL; f->temp_offset -= sz; return (char *) f->alloc.alloc_buffer + f->temp_offset; } return malloc(sz); } static void setup_temp_free(vorb *f, void *p, int sz) { if (f->alloc.alloc_buffer) { f->temp_offset += (sz+3)&~3; return; } free(p); } #define CRC32_POLY 0x04c11db7 /* from spec */ static uint32_t stb_vorbis_crc_table[256]; static void crc32_init(void) { int i,j; uint32_t s; for(i=0; i < 256; i++) { for (s=i<<24, j=0; j < 8; ++j) s = (s << 1) ^ (s >= (1U<<31) ? CRC32_POLY : 0); stb_vorbis_crc_table[i] = s; } } static INLINE uint32_t crc32_update(uint32_t crc, uint8_t byte) { return (crc << 8) ^ stb_vorbis_crc_table[byte ^ (crc >> 24)]; } /* used in setup, and for huffman that doesn't go fast path */ static unsigned int bit_reverse(unsigned int n) { n = ((n & 0xAAAAAAAA) >> 1) | ((n & 0x55555555) << 1); n = ((n & 0xCCCCCCCC) >> 2) | ((n & 0x33333333) << 2); n = ((n & 0xF0F0F0F0) >> 4) | ((n & 0x0F0F0F0F) << 4); n = ((n & 0xFF00FF00) >> 8) | ((n & 0x00FF00FF) << 8); return (n >> 16) | (n << 16); } static float square(float x) { return x*x; } /* this is a weird definition of log2() for which log2(1) = 1, log2(2) = 2, log2(4) = 3 * as required by the specification. fast(?) implementation from stb.h * @OPTIMIZE: called multiple times per-packet with "constants"; move to setup */ static int ilog(int32_t n) { static signed char log2_4[16] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4 }; /* 2 compares if n < 16, 3 compares otherwise (4 if signed or n > 1<<29) */ if (n < (1 << 14)) if (n < (1 << 4)) return 0 + log2_4[n ]; else if (n < (1 << 9)) return 5 + log2_4[n >> 5]; else return 10 + log2_4[n >> 10]; else if (n < (1 << 24)) if (n < (1 << 19)) return 15 + log2_4[n >> 15]; else return 20 + log2_4[n >> 20]; else if (n < (1 << 29)) return 25 + log2_4[n >> 25]; else if (n < (1 << 31)) return 30 + log2_4[n >> 30]; else return 0; /* signed n returns 0 */ } #ifndef M_PI #define M_PI 3.14159265358979323846264f /* from CRC */ #endif /* code length assigned to a value with no huffman encoding */ #define NO_CODE 255 /* LEAF SETUP FUNCTIONS */ /* these functions are only called at setup, and only a few times * per file */ static float float32_unpack(uint32_t x) { /* from the specification */ uint32_t mantissa = x & 0x1fffff; uint32_t sign = x & 0x80000000; uint32_t exp = (x & 0x7fe00000) >> 21; double res = sign ? -(double)mantissa : (double)mantissa; return (float) ldexp((float)res, exp-788); } /* zlib & jpeg huffman tables assume that the output symbols * can either be arbitrarily arranged, or have monotonically * increasing frequencies--they rely on the lengths being sorted; * this makes for a very simple generation algorithm. * vorbis allows a huffman table with non-sorted lengths. This * requires a more sophisticated construction, since symbols in * order do not map to huffman codes "in order". */ static void add_entry(Codebook *c, uint32_t huff_code, int symbol, int count, int len, uint32_t *values) { if (!c->sparse) { c->codewords [symbol] = huff_code; } else { c->codewords [count] = huff_code; c->codeword_lengths[count] = len; values [count] = symbol; } } static int compute_codewords(Codebook *c, uint8_t *len, int n, uint32_t *values) { int i,k,m=0; uint32_t available[32]; memset(available, 0, sizeof(available)); /* find the first entry */ for (k=0; k < n; ++k) if (len[k] < NO_CODE) break; if (k == n) { assert(c->sorted_entries == 0); return TRUE; } /* add to the list */ add_entry(c, 0, k, m++, len[k], values); /* add all available leaves */ for (i=1; i <= len[k]; ++i) available[i] = 1 << (32-i); /* note that the above code treats the first case specially, * but it's really the same as the following code, so they * could probably be combined (except the initial code is 0, * and I use 0 in available[] to mean 'empty') */ for (i=k+1; i < n; ++i) { uint32_t res; int z = len[i], y; if (z == NO_CODE) continue; /* find lowest available leaf (should always be earliest, * which is what the specification calls for) * note that this property, and the fact we can never have * more than one free leaf at a given level, isn't totally * trivial to prove, but it seems true and the assert never * fires, so! */ while (z > 0 && !available[z]) --z; if (z == 0) { assert(0); return FALSE; } res = available[z]; available[z] = 0; add_entry(c, bit_reverse(res), i, m++, len[i], values); /* propogate availability up the tree */ if (z != len[i]) { for (y=len[i]; y > z; --y) { assert(available[y] == 0); available[y] = res + (1 << (32-y)); } } } return TRUE; } /* accelerated huffman table allows fast O(1) match of all symbols * of length <= STB_VORBIS_FAST_HUFFMAN_LENGTH */ static void compute_accelerated_huffman(Codebook *c) { int i, len; for (i=0; i < FAST_HUFFMAN_TABLE_SIZE; ++i) c->fast_huffman[i] = -1; len = c->sparse ? c->sorted_entries : c->entries; #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT if (len > 32767) len = 32767; /* largest possible value we can encode! */ #endif for (i=0; i < len; ++i) { if (c->codeword_lengths[i] <= STB_VORBIS_FAST_HUFFMAN_LENGTH) { uint32_t z = c->sparse ? bit_reverse(c->sorted_codewords[i]) : c->codewords[i]; /* set table entries for all bit combinations in the higher bits */ while (z < FAST_HUFFMAN_TABLE_SIZE) { c->fast_huffman[z] = i; z += 1 << c->codeword_lengths[i]; } } } } #ifdef _MSC_VER #define STBV_CDECL __cdecl #else #define STBV_CDECL #endif static int STBV_CDECL uint32_t_compare(const void *p, const void *q) { uint32_t x = * (uint32_t *) p; uint32_t y = * (uint32_t *) q; return x < y ? -1 : x > y; } static int include_in_sort(Codebook *c, uint8_t len) { if (c->sparse) { assert(len != NO_CODE); return TRUE; } if (len == NO_CODE) return FALSE; if (len > STB_VORBIS_FAST_HUFFMAN_LENGTH) return TRUE; return FALSE; } /* if the fast table above doesn't work, we want to binary * search them... need to reverse the bits */ static void compute_sorted_huffman(Codebook *c, uint8_t *lengths, uint32_t *values) { int i, len; /* build a list of all the entries * OPTIMIZATION: don't include the short ones, since they'll be caught by FAST_HUFFMAN. * this is kind of a frivolous optimization--I don't see any performance improvement, * but it's like 4 extra lines of code, so. */ if (!c->sparse) { int k = 0; for (i=0; i < c->entries; ++i) if (include_in_sort(c, lengths[i])) c->sorted_codewords[k++] = bit_reverse(c->codewords[i]); assert(k == c->sorted_entries); } else { for (i=0; i < c->sorted_entries; ++i) c->sorted_codewords[i] = bit_reverse(c->codewords[i]); } qsort(c->sorted_codewords, c->sorted_entries, sizeof(c->sorted_codewords[0]), uint32_t_compare); c->sorted_codewords[c->sorted_entries] = 0xffffffff; len = c->sparse ? c->sorted_entries : c->entries; /* now we need to indicate how they correspond; we could either * #1: sort a different data structure that says who they correspond to * #2: for each sorted entry, search the original list to find who corresponds * #3: for each original entry, find the sorted entry * #1 requires extra storage, #2 is slow, #3 can use binary search! */ for (i=0; i < len; ++i) { int huff_len = c->sparse ? lengths[values[i]] : lengths[i]; if (include_in_sort(c,huff_len)) { uint32_t code = bit_reverse(c->codewords[i]); int x=0, n=c->sorted_entries; while (n > 1) { /* invariant: sc[x] <= code < sc[x+n] */ int m = x + (n >> 1); if (c->sorted_codewords[m] <= code) { x = m; n -= (n>>1); } else { n >>= 1; } } assert(c->sorted_codewords[x] == code); if (c->sparse) { c->sorted_values[x] = values[i]; c->codeword_lengths[x] = huff_len; } else { c->sorted_values[x] = i; } } } } /* only run while parsing the header (3 times) */ static int vorbis_validate(uint8_t *data) { static uint8_t vorbis[6] = { 'v', 'o', 'r', 'b', 'i', 's' }; return memcmp(data, vorbis, 6) == 0; } /* called from setup only, once per code book * (formula implied by specification) */ static int lookup1_values(int entries, int dim) { int r = (int) floor(exp((float) log((float) entries) / dim)); if ((int) floor(pow((float) r+1, dim)) <= entries) /* (int) cast for MinGW warning; */ ++r; /* floor() to avoid _ftol() when non-CRT */ assert(pow((float) r+1, dim) > entries); assert((int) floor(pow((float) r, dim)) <= entries); /* (int),floor() as above */ return r; } /* called twice per file */ static void compute_twiddle_factors(int n, float *A, float *B, float *C) { int n4 = n >> 2, n8 = n >> 3; int k,k2; for (k=k2=0; k < n4; ++k,k2+=2) { A[k2 ] = (float) cos(4*k*M_PI/n); A[k2+1] = (float) -sin(4*k*M_PI/n); B[k2 ] = (float) cos((k2+1)*M_PI/n/2) * 0.5f; B[k2+1] = (float) sin((k2+1)*M_PI/n/2) * 0.5f; } for (k=k2=0; k < n8; ++k,k2+=2) { C[k2 ] = (float) cos(2*(k2+1)*M_PI/n); C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n); } } static void compute_window(int n, float *window) { int n2 = n >> 1, i; for (i=0; i < n2; ++i) window[i] = (float) sin(0.5 * M_PI * square((float) sin((i - 0 + 0.5) / n2 * 0.5 * M_PI))); } static void compute_bitreverse(int n, uint16_t *rev) { int ld = ilog(n) - 1; /* ilog is off-by-one from normal definitions */ int i, n8 = n >> 3; for (i=0; i < n8; ++i) rev[i] = (bit_reverse(i) >> (32-ld+3)) << 2; } static int init_blocksize(vorb *f, int b, int n) { int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3; f->A[b] = (float *) setup_malloc(f, sizeof(float) * n2); f->B[b] = (float *) setup_malloc(f, sizeof(float) * n2); f->C[b] = (float *) setup_malloc(f, sizeof(float) * n4); if (!f->A[b] || !f->B[b] || !f->C[b]) return error(f, VORBIS_outofmem); compute_twiddle_factors(n, f->A[b], f->B[b], f->C[b]); f->window[b] = (float *) setup_malloc(f, sizeof(float) * n2); if (!f->window[b]) return error(f, VORBIS_outofmem); compute_window(n, f->window[b]); f->bit_reverse[b] = (uint16_t *) setup_malloc(f, sizeof(uint16_t) * n8); if (!f->bit_reverse[b]) return error(f, VORBIS_outofmem); compute_bitreverse(n, f->bit_reverse[b]); return TRUE; } static void neighbors(uint16_t *x, int n, int *plow, int *phigh) { int low = -1; int high = 65536; int i; for (i=0; i < n; ++i) { if (x[i] > low && x[i] < x[n]) { *plow = i; low = x[i]; } if (x[i] < high && x[i] > x[n]) { *phigh = i; high = x[i]; } } } /* this has been repurposed so y is now the original index instead of y */ typedef struct { uint16_t x,y; } STBV_Point; static int STBV_CDECL point_compare(const void *p, const void *q) { STBV_Point *a = (STBV_Point *) p; STBV_Point *b = (STBV_Point *) q; return a->x < b->x ? -1 : a->x > b->x; } /* END LEAF SETUP FUNCTIONS */ static uint8_t get8(vorb *z) { if (z->stream >= z->stream_end) { z->eof = TRUE; return 0; } return *z->stream++; } static uint32_t get32(vorb *f) { uint32_t x; x = get8(f); x += get8(f) << 8; x += get8(f) << 16; x += get8(f) << 24; return x; } static int getn(vorb *z, uint8_t *data, int n) { if (z->stream+n > z->stream_end) { z->eof = 1; return 0; } memcpy(data, z->stream, n); z->stream += n; return 1; } static void skip(vorb *z, int n) { z->stream += n; if (z->stream >= z->stream_end) z->eof = 1; return; } static int set_file_offset(stb_vorbis *f, unsigned int loc) { f->eof = 0; if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) { f->stream = f->stream_end; f->eof = 1; return 0; } else { f->stream = f->stream_start + loc; return 1; } } static uint8_t ogg_page_header[4] = { 0x4f, 0x67, 0x67, 0x53 }; static int capture_pattern(vorb *f) { if (0x4f != get8(f)) return FALSE; if (0x67 != get8(f)) return FALSE; if (0x67 != get8(f)) return FALSE; if (0x53 != get8(f)) return FALSE; return TRUE; } #define PAGEFLAG_continued_packet 1 #define PAGEFLAG_first_page 2 #define PAGEFLAG_last_page 4 static int start_page_no_capturepattern(vorb *f) { uint32_t loc0,loc1,n; /* stream structure version */ if (0 != get8(f)) return error(f, VORBIS_invalid_stream_structure_version); /* header flag */ f->page_flag = get8(f); /* absolute granule position */ loc0 = get32(f); loc1 = get32(f); /* @TODO: validate loc0,loc1 as valid positions? * stream serial number -- vorbis doesn't interleave, so discard */ get32(f); /*if (f->serial != get32(f)) return error(f, VORBIS_incorrect_stream_serial_number); * page sequence number */ n = get32(f); f->last_page = n; /* CRC32 */ get32(f); /* page_segments */ f->segment_count = get8(f); if (!getn(f, f->segments, f->segment_count)) return error(f, VORBIS_unexpected_eof); /* assume we _don't_ know any the sample position of any segments */ f->end_seg_with_known_loc = -2; if (loc0 != ~0U || loc1 != ~0U) { int i; /* determine which packet is the last one that will complete */ for (i=f->segment_count-1; i >= 0; --i) if (f->segments[i] < 255) break; /* 'i' is now the index of the _last_ segment of a packet that ends */ if (i >= 0) { f->end_seg_with_known_loc = i; f->known_loc_for_packet = loc0; } } if (f->first_decode) { int i,len; ProbedPage p; len = 0; for (i=0; i < f->segment_count; ++i) len += f->segments[i]; len += 27 + f->segment_count; p.page_start = f->first_audio_page_offset; p.page_end = p.page_start + len; p.after_previous_page_start = p.page_start; p.first_decoded_sample = 0; p.last_decoded_sample = loc0; f->p_first = p; } f->next_seg = 0; return TRUE; } static int start_page(vorb *f) { if (!capture_pattern(f)) return error(f, VORBIS_missing_capture_pattern); return start_page_no_capturepattern(f); } static int start_packet(vorb *f) { while (f->next_seg == -1) { if (!start_page(f)) return FALSE; if (f->page_flag & PAGEFLAG_continued_packet) return error(f, VORBIS_continued_packet_flag_invalid); } f->last_seg = FALSE; f->valid_bits = 0; f->packet_bytes = 0; f->bytes_in_seg = 0; /* f->next_seg is now valid */ return TRUE; } static int maybe_start_packet(vorb *f) { if (f->next_seg == -1) { int x = get8(f); if (f->eof) return FALSE; /* EOF at page boundary is not an error! */ if (0x4f != x ) return error(f, VORBIS_missing_capture_pattern); if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern); if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern); if (0x53 != get8(f)) return error(f, VORBIS_missing_capture_pattern); if (!start_page_no_capturepattern(f)) return FALSE; if (f->page_flag & PAGEFLAG_continued_packet) { /* set up enough state that we can read this packet if we want, * e.g. during recovery */ f->last_seg = FALSE; f->bytes_in_seg = 0; return error(f, VORBIS_continued_packet_flag_invalid); } } return start_packet(f); } static int next_segment(vorb *f) { int len; if (f->last_seg) return 0; if (f->next_seg == -1) { f->last_seg_which = f->segment_count-1; /* in case start_page fails */ if (!start_page(f)) { f->last_seg = 1; return 0; } if (!(f->page_flag & PAGEFLAG_continued_packet)) return error(f, VORBIS_continued_packet_flag_invalid); } len = f->segments[f->next_seg++]; if (len < 255) { f->last_seg = TRUE; f->last_seg_which = f->next_seg-1; } if (f->next_seg >= f->segment_count) f->next_seg = -1; assert(f->bytes_in_seg == 0); f->bytes_in_seg = len; return len; } #define EOP (-1) #define INVALID_BITS (-1) static int get8_packet_raw(vorb *f) { if (!f->bytes_in_seg) { /* CLANG! */ if (f->last_seg) return EOP; else if (!next_segment(f)) return EOP; } assert(f->bytes_in_seg > 0); --f->bytes_in_seg; ++f->packet_bytes; return get8(f); } static int get8_packet(vorb *f) { int x = get8_packet_raw(f); f->valid_bits = 0; return x; } static void flush_packet(vorb *f) { while (get8_packet_raw(f) != EOP); } /* @OPTIMIZE: this is the secondary bit decoder, so it's probably not as important * as the huffman decoder? */ static uint32_t get_bits(vorb *f, int n) { uint32_t z; if (f->valid_bits < 0) return 0; if (f->valid_bits < n) { if (n > 24) { /* the accumulator technique below would not work correctly in this case */ z = get_bits(f, 24); z += get_bits(f, n-24) << 24; return z; } if (f->valid_bits == 0) f->acc = 0; while (f->valid_bits < n) { int z = get8_packet_raw(f); if (z == EOP) { f->valid_bits = INVALID_BITS; return 0; } f->acc += z << f->valid_bits; f->valid_bits += 8; } } if (f->valid_bits < 0) return 0; z = f->acc & ((1 << n)-1); f->acc >>= n; f->valid_bits -= n; return z; } /* @OPTIMIZE: primary accumulator for huffman * expand the buffer to as many bits as possible without reading off end of packet * it might be nice to allow f->valid_bits and f->acc to be stored in registers, * e.g. cache them locally and decode locally */ static INLINE void prep_huffman(vorb *f) { if (f->valid_bits <= 24) { if (f->valid_bits == 0) f->acc = 0; do { int z; if (f->last_seg && !f->bytes_in_seg) return; z = get8_packet_raw(f); if (z == EOP) return; f->acc += z << f->valid_bits; f->valid_bits += 8; } while (f->valid_bits <= 24); } } enum { VORBIS_packet_id = 1, VORBIS_packet_comment = 3, VORBIS_packet_setup = 5 }; static int codebook_decode_scalar_raw(vorb *f, Codebook *c) { int i; prep_huffman(f); assert(c->sorted_codewords || c->codewords); /* cases to use binary search: sorted_codewords && !c->codewords * sorted_codewords && c->entries > 8 */ if (c->entries > 8 ? c->sorted_codewords!=NULL : !c->codewords) { /* binary search */ uint32_t code = bit_reverse(f->acc); int x=0, n=c->sorted_entries, len; while (n > 1) { /* invariant: sc[x] <= code < sc[x+n] */ int m = x + (n >> 1); if (c->sorted_codewords[m] <= code) { x = m; n -= (n>>1); } else { n >>= 1; } } /* x is now the sorted index */ if (!c->sparse) x = c->sorted_values[x]; /* x is now sorted index if sparse, or symbol otherwise */ len = c->codeword_lengths[x]; if (f->valid_bits >= len) { f->acc >>= len; f->valid_bits -= len; return x; } f->valid_bits = 0; return -1; } /* if small, linear search */ assert(!c->sparse); for (i=0; i < c->entries; ++i) { if (c->codeword_lengths[i] == NO_CODE) continue; if (c->codewords[i] == (f->acc & ((1 << c->codeword_lengths[i])-1))) { if (f->valid_bits >= c->codeword_lengths[i]) { f->acc >>= c->codeword_lengths[i]; f->valid_bits -= c->codeword_lengths[i]; return i; } f->valid_bits = 0; return -1; } } error(f, VORBIS_invalid_stream); f->valid_bits = 0; return -1; } static int codebook_decode_scalar(vorb *f, Codebook *c) { int i; if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH) prep_huffman(f); /* fast huffman table lookup */ i = f->acc & FAST_HUFFMAN_TABLE_MASK; i = c->fast_huffman[i]; if (i >= 0) { f->acc >>= c->codeword_lengths[i]; f->valid_bits -= c->codeword_lengths[i]; if (f->valid_bits < 0) { f->valid_bits = 0; return -1; } return i; } return codebook_decode_scalar_raw(f,c); } #define DECODE_RAW(var,f,c) var = codebook_decode_scalar(f,c); #define DECODE(var,f,c) \ DECODE_RAW(var,f,c) \ if (c->sparse) var = c->sorted_values[var]; #define DECODE_VQ(var,f,c) DECODE_RAW(var,f,c) /* CODEBOOK_ELEMENT_FAST is an optimization for the CODEBOOK_FLOATS case * where we avoid one addition */ #ifndef STB_VORBIS_CODEBOOK_FLOATS #define CODEBOOK_ELEMENT(c,off) (c->multiplicands[off] * c->delta_value + c->minimum_value) #define CODEBOOK_ELEMENT_FAST(c,off) (c->multiplicands[off] * c->delta_value) #define CODEBOOK_ELEMENT_BASE(c) (c->minimum_value) #else #define CODEBOOK_ELEMENT(c,off) (c->multiplicands[off]) #define CODEBOOK_ELEMENT_FAST(c,off) (c->multiplicands[off]) #define CODEBOOK_ELEMENT_BASE(c) (0) #endif static int codebook_decode_start(vorb *f, Codebook *c) { int z = -1; /* type 0 is only legal in a scalar context */ if (c->lookup_type == 0) error(f, VORBIS_invalid_stream); else { DECODE_VQ(z,f,c); if (c->sparse) assert(z < c->sorted_entries); if (z < 0) { /* check for EOP */ if (!f->bytes_in_seg) if (f->last_seg) return z; error(f, VORBIS_invalid_stream); } } return z; } static int codebook_decode(vorb *f, Codebook *c, float *output, int len) { int i,z = codebook_decode_start(f,c); if (z < 0) return FALSE; if (len > c->dimensions) len = c->dimensions; z *= c->dimensions; if (c->sequence_p) { float last = CODEBOOK_ELEMENT_BASE(c); for (i=0; i < len; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; output[i] += val; last = val + c->minimum_value; } } else { float last = CODEBOOK_ELEMENT_BASE(c); for (i=0; i < len; ++i) { output[i] += CODEBOOK_ELEMENT_FAST(c,z+i) + last; } } return TRUE; } static int codebook_decode_step(vorb *f, Codebook *c, float *output, int len, int step) { int i,z = codebook_decode_start(f,c); float last = CODEBOOK_ELEMENT_BASE(c); if (z < 0) return FALSE; if (len > c->dimensions) len = c->dimensions; z *= c->dimensions; for (i=0; i < len; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; output[i*step] += val; if (c->sequence_p) last = val; } return TRUE; } static int codebook_decode_deinterleave_repeat(vorb *f, Codebook *c, float **outputs, int ch, int *c_inter_p, int *p_inter_p, int len, int total_decode) { int c_inter = *c_inter_p; int p_inter = *p_inter_p; int i,z, effective = c->dimensions; /* type 0 is only legal in a scalar context */ if (c->lookup_type == 0) return error(f, VORBIS_invalid_stream); while (total_decode > 0) { float last = CODEBOOK_ELEMENT_BASE(c); DECODE_VQ(z,f,c); assert(!c->sparse || z < c->sorted_entries); if (z < 0) { if (!f->bytes_in_seg) if (f->last_seg) return FALSE; return error(f, VORBIS_invalid_stream); } /* if this will take us off the end of the buffers, stop short! * we check by computing the length of the virtual interleaved * buffer (len*ch), our current offset within it (p_inter*ch)+(c_inter), * and the length we'll be using (effective) */ if (c_inter + p_inter*ch + effective > len * ch) { effective = len*ch - (p_inter*ch - c_inter); } z *= c->dimensions; if (c->sequence_p) { for (i=0; i < effective; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; if (outputs[c_inter]) outputs[c_inter][p_inter] += val; if (++c_inter == ch) { c_inter = 0; ++p_inter; } last = val; } } else { for (i=0; i < effective; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; if (outputs[c_inter]) outputs[c_inter][p_inter] += val; if (++c_inter == ch) { c_inter = 0; ++p_inter; } } } total_decode -= effective; } *c_inter_p = c_inter; *p_inter_p = p_inter; return TRUE; } static int codebook_decode_deinterleave_repeat_2(vorb *f, Codebook *c, float **outputs, int *c_inter_p, int *p_inter_p, int len, int total_decode) { int c_inter = *c_inter_p; int p_inter = *p_inter_p; int i,z, effective = c->dimensions; /* type 0 is only legal in a scalar context */ if (c->lookup_type == 0) return error(f, VORBIS_invalid_stream); while (total_decode > 0) { float last = CODEBOOK_ELEMENT_BASE(c); DECODE_VQ(z,f,c); if (z < 0) { if (!f->bytes_in_seg) if (f->last_seg) return FALSE; return error(f, VORBIS_invalid_stream); } /* if this will take us off the end of the buffers, stop short! * we check by computing the length of the virtual interleaved * buffer (len*ch), our current offset within it (p_inter*ch)+(c_inter), * and the length we'll be using (effective) */ if (c_inter + p_inter*2 + effective > len * 2) { effective = len*2 - (p_inter*2 - c_inter); } { z *= c->dimensions; if (c->sequence_p) { /* haven't optimized this case because I don't have any examples */ for (i=0; i < effective; ++i) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; if (outputs[c_inter]) outputs[c_inter][p_inter] += val; if (++c_inter == 2) { c_inter = 0; ++p_inter; } last = val; } } else { i=0; if (c_inter == 1) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; if (outputs[c_inter]) outputs[c_inter][p_inter] += val; c_inter = 0; ++p_inter; ++i; } { float *z0 = outputs[0]; float *z1 = outputs[1]; for (; i+1 < effective;) { float v0 = CODEBOOK_ELEMENT_FAST(c,z+i) + last; float v1 = CODEBOOK_ELEMENT_FAST(c,z+i+1) + last; if (z0) z0[p_inter] += v0; if (z1) z1[p_inter] += v1; ++p_inter; i += 2; } } if (i < effective) { float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; if (outputs[c_inter]) outputs[c_inter][p_inter] += val; if (++c_inter == 2) { c_inter = 0; ++p_inter; } } } } total_decode -= effective; } *c_inter_p = c_inter; *p_inter_p = p_inter; return TRUE; } static int predict_point(int x, int x0, int x1, int y0, int y1) { int dy = y1 - y0; int adx = x1 - x0; /* @OPTIMIZE: force int division to round in the right direction... is this necessary on x86? */ int err = abs(dy) * (x - x0); int off = err / adx; return dy < 0 ? y0 - off : y0 + off; } /* the following table is block-copied from the specification */ static float inverse_db_table[256] = { 1.0649863e-07f, 1.1341951e-07f, 1.2079015e-07f, 1.2863978e-07f, 1.3699951e-07f, 1.4590251e-07f, 1.5538408e-07f, 1.6548181e-07f, 1.7623575e-07f, 1.8768855e-07f, 1.9988561e-07f, 2.1287530e-07f, 2.2670913e-07f, 2.4144197e-07f, 2.5713223e-07f, 2.7384213e-07f, 2.9163793e-07f, 3.1059021e-07f, 3.3077411e-07f, 3.5226968e-07f, 3.7516214e-07f, 3.9954229e-07f, 4.2550680e-07f, 4.5315863e-07f, 4.8260743e-07f, 5.1396998e-07f, 5.4737065e-07f, 5.8294187e-07f, 6.2082472e-07f, 6.6116941e-07f, 7.0413592e-07f, 7.4989464e-07f, 7.9862701e-07f, 8.5052630e-07f, 9.0579828e-07f, 9.6466216e-07f, 1.0273513e-06f, 1.0941144e-06f, 1.1652161e-06f, 1.2409384e-06f, 1.3215816e-06f, 1.4074654e-06f, 1.4989305e-06f, 1.5963394e-06f, 1.7000785e-06f, 1.8105592e-06f, 1.9282195e-06f, 2.0535261e-06f, 2.1869758e-06f, 2.3290978e-06f, 2.4804557e-06f, 2.6416497e-06f, 2.8133190e-06f, 2.9961443e-06f, 3.1908506e-06f, 3.3982101e-06f, 3.6190449e-06f, 3.8542308e-06f, 4.1047004e-06f, 4.3714470e-06f, 4.6555282e-06f, 4.9580707e-06f, 5.2802740e-06f, 5.6234160e-06f, 5.9888572e-06f, 6.3780469e-06f, 6.7925283e-06f, 7.2339451e-06f, 7.7040476e-06f, 8.2047000e-06f, 8.7378876e-06f, 9.3057248e-06f, 9.9104632e-06f, 1.0554501e-05f, 1.1240392e-05f, 1.1970856e-05f, 1.2748789e-05f, 1.3577278e-05f, 1.4459606e-05f, 1.5399272e-05f, 1.6400004e-05f, 1.7465768e-05f, 1.8600792e-05f, 1.9809576e-05f, 2.1096914e-05f, 2.2467911e-05f, 2.3928002e-05f, 2.5482978e-05f, 2.7139006e-05f, 2.8902651e-05f, 3.0780908e-05f, 3.2781225e-05f, 3.4911534e-05f, 3.7180282e-05f, 3.9596466e-05f, 4.2169667e-05f, 4.4910090e-05f, 4.7828601e-05f, 5.0936773e-05f, 5.4246931e-05f, 5.7772202e-05f, 6.1526565e-05f, 6.5524908e-05f, 6.9783085e-05f, 7.4317983e-05f, 7.9147585e-05f, 8.4291040e-05f, 8.9768747e-05f, 9.5602426e-05f, 0.00010181521f, 0.00010843174f, 0.00011547824f, 0.00012298267f, 0.00013097477f, 0.00013948625f, 0.00014855085f, 0.00015820453f, 0.00016848555f, 0.00017943469f, 0.00019109536f, 0.00020351382f, 0.00021673929f, 0.00023082423f, 0.00024582449f, 0.00026179955f, 0.00027881276f, 0.00029693158f, 0.00031622787f, 0.00033677814f, 0.00035866388f, 0.00038197188f, 0.00040679456f, 0.00043323036f, 0.00046138411f, 0.00049136745f, 0.00052329927f, 0.00055730621f, 0.00059352311f, 0.00063209358f, 0.00067317058f, 0.00071691700f, 0.00076350630f, 0.00081312324f, 0.00086596457f, 0.00092223983f, 0.00098217216f, 0.0010459992f, 0.0011139742f, 0.0011863665f, 0.0012634633f, 0.0013455702f, 0.0014330129f, 0.0015261382f, 0.0016253153f, 0.0017309374f, 0.0018434235f, 0.0019632195f, 0.0020908006f, 0.0022266726f, 0.0023713743f, 0.0025254795f, 0.0026895994f, 0.0028643847f, 0.0030505286f, 0.0032487691f, 0.0034598925f, 0.0036847358f, 0.0039241906f, 0.0041792066f, 0.0044507950f, 0.0047400328f, 0.0050480668f, 0.0053761186f, 0.0057254891f, 0.0060975636f, 0.0064938176f, 0.0069158225f, 0.0073652516f, 0.0078438871f, 0.0083536271f, 0.0088964928f, 0.009474637f, 0.010090352f, 0.010746080f, 0.011444421f, 0.012188144f, 0.012980198f, 0.013823725f, 0.014722068f, 0.015678791f, 0.016697687f, 0.017782797f, 0.018938423f, 0.020169149f, 0.021479854f, 0.022875735f, 0.024362330f, 0.025945531f, 0.027631618f, 0.029427276f, 0.031339626f, 0.033376252f, 0.035545228f, 0.037855157f, 0.040315199f, 0.042935108f, 0.045725273f, 0.048696758f, 0.051861348f, 0.055231591f, 0.058820850f, 0.062643361f, 0.066714279f, 0.071049749f, 0.075666962f, 0.080584227f, 0.085821044f, 0.091398179f, 0.097337747f, 0.10366330f, 0.11039993f, 0.11757434f, 0.12521498f, 0.13335215f, 0.14201813f, 0.15124727f, 0.16107617f, 0.17154380f, 0.18269168f, 0.19456402f, 0.20720788f, 0.22067342f, 0.23501402f, 0.25028656f, 0.26655159f, 0.28387361f, 0.30232132f, 0.32196786f, 0.34289114f, 0.36517414f, 0.38890521f, 0.41417847f, 0.44109412f, 0.46975890f, 0.50028648f, 0.53279791f, 0.56742212f, 0.60429640f, 0.64356699f, 0.68538959f, 0.72993007f, 0.77736504f, 0.82788260f, 0.88168307f, 0.9389798f, 1.0f }; /* @OPTIMIZE: if you want to replace this bresenham line-drawing routine, * note that you must produce bit-identical output to decode correctly; * this specific sequence of operations is specified in the spec (it's * drawing integer-quantized frequency-space lines that the encoder * expects to be exactly the same) * ... also, isn't the whole point of Bresenham's algorithm to NOT * have to divide in the setup? sigh. */ #define LINE_OP(a,b) a *= b static INLINE void draw_line(float *output, int x0, int y0, int x1, int y1, int n) { int dy = y1 - y0; int adx = x1 - x0; int ady = abs(dy); int x=x0,y=y0; int err = 0; int sy; int base = dy / adx; if (dy < 0) sy = base - 1; else sy = base+1; ady -= abs(base) * adx; if (x1 > n) x1 = n; LINE_OP(output[x], inverse_db_table[y]); for (++x; x < x1; ++x) { err += ady; if (err >= adx) { err -= adx; y += sy; } else y += base; LINE_OP(output[x], inverse_db_table[y]); } } static int residue_decode(vorb *f, Codebook *book, float *target, int offset, int n, int rtype) { int k; if (rtype == 0) { int step = n / book->dimensions; for (k=0; k < step; ++k) if (!codebook_decode_step(f, book, target+offset+k, n-offset-k, step)) return FALSE; } else { for (k=0; k < n; ) { if (!codebook_decode(f, book, target+offset, n-k)) return FALSE; k += book->dimensions; offset += book->dimensions; } } return TRUE; } static void decode_residue(vorb *f, float *residue_buffers[], int ch, int n, int rn, uint8_t *do_not_decode) { int i,j,pass; Residue *r = f->residue_config + rn; int rtype = f->residue_types[rn]; int c = r->classbook; int classwords = f->codebooks[c].dimensions; int n_read = r->end - r->begin; int part_read = n_read / r->part_size; int temp_alloc_point = temp_alloc_save(f); uint8_t ***part_classdata = (uint8_t ***) temp_block_array(f,f->channels, part_read * sizeof(**part_classdata)); for (i=0; i < ch; ++i) if (!do_not_decode[i]) memset(residue_buffers[i], 0, sizeof(float) * n); if (rtype == 2 && ch != 1) { for (j=0; j < ch; ++j) if (!do_not_decode[j]) break; if (j == ch) goto done; for (pass=0; pass < 8; ++pass) { int pcount = 0, class_set = 0; if (ch == 2) { while (pcount < part_read) { int z = r->begin + pcount*r->part_size; int c_inter = (z & 1), p_inter = z>>1; if (pass == 0) { Codebook *c = f->codebooks+r->classbook; int q; DECODE(q,f,c); if (q == EOP) goto done; part_classdata[0][class_set] = r->classdata[q]; } for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { int z = r->begin + pcount*r->part_size; int c = part_classdata[0][class_set][i]; int b = r->residue_books[c][pass]; if (b >= 0) { Codebook *book = f->codebooks + b; /* saves 1% */ if (!codebook_decode_deinterleave_repeat_2(f, book, residue_buffers, &c_inter, &p_inter, n, r->part_size)) goto done; } else { z += r->part_size; c_inter = z & 1; p_inter = z >> 1; } } ++class_set; } } else if (ch == 1) { while (pcount < part_read) { int z = r->begin + pcount*r->part_size; int c_inter = 0, p_inter = z; if (pass == 0) { Codebook *c = f->codebooks+r->classbook; int q; DECODE(q,f,c); if (q == EOP) goto done; part_classdata[0][class_set] = r->classdata[q]; } for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { int z = r->begin + pcount*r->part_size; int c = part_classdata[0][class_set][i]; int b = r->residue_books[c][pass]; if (b >= 0) { Codebook *book = f->codebooks + b; if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size)) goto done; } else { z += r->part_size; c_inter = 0; p_inter = z; } } ++class_set; } } else { while (pcount < part_read) { int z = r->begin + pcount*r->part_size; int c_inter = z % ch, p_inter = z/ch; if (pass == 0) { Codebook *c = f->codebooks+r->classbook; int q; DECODE(q,f,c); if (q == EOP) goto done; part_classdata[0][class_set] = r->classdata[q]; } for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { int z = r->begin + pcount*r->part_size; int c = part_classdata[0][class_set][i]; int b = r->residue_books[c][pass]; if (b >= 0) { Codebook *book = f->codebooks + b; if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size)) goto done; } else { z += r->part_size; c_inter = z % ch; p_inter = z / ch; } } ++class_set; } } } goto done; } for (pass=0; pass < 8; ++pass) { int pcount = 0, class_set=0; while (pcount < part_read) { if (pass == 0) { for (j=0; j < ch; ++j) { if (!do_not_decode[j]) { Codebook *c = f->codebooks+r->classbook; int temp; DECODE(temp,f,c); if (temp == EOP) goto done; part_classdata[j][class_set] = r->classdata[temp]; } } } for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { for (j=0; j < ch; ++j) { if (!do_not_decode[j]) { int c = part_classdata[j][class_set][i]; int b = r->residue_books[c][pass]; if (b >= 0) { float *target = residue_buffers[j]; int offset = r->begin + pcount * r->part_size; int n = r->part_size; Codebook *book = f->codebooks + b; if (!residue_decode(f, book, target, offset, n, rtype)) goto done; } } } } ++class_set; } } done: temp_alloc_restore(f,temp_alloc_point); } #ifndef LIBVORBIS_MDCT #define LIBVORBIS_MDCT 0 #endif #if LIBVORBIS_MDCT /* directly call the vorbis MDCT using an interface documented * by Jeff Roberts... useful for performance comparison */ typedef struct { int n; int log2n; float *trig; int *bitrev; float scale; } mdct_lookup; extern void mdct_init(mdct_lookup *lookup, int n); extern void mdct_clear(mdct_lookup *l); extern void mdct_backward(mdct_lookup *init, float *in, float *out); mdct_lookup M1,M2; void inverse_mdct(float *buffer, int n, vorb *f, int blocktype) { mdct_lookup *M; if (M1.n == n) M = &M1; else if (M2.n == n) M = &M2; else if (M1.n == 0) { mdct_init(&M1, n); M = &M1; } else { if (M2.n) __asm int 3; mdct_init(&M2, n); M = &M2; } mdct_backward(M, buffer, buffer); } #endif /* the following were split out into separate functions while optimizing; * they could be pushed back up but eh. __forceinline showed no change; * they're probably already being inlined. */ static void imdct_step3_iter0_loop(int n, float *e, int i_off, int k_off, float *A) { float *ee0 = e + i_off; float *ee2 = ee0 + k_off; int i; assert((n & 3) == 0); for (i=(n>>2); i > 0; --i) { float k00_20, k01_21; k00_20 = ee0[ 0] - ee2[ 0]; k01_21 = ee0[-1] - ee2[-1]; ee0[ 0] += ee2[ 0];/*ee0[ 0] = ee0[ 0] + ee2[ 0]; */ ee0[-1] += ee2[-1];/*ee0[-1] = ee0[-1] + ee2[-1]; */ ee2[ 0] = k00_20 * A[0] - k01_21 * A[1]; ee2[-1] = k01_21 * A[0] + k00_20 * A[1]; A += 8; k00_20 = ee0[-2] - ee2[-2]; k01_21 = ee0[-3] - ee2[-3]; ee0[-2] += ee2[-2];/*ee0[-2] = ee0[-2] + ee2[-2]; */ ee0[-3] += ee2[-3];/*ee0[-3] = ee0[-3] + ee2[-3]; */ ee2[-2] = k00_20 * A[0] - k01_21 * A[1]; ee2[-3] = k01_21 * A[0] + k00_20 * A[1]; A += 8; k00_20 = ee0[-4] - ee2[-4]; k01_21 = ee0[-5] - ee2[-5]; ee0[-4] += ee2[-4];/*ee0[-4] = ee0[-4] + ee2[-4]; */ ee0[-5] += ee2[-5];/*ee0[-5] = ee0[-5] + ee2[-5]; */ ee2[-4] = k00_20 * A[0] - k01_21 * A[1]; ee2[-5] = k01_21 * A[0] + k00_20 * A[1]; A += 8; k00_20 = ee0[-6] - ee2[-6]; k01_21 = ee0[-7] - ee2[-7]; ee0[-6] += ee2[-6];/*ee0[-6] = ee0[-6] + ee2[-6]; */ ee0[-7] += ee2[-7];/*ee0[-7] = ee0[-7] + ee2[-7]; */ ee2[-6] = k00_20 * A[0] - k01_21 * A[1]; ee2[-7] = k01_21 * A[0] + k00_20 * A[1]; A += 8; ee0 -= 8; ee2 -= 8; } } static void imdct_step3_inner_r_loop(int lim, float *e, int d0, int k_off, float *A, int k1) { int i; float k00_20, k01_21; float *e0 = e + d0; float *e2 = e0 + k_off; for (i=lim >> 2; i > 0; --i) { k00_20 = e0[-0] - e2[-0]; k01_21 = e0[-1] - e2[-1]; e0[-0] += e2[-0];/*e0[-0] = e0[-0] + e2[-0]; */ e0[-1] += e2[-1];/*e0[-1] = e0[-1] + e2[-1]; */ e2[-0] = (k00_20)*A[0] - (k01_21) * A[1]; e2[-1] = (k01_21)*A[0] + (k00_20) * A[1]; A += k1; k00_20 = e0[-2] - e2[-2]; k01_21 = e0[-3] - e2[-3]; e0[-2] += e2[-2];/*e0[-2] = e0[-2] + e2[-2]; */ e0[-3] += e2[-3];/*e0[-3] = e0[-3] + e2[-3]; */ e2[-2] = (k00_20)*A[0] - (k01_21) * A[1]; e2[-3] = (k01_21)*A[0] + (k00_20) * A[1]; A += k1; k00_20 = e0[-4] - e2[-4]; k01_21 = e0[-5] - e2[-5]; e0[-4] += e2[-4];/*e0[-4] = e0[-4] + e2[-4]; */ e0[-5] += e2[-5];/*e0[-5] = e0[-5] + e2[-5]; */ e2[-4] = (k00_20)*A[0] - (k01_21) * A[1]; e2[-5] = (k01_21)*A[0] + (k00_20) * A[1]; A += k1; k00_20 = e0[-6] - e2[-6]; k01_21 = e0[-7] - e2[-7]; e0[-6] += e2[-6];/*e0[-6] = e0[-6] + e2[-6]; */ e0[-7] += e2[-7];/*e0[-7] = e0[-7] + e2[-7]; */ e2[-6] = (k00_20)*A[0] - (k01_21) * A[1]; e2[-7] = (k01_21)*A[0] + (k00_20) * A[1]; e0 -= 8; e2 -= 8; A += k1; } } static void imdct_step3_inner_s_loop(int n, float *e, int i_off, int k_off, float *A, int a_off, int k0) { int i; float A0 = A[0]; float A1 = A[0+1]; float A2 = A[0+a_off]; float A3 = A[0+a_off+1]; float A4 = A[0+a_off*2+0]; float A5 = A[0+a_off*2+1]; float A6 = A[0+a_off*3+0]; float A7 = A[0+a_off*3+1]; float k00,k11; float *ee0 = e +i_off; float *ee2 = ee0+k_off; for (i=n; i > 0; --i) { k00 = ee0[ 0] - ee2[ 0]; k11 = ee0[-1] - ee2[-1]; ee0[ 0] = ee0[ 0] + ee2[ 0]; ee0[-1] = ee0[-1] + ee2[-1]; ee2[ 0] = (k00) * A0 - (k11) * A1; ee2[-1] = (k11) * A0 + (k00) * A1; k00 = ee0[-2] - ee2[-2]; k11 = ee0[-3] - ee2[-3]; ee0[-2] = ee0[-2] + ee2[-2]; ee0[-3] = ee0[-3] + ee2[-3]; ee2[-2] = (k00) * A2 - (k11) * A3; ee2[-3] = (k11) * A2 + (k00) * A3; k00 = ee0[-4] - ee2[-4]; k11 = ee0[-5] - ee2[-5]; ee0[-4] = ee0[-4] + ee2[-4]; ee0[-5] = ee0[-5] + ee2[-5]; ee2[-4] = (k00) * A4 - (k11) * A5; ee2[-5] = (k11) * A4 + (k00) * A5; k00 = ee0[-6] - ee2[-6]; k11 = ee0[-7] - ee2[-7]; ee0[-6] = ee0[-6] + ee2[-6]; ee0[-7] = ee0[-7] + ee2[-7]; ee2[-6] = (k00) * A6 - (k11) * A7; ee2[-7] = (k11) * A6 + (k00) * A7; ee0 -= k0; ee2 -= k0; } } static INLINE void iter_54(float *z) { float k00,k11,k22,k33; float y0,y1,y2,y3; k00 = z[ 0] - z[-4]; y0 = z[ 0] + z[-4]; y2 = z[-2] + z[-6]; k22 = z[-2] - z[-6]; z[-0] = y0 + y2; /* z0 + z4 + z2 + z6 */ z[-2] = y0 - y2; /* z0 + z4 - z2 - z6 */ /* done with y0,y2 */ k33 = z[-3] - z[-7]; z[-4] = k00 + k33; /* z0 - z4 + z3 - z7 */ z[-6] = k00 - k33; /* z0 - z4 - z3 + z7 */ /* done with k33 */ k11 = z[-1] - z[-5]; y1 = z[-1] + z[-5]; y3 = z[-3] + z[-7]; z[-1] = y1 + y3; /* z1 + z5 + z3 + z7 */ z[-3] = y1 - y3; /* z1 + z5 - z3 - z7 */ z[-5] = k11 - k22; /* z1 - z5 + z2 - z6 */ z[-7] = k11 + k22; /* z1 - z5 - z2 + z6 */ } static void imdct_step3_inner_s_loop_ld654(int n, float *e, int i_off, float *A, int base_n) { int a_off = base_n >> 3; float A2 = A[0+a_off]; float *z = e + i_off; float *base = z - 16 * n; while (z > base) { float k00,k11; k00 = z[-0] - z[-8]; k11 = z[-1] - z[-9]; z[-0] = z[-0] + z[-8]; z[-1] = z[-1] + z[-9]; z[-8] = k00; z[-9] = k11 ; k00 = z[ -2] - z[-10]; k11 = z[ -3] - z[-11]; z[ -2] = z[ -2] + z[-10]; z[ -3] = z[ -3] + z[-11]; z[-10] = (k00+k11) * A2; z[-11] = (k11-k00) * A2; k00 = z[-12] - z[ -4]; /* reverse to avoid a unary negation */ k11 = z[ -5] - z[-13]; z[ -4] = z[ -4] + z[-12]; z[ -5] = z[ -5] + z[-13]; z[-12] = k11; z[-13] = k00; k00 = z[-14] - z[ -6]; /* reverse to avoid a unary negation */ k11 = z[ -7] - z[-15]; z[ -6] = z[ -6] + z[-14]; z[ -7] = z[ -7] + z[-15]; z[-14] = (k00+k11) * A2; z[-15] = (k00-k11) * A2; iter_54(z); iter_54(z-8); z -= 16; } } static void inverse_mdct(float *buffer, int n, vorb *f, int blocktype) { int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l; int ld; /* @OPTIMIZE: reduce register pressure by using fewer variables? */ int save_point = temp_alloc_save(f); float *buf2 = (float *) temp_alloc(f, n2 * sizeof(*buf2)); float *u=NULL,*v=NULL; /* twiddle factors */ float *A = f->A[blocktype]; /* IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio" * See notes about bugs in that paper in less-optimal implementation 'inverse_mdct_old' after this function. * kernel from paper * merged: * copy and reflect spectral data * step 0 * note that it turns out that the items added together during * this step are, in fact, being added to themselves (as reflected * by step 0). inexplicable inefficiency! this became obvious * once I combined the passes. * so there's a missing 'times 2' here (for adding X to itself). * this propogates through linearly to the end, where the numbers * are 1/2 too small, and need to be compensated for. */ { float *d,*e, *AA, *e_stop; d = &buf2[n2-2]; AA = A; e = &buffer[0]; e_stop = &buffer[n2]; while (e != e_stop) { d[1] = (e[0] * AA[0] - e[2]*AA[1]); d[0] = (e[0] * AA[1] + e[2]*AA[0]); d -= 2; AA += 2; e += 4; } e = &buffer[n2-3]; while (d >= buf2) { d[1] = (-e[2] * AA[0] - -e[0]*AA[1]); d[0] = (-e[2] * AA[1] + -e[0]*AA[0]); d -= 2; AA += 2; e -= 4; } } /* now we use symbolic names for these, so that we can * possibly swap their meaning as we change which operations * are in place */ u = buffer; v = buf2; /* step 2 (paper output is w, now u) * this could be in place, but the data ends up in the wrong * place... _somebody_'s got to swap it, so this is nominated */ { float *AA = &A[n2-8]; float *d0,*d1, *e0, *e1; e0 = &v[n4]; e1 = &v[0]; d0 = &u[n4]; d1 = &u[0]; while (AA >= A) { float v40_20, v41_21; v41_21 = e0[1] - e1[1]; v40_20 = e0[0] - e1[0]; d0[1] = e0[1] + e1[1]; d0[0] = e0[0] + e1[0]; d1[1] = v41_21*AA[4] - v40_20*AA[5]; d1[0] = v40_20*AA[4] + v41_21*AA[5]; v41_21 = e0[3] - e1[3]; v40_20 = e0[2] - e1[2]; d0[3] = e0[3] + e1[3]; d0[2] = e0[2] + e1[2]; d1[3] = v41_21*AA[0] - v40_20*AA[1]; d1[2] = v40_20*AA[0] + v41_21*AA[1]; AA -= 8; d0 += 4; d1 += 4; e0 += 4; e1 += 4; } } /* step 3 */ ld = ilog(n) - 1; /* ilog is off-by-one from normal definitions */ /* optimized step 3: * the original step3 loop can be nested r inside s or s inside r; * it's written originally as s inside r, but this is dumb when r * iterates many times, and s few. So I have two copies of it and * switch between them halfway. * this is iteration 0 of step 3 */ imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*0, -(n >> 3), A); imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*1, -(n >> 3), A); /* this is iteration 1 of step 3 */ imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*0, -(n >> 4), A, 16); imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*1, -(n >> 4), A, 16); imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*2, -(n >> 4), A, 16); imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*3, -(n >> 4), A, 16); l=2; for (; l < (ld-3)>>1; ++l) { int k0 = n >> (l+2), k0_2 = k0>>1; int lim = 1 << (l+1); int i; for (i=0; i < lim; ++i) imdct_step3_inner_r_loop(n >> (l+4), u, n2-1 - k0*i, -k0_2, A, 1 << (l+3)); } for (; l < ld-6; ++l) { int k0 = n >> (l+2), k1 = 1 << (l+3), k0_2 = k0>>1; int rlim = n >> (l+6), r; int lim = 1 << (l+1); int i_off; float *A0 = A; i_off = n2-1; for (r=rlim; r > 0; --r) { imdct_step3_inner_s_loop(lim, u, i_off, -k0_2, A0, k1, k0); A0 += k1*4; i_off -= 8; } } /* iterations with count: * ld-6,-5,-4 all interleaved together * the big win comes from getting rid of needless flops * due to the constants on pass 5 & 4 being all 1 and 0; * combining them to be simultaneous to improve cache made little difference */ imdct_step3_inner_s_loop_ld654(n >> 5, u, n2-1, A, n); /* output is u * step 4, 5, and 6 * cannot be in-place because of step 5 */ { uint16_t *bitrev = f->bit_reverse[blocktype]; /* weirdly, I'd have thought reading sequentially and writing * erratically would have been better than vice-versa, but in * fact that's not what my testing showed. (That is, with * j = bitreverse(i), do you read i and write j, or read j and write i.) */ float *d0 = &v[n4-4]; float *d1 = &v[n2-4]; while (d0 >= v) { int k4; k4 = bitrev[0]; d1[3] = u[k4+0]; d1[2] = u[k4+1]; d0[3] = u[k4+2]; d0[2] = u[k4+3]; k4 = bitrev[1]; d1[1] = u[k4+0]; d1[0] = u[k4+1]; d0[1] = u[k4+2]; d0[0] = u[k4+3]; d0 -= 4; d1 -= 4; bitrev += 2; } } /* (paper output is u, now v) */ /* data must be in buf2 */ assert(v == buf2); /* step 7 (paper output is v, now v) * this is now in place */ { float *C = f->C[blocktype]; float *d, *e; d = v; e = v + n2 - 4; while (d < e) { float a02,a11,b0,b1,b2,b3; a02 = d[0] - e[2]; a11 = d[1] + e[3]; b0 = C[1]*a02 + C[0]*a11; b1 = C[1]*a11 - C[0]*a02; b2 = d[0] + e[ 2]; b3 = d[1] - e[ 3]; d[0] = b2 + b0; d[1] = b3 + b1; e[2] = b2 - b0; e[3] = b1 - b3; a02 = d[2] - e[0]; a11 = d[3] + e[1]; b0 = C[3]*a02 + C[2]*a11; b1 = C[3]*a11 - C[2]*a02; b2 = d[2] + e[ 0]; b3 = d[3] - e[ 1]; d[2] = b2 + b0; d[3] = b3 + b1; e[0] = b2 - b0; e[1] = b1 - b3; C += 4; d += 4; e -= 4; } } /* data must be in buf2 * step 8+decode (paper output is X, now buffer) * this generates pairs of data a la 8 and pushes them directly through * the decode kernel (pushing rather than pulling) to avoid having * to make another pass later * this cannot POSSIBLY be in place, so we refer to the buffers directly */ { float *d0,*d1,*d2,*d3; float *B = f->B[blocktype] + n2 - 8; float *e = buf2 + n2 - 8; d0 = &buffer[0]; d1 = &buffer[n2-4]; d2 = &buffer[n2]; d3 = &buffer[n-4]; while (e >= v) { float p0,p1,p2,p3; p3 = e[6]*B[7] - e[7]*B[6]; p2 = -e[6]*B[6] - e[7]*B[7]; d0[0] = p3; d1[3] = - p3; d2[0] = p2; d3[3] = p2; p1 = e[4]*B[5] - e[5]*B[4]; p0 = -e[4]*B[4] - e[5]*B[5]; d0[1] = p1; d1[2] = - p1; d2[1] = p0; d3[2] = p0; p3 = e[2]*B[3] - e[3]*B[2]; p2 = -e[2]*B[2] - e[3]*B[3]; d0[2] = p3; d1[1] = - p3; d2[2] = p2; d3[1] = p2; p1 = e[0]*B[1] - e[1]*B[0]; p0 = -e[0]*B[0] - e[1]*B[1]; d0[3] = p1; d1[0] = - p1; d2[3] = p0; d3[0] = p0; B -= 8; e -= 8; d0 += 4; d2 += 4; d1 -= 4; d3 -= 4; } } temp_alloc_restore(f,save_point); } static float *get_window(vorb *f, int len) { len <<= 1; if (len == f->blocksize_0) return f->window[0]; if (len == f->blocksize_1) return f->window[1]; assert(0); return NULL; } typedef int16_t YTYPE; static int do_floor(vorb *f, Mapping *map, int i, int n, float *target, YTYPE *finalY, uint8_t *step2_flag) { int n2 = n >> 1; int s = map->chan[i].mux, floor; floor = map->submap_floor[s]; if (f->floor_types[floor] == 0) { return error(f, VORBIS_invalid_stream); } else { Floor1 *g = &f->floor_config[floor].floor1; int j,q; int lx = 0, ly = finalY[0] * g->floor1_multiplier; for (q=1; q < g->values; ++q) { j = g->sorted_order[q]; if (finalY[j] >= 0) { int hy = finalY[j] * g->floor1_multiplier; int hx = g->Xlist[j]; draw_line(target, lx,ly, hx,hy, n2); lx = hx; ly = hy; } } if (lx < n2) /* optimization of: draw_line(target, lx,ly, n,ly, n2); */ for (j=lx; j < n2; ++j) LINE_OP(target[j], inverse_db_table[ly]); } return TRUE; } static int vorbis_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode) { Mode *m; int i, n, prev, next, window_center; f->channel_buffer_start = f->channel_buffer_end = 0; retry: if (f->eof) return FALSE; if (!maybe_start_packet(f)) return FALSE; /* check packet type */ if (get_bits(f,1) != 0) { if (IS_PUSH_MODE(f)) return error(f,VORBIS_bad_packet_type); while (EOP != get8_packet(f)); goto retry; } if (f->alloc.alloc_buffer) assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); i = get_bits(f, ilog(f->mode_count-1)); if (i == EOP) return FALSE; if (i >= f->mode_count) return FALSE; *mode = i; m = f->mode_config + i; if (m->blockflag) { n = f->blocksize_1; prev = get_bits(f,1); next = get_bits(f,1); } else { prev = next = 0; n = f->blocksize_0; } /* WINDOWING */ window_center = n >> 1; if (m->blockflag && !prev) { *p_left_start = (n - f->blocksize_0) >> 2; *p_left_end = (n + f->blocksize_0) >> 2; } else { *p_left_start = 0; *p_left_end = window_center; } if (m->blockflag && !next) { *p_right_start = (n*3 - f->blocksize_0) >> 2; *p_right_end = (n*3 + f->blocksize_0) >> 2; } else { *p_right_start = window_center; *p_right_end = n; } return TRUE; } static int vorbis_decode_packet_rest(vorb *f, int *len, Mode *m, int left_start, int left_end, int right_start, int right_end, int *p_left) { Mapping *map; int i,j,k,n,n2; int zero_channel[256]; int really_zero_channel[256]; /* WINDOWING */ n = f->blocksize[m->blockflag]; map = &f->mapping[m->mapping]; /* FLOORS */ n2 = n >> 1; for (i=0; i < f->channels; ++i) { int s = map->chan[i].mux, floor; zero_channel[i] = FALSE; floor = map->submap_floor[s]; if (f->floor_types[floor] == 0) { return error(f, VORBIS_invalid_stream); } else { Floor1 *g = &f->floor_config[floor].floor1; if (get_bits(f, 1)) { short *finalY; uint8_t step2_flag[256]; static int range_list[4] = { 256, 128, 86, 64 }; int range = range_list[g->floor1_multiplier-1]; int offset = 2; finalY = f->finalY[i]; finalY[0] = get_bits(f, ilog(range)-1); finalY[1] = get_bits(f, ilog(range)-1); for (j=0; j < g->partitions; ++j) { int pclass = g->partition_class_list[j]; int cdim = g->class_dimensions[pclass]; int cbits = g->class_subclasses[pclass]; int csub = (1 << cbits)-1; int cval = 0; if (cbits) { Codebook *c = f->codebooks + g->class_masterbooks[pclass]; DECODE(cval,f,c); } for (k=0; k < cdim; ++k) { int book = g->subclass_books[pclass][cval & csub]; cval = cval >> cbits; if (book >= 0) { int temp; Codebook *c = f->codebooks + book; DECODE(temp,f,c); finalY[offset++] = temp; } else finalY[offset++] = 0; } } if (f->valid_bits == INVALID_BITS) goto error; /* behavior according to spec */ step2_flag[0] = step2_flag[1] = 1; for (j=2; j < g->values; ++j) { int low, high, pred, highroom, lowroom, room, val; low = g->neighbors[j][0]; high = g->neighbors[j][1]; #if 0 neighbors(g->Xlist, j, &low, &high); #endif pred = predict_point(g->Xlist[j], g->Xlist[low], g->Xlist[high], finalY[low], finalY[high]); val = finalY[j]; highroom = range - pred; lowroom = pred; if (highroom < lowroom) room = highroom * 2; else room = lowroom * 2; if (val) { step2_flag[low] = step2_flag[high] = 1; step2_flag[j] = 1; if (val >= room) if (highroom > lowroom) finalY[j] = val - lowroom + pred; else finalY[j] = pred - val + highroom - 1; else if (val & 1) finalY[j] = pred - ((val+1)>>1); else finalY[j] = pred + (val>>1); } else { step2_flag[j] = 0; finalY[j] = pred; } } /* defer final floor computation until _after_ residue */ for (j=0; j < g->values; ++j) { if (!step2_flag[j]) finalY[j] = -1; } } else { error: zero_channel[i] = TRUE; } /* So we just defer everything else to later */ /* at this point we've decoded the floor into buffer */ } } /* at this point we've decoded all floors */ if (f->alloc.alloc_buffer) assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); /* re-enable coupled channels if necessary */ memcpy(really_zero_channel, zero_channel, sizeof(really_zero_channel[0]) * f->channels); for (i=0; i < map->coupling_steps; ++i) if (!zero_channel[map->chan[i].magnitude] || !zero_channel[map->chan[i].angle]) { zero_channel[map->chan[i].magnitude] = zero_channel[map->chan[i].angle] = FALSE; } /* RESIDUE DECODE */ for (i=0; i < map->submaps; ++i) { float *residue_buffers[STB_VORBIS_MAX_CHANNELS]; int r; uint8_t do_not_decode[256] = {0}; int ch = 0; for (j=0; j < f->channels; ++j) { if (map->chan[j].mux == i) { if (zero_channel[j]) { do_not_decode[ch] = TRUE; residue_buffers[ch] = NULL; } else { do_not_decode[ch] = FALSE; residue_buffers[ch] = f->channel_buffers[j]; } ++ch; } } r = map->submap_residue[i]; decode_residue(f, residue_buffers, ch, n2, r, do_not_decode); } if (f->alloc.alloc_buffer) assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); /* INVERSE COUPLING */ for (i = map->coupling_steps-1; i >= 0; --i) { int n2 = n >> 1; float *m = f->channel_buffers[map->chan[i].magnitude]; float *a = f->channel_buffers[map->chan[i].angle ]; for (j=0; j < n2; ++j) { float a2,m2; if (m[j] > 0) if (a[j] > 0) { m2 = m[j]; a2 = m[j] - a[j]; } else { a2 = m[j]; m2 = m[j] + a[j]; } else if (a[j] > 0) { m2 = m[j]; a2 = m[j] + a[j]; } else { a2 = m[j]; m2 = m[j] - a[j]; } m[j] = m2; a[j] = a2; } } /* finish decoding the floors */ for (i=0; i < f->channels; ++i) { if (really_zero_channel[i]) { memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2); } else { do_floor(f, map, i, n, f->channel_buffers[i], f->finalY[i], NULL); } } /* INVERSE MDCT */ for (i=0; i < f->channels; ++i) inverse_mdct(f->channel_buffers[i], n, f, m->blockflag); /* this shouldn't be necessary, unless we exited on an error * and want to flush to get to the next packet */ flush_packet(f); if (f->first_decode) { /* assume we start so first non-discarded sample is sample 0 * this isn't to spec, but spec would require us to read ahead * and decode the size of all current frames--could be done, * but presumably it's not a commonly used feature */ f->current_loc = -n2; /* start of first frame is positioned for discard */ /* we might have to discard samples "from" the next frame too, * if we're lapping a large block then a small at the start? */ f->discard_samples_deferred = n - right_end; f->current_loc_valid = TRUE; f->first_decode = FALSE; } else if (f->discard_samples_deferred) { left_start += f->discard_samples_deferred; *p_left = left_start; f->discard_samples_deferred = 0; } else if (f->previous_length == 0 && f->current_loc_valid) { /* we're recovering from a seek... that means we're going to discard * the samples from this packet even though we know our position from * the last page header, so we need to update the position based on * the discarded samples here * but wait, the code below is going to add this in itself even * on a discard, so we don't need to do it here... */ } /* check if we have ogg information about the sample # for this packet */ if (f->last_seg_which == f->end_seg_with_known_loc) { /* if we have a valid current loc, and this is final: */ if (f->current_loc_valid && (f->page_flag & PAGEFLAG_last_page)) { uint32_t current_end = f->known_loc_for_packet - (n-right_end); /* then let's infer the size of the (probably) short final frame */ if (current_end < f->current_loc + right_end) { if (current_end < f->current_loc) { /* negative truncation, that's impossible! */ *len = 0; } else { *len = current_end - f->current_loc; } *len += left_start; f->current_loc += *len; return TRUE; } } /* otherwise, just set our sample loc * guess that the ogg granule pos refers to the _middle_ of the * last frame? * set f->current_loc to the position of left_start */ f->current_loc = f->known_loc_for_packet - (n2-left_start); f->current_loc_valid = TRUE; } if (f->current_loc_valid) f->current_loc += (right_start - left_start); if (f->alloc.alloc_buffer) assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); *len = right_end; /* ignore samples after the window goes to 0 */ return TRUE; } static int vorbis_decode_packet(vorb *f, int *len, int *p_left, int *p_right) { int mode, left_end, right_end; if (!vorbis_decode_initial(f, p_left, &left_end, p_right, &right_end, &mode)) return 0; return vorbis_decode_packet_rest(f, len, f->mode_config + mode, *p_left, left_end, *p_right, right_end, p_left); } static int vorbis_finish_frame(stb_vorbis *f, int len, int left, int right) { int prev,i,j; /* we use right&left (the start of the right- and left-window sin()-regions) * to determine how much to return, rather than inferring from the rules * (same result, clearer code); 'left' indicates where our sin() window * starts, therefore where the previous window's right edge starts, and * therefore where to start mixing from the previous buffer. 'right' * indicates where our sin() ending-window starts, therefore that's where * we start saving, and where our returned-data ends. * mixin from previous window */ if (f->previous_length) { int i,j, n = f->previous_length; float *w = get_window(f, n); for (i=0; i < f->channels; ++i) { for (j=0; j < n; ++j) f->channel_buffers[i][left+j] = f->channel_buffers[i][left+j]*w[ j] + f->previous_window[i][ j]*w[n-1-j]; } } prev = f->previous_length; /* last half of this data becomes previous window */ f->previous_length = len - right; /* @OPTIMIZE: could avoid this copy by double-buffering the * output (flipping previous_window with channel_buffers), but * then previous_window would have to be 2x as large, and * channel_buffers couldn't be temp mem (although they're NOT * currently temp mem, they could be (unless we want to level * performance by spreading out the computation)) */ for (i=0; i < f->channels; ++i) for (j=0; right+j < len; ++j) f->previous_window[i][j] = f->channel_buffers[i][right+j]; if (!prev) /* there was no previous packet, so this data isn't valid... * this isn't entirely true, only the would-have-overlapped data * isn't valid, but this seems to be what the spec requires */ return 0; /* truncate a short frame */ if (len < right) right = len; f->samples_output += right-left; return right - left; } static void vorbis_pump_first_frame(stb_vorbis *f) { int len, right, left; if (vorbis_decode_packet(f, &len, &left, &right)) vorbis_finish_frame(f, len, left, right); } static int start_decoder(vorb *f) { uint8_t header[6], x,y; int len,i,j,k, max_submaps = 0; int longest_floorlist=0; /* first page, first packet */ if (!start_page(f)) return FALSE; /* validate page flag */ if (!(f->page_flag & PAGEFLAG_first_page)) return error(f, VORBIS_invalid_first_page); if (f->page_flag & PAGEFLAG_last_page) return error(f, VORBIS_invalid_first_page); if (f->page_flag & PAGEFLAG_continued_packet) return error(f, VORBIS_invalid_first_page); /* check for expected packet length */ if (f->segment_count != 1) return error(f, VORBIS_invalid_first_page); if (f->segments[0] != 30) return error(f, VORBIS_invalid_first_page); /* read packet * check packet header */ if (get8(f) != VORBIS_packet_id) return error(f, VORBIS_invalid_first_page); if (!getn(f, header, 6)) return error(f, VORBIS_unexpected_eof); if (!vorbis_validate(header)) return error(f, VORBIS_invalid_first_page); /* vorbis_version */ if (get32(f) != 0) return error(f, VORBIS_invalid_first_page); f->channels = get8(f); if (!f->channels) return error(f, VORBIS_invalid_first_page); if (f->channels > STB_VORBIS_MAX_CHANNELS) return error(f, VORBIS_too_many_channels); f->sample_rate = get32(f); if (!f->sample_rate) return error(f, VORBIS_invalid_first_page); get32(f); /* bitrate_maximum */ get32(f); /* bitrate_nominal */ get32(f); /* bitrate_minimum */ x = get8(f); { int log0,log1; log0 = x & 15; log1 = x >> 4; f->blocksize_0 = 1 << log0; f->blocksize_1 = 1 << log1; if (log0 < 6 || log0 > 13) return error(f, VORBIS_invalid_setup); if (log1 < 6 || log1 > 13) return error(f, VORBIS_invalid_setup); if (log0 > log1) return error(f, VORBIS_invalid_setup); } /* framing_flag */ x = get8(f); if (!(x & 1)) return error(f, VORBIS_invalid_first_page); /* second packet! */ if (!start_page(f)) return FALSE; if (!start_packet(f)) return FALSE; do { len = next_segment(f); skip(f, len); f->bytes_in_seg = 0; } while (len); /* third packet! */ if (!start_packet(f)) return FALSE; crc32_init(); /* always init it, to avoid multithread race conditions */ if (get8_packet(f) != VORBIS_packet_setup) return error(f, VORBIS_invalid_setup); for (i=0; i < 6; ++i) header[i] = get8_packet(f); if (!vorbis_validate(header)) return error(f, VORBIS_invalid_setup); /* codebooks */ f->codebook_count = get_bits(f,8) + 1; f->codebooks = (Codebook *) setup_malloc(f, sizeof(*f->codebooks) * f->codebook_count); if (f->codebooks == NULL) return error(f, VORBIS_outofmem); memset(f->codebooks, 0, sizeof(*f->codebooks) * f->codebook_count); for (i=0; i < f->codebook_count; ++i) { uint32_t *values; int ordered, sorted_count; int total=0; uint8_t *lengths; Codebook *c = f->codebooks+i; x = get_bits(f, 8); if (x != 0x42) return error(f, VORBIS_invalid_setup); x = get_bits(f, 8); if (x != 0x43) return error(f, VORBIS_invalid_setup); x = get_bits(f, 8); if (x != 0x56) return error(f, VORBIS_invalid_setup); x = get_bits(f, 8); c->dimensions = (get_bits(f, 8)<<8) + x; x = get_bits(f, 8); y = get_bits(f, 8); c->entries = (get_bits(f, 8)<<16) + (y<<8) + x; ordered = get_bits(f,1); c->sparse = ordered ? 0 : get_bits(f,1); if (c->sparse) lengths = (uint8_t *) setup_temp_malloc(f, c->entries); else lengths = c->codeword_lengths = (uint8_t *) setup_malloc(f, c->entries); if (!lengths) return error(f, VORBIS_outofmem); if (ordered) { int current_entry = 0; int current_length = get_bits(f,5) + 1; while (current_entry < c->entries) { int limit = c->entries - current_entry; int n = get_bits(f, ilog(limit)); if (current_entry + n > (int) c->entries) { return error(f, VORBIS_invalid_setup); } memset(lengths + current_entry, current_length, n); current_entry += n; ++current_length; } } else { for (j=0; j < c->entries; ++j) { int present = c->sparse ? get_bits(f,1) : 1; if (present) { lengths[j] = get_bits(f, 5) + 1; ++total; } else { lengths[j] = NO_CODE; } } } if (c->sparse && total >= c->entries >> 2) { /* convert sparse items to non-sparse! */ if (c->entries > (int) f->setup_temp_memory_required) f->setup_temp_memory_required = c->entries; c->codeword_lengths = (uint8_t *) setup_malloc(f, c->entries); memcpy(c->codeword_lengths, lengths, c->entries); setup_temp_free(f, lengths, c->entries); /* note this is only safe if there have been no intervening temp mallocs! */ lengths = c->codeword_lengths; c->sparse = 0; } /* compute the size of the sorted tables */ if (c->sparse) { sorted_count = total; } else { sorted_count = 0; #ifndef STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH for (j=0; j < c->entries; ++j) if (lengths[j] > STB_VORBIS_FAST_HUFFMAN_LENGTH && lengths[j] != NO_CODE) ++sorted_count; #endif } c->sorted_entries = sorted_count; values = NULL; if (!c->sparse) { c->codewords = (uint32_t *) setup_malloc(f, sizeof(c->codewords[0]) * c->entries); if (!c->codewords) return error(f, VORBIS_outofmem); } else { unsigned int size; if (c->sorted_entries) { c->codeword_lengths = (uint8_t *) setup_malloc(f, c->sorted_entries); if (!c->codeword_lengths) return error(f, VORBIS_outofmem); c->codewords = (uint32_t *) setup_temp_malloc(f, sizeof(*c->codewords) * c->sorted_entries); if (!c->codewords) return error(f, VORBIS_outofmem); values = (uint32_t *) setup_temp_malloc(f, sizeof(*values) * c->sorted_entries); if (!values) return error(f, VORBIS_outofmem); } size = c->entries + (sizeof(*c->codewords) + sizeof(*values)) * c->sorted_entries; if (size > f->setup_temp_memory_required) f->setup_temp_memory_required = size; } if (!compute_codewords(c, lengths, c->entries, values)) { if (c->sparse) setup_temp_free(f, values, 0); return error(f, VORBIS_invalid_setup); } if (c->sorted_entries) { /* allocate an extra slot for sentinels */ c->sorted_codewords = (uint32_t *) setup_malloc(f, sizeof(*c->sorted_codewords) * (c->sorted_entries+1)); /* allocate an extra slot at the front so that c->sorted_values[-1] is defined * so that we can catch that case without an extra if */ c->sorted_values = ( int *) setup_malloc(f, sizeof(*c->sorted_values ) * (c->sorted_entries+1)); if (c->sorted_values) { ++c->sorted_values; c->sorted_values[-1] = -1; } compute_sorted_huffman(c, lengths, values); } if (c->sparse) { setup_temp_free(f, values, sizeof(*values)*c->sorted_entries); setup_temp_free(f, c->codewords, sizeof(*c->codewords)*c->sorted_entries); setup_temp_free(f, lengths, c->entries); c->codewords = NULL; } compute_accelerated_huffman(c); c->lookup_type = get_bits(f, 4); if (c->lookup_type > 2) return error(f, VORBIS_invalid_setup); if (c->lookup_type > 0) { uint16_t *mults; c->minimum_value = float32_unpack(get_bits(f, 32)); c->delta_value = float32_unpack(get_bits(f, 32)); c->value_bits = get_bits(f, 4)+1; c->sequence_p = get_bits(f,1); if (c->lookup_type == 1) { c->lookup_values = lookup1_values(c->entries, c->dimensions); } else { c->lookup_values = c->entries * c->dimensions; } mults = (uint16_t *) setup_temp_malloc(f, sizeof(mults[0]) * c->lookup_values); if (mults == NULL) return error(f, VORBIS_outofmem); for (j=0; j < (int) c->lookup_values; ++j) { int q = get_bits(f, c->value_bits); if (q == EOP) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_invalid_setup); } mults[j] = q; } if (c->lookup_type == 1) { int len, sparse = c->sparse; /* pre-expand the lookup1-style multiplicands, to avoid a divide in the inner loop */ if (sparse) { if (c->sorted_entries == 0) goto skip; c->multiplicands = (stb_vorbis_codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->sorted_entries * c->dimensions); } else c->multiplicands = (stb_vorbis_codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->entries * c->dimensions); if (c->multiplicands == NULL) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); } len = sparse ? c->sorted_entries : c->entries; for (j=0; j < len; ++j) { int z = sparse ? c->sorted_values[j] : j, div=1; for (k=0; k < c->dimensions; ++k) { int off = (z / div) % c->lookup_values; c->multiplicands[j*c->dimensions + k] = #ifndef STB_VORBIS_CODEBOOK_FLOATS mults[off]; #else mults[off]*c->delta_value + c->minimum_value; /* in this case (and this case only) we could pre-expand c->sequence_p, * and throw away the decode logic for it; have to ALSO do * it in the case below, but it can only be done if * STB_VORBIS_CODEBOOK_FLOATS */ #endif div *= c->lookup_values; } } setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values); c->lookup_type = 2; } else { c->multiplicands = (stb_vorbis_codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->lookup_values); #ifndef STB_VORBIS_CODEBOOK_FLOATS memcpy(c->multiplicands, mults, sizeof(c->multiplicands[0]) * c->lookup_values); #else for (j=0; j < (int) c->lookup_values; ++j) c->multiplicands[j] = mults[j] * c->delta_value + c->minimum_value; #endif setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values); } skip:; #ifdef STB_VORBIS_CODEBOOK_FLOATS if (c->lookup_type == 2 && c->sequence_p) { for (j=1; j < (int) c->lookup_values; ++j) c->multiplicands[j] = c->multiplicands[j-1]; c->sequence_p = 0; } #endif } } /* time domain transfers (notused) */ x = get_bits(f, 6) + 1; for (i=0; i < x; ++i) { uint32_t z = get_bits(f, 16); if (z != 0) return error(f, VORBIS_invalid_setup); } /* Floors */ f->floor_count = get_bits(f, 6)+1; f->floor_config = (Floor *) setup_malloc(f, f->floor_count * sizeof(*f->floor_config)); for (i=0; i < f->floor_count; ++i) { f->floor_types[i] = get_bits(f, 16); if (f->floor_types[i] > 1) return error(f, VORBIS_invalid_setup); if (f->floor_types[i] == 0) { Floor0 *g = &f->floor_config[i].floor0; g->order = get_bits(f,8); g->rate = get_bits(f,16); g->bark_map_size = get_bits(f,16); g->amplitude_bits = get_bits(f,6); g->amplitude_offset = get_bits(f,8); g->number_of_books = get_bits(f,4) + 1; for (j=0; j < g->number_of_books; ++j) g->book_list[j] = get_bits(f,8); return error(f, VORBIS_feature_not_supported); } else { STBV_Point p[31*8+2]; Floor1 *g = &f->floor_config[i].floor1; int max_class = -1; g->partitions = get_bits(f, 5); for (j=0; j < g->partitions; ++j) { g->partition_class_list[j] = get_bits(f, 4); if (g->partition_class_list[j] > max_class) max_class = g->partition_class_list[j]; } for (j=0; j <= max_class; ++j) { g->class_dimensions[j] = get_bits(f, 3)+1; g->class_subclasses[j] = get_bits(f, 2); if (g->class_subclasses[j]) { g->class_masterbooks[j] = get_bits(f, 8); if (g->class_masterbooks[j] >= f->codebook_count) return error(f, VORBIS_invalid_setup); } for (k=0; k < 1 << g->class_subclasses[j]; ++k) { g->subclass_books[j][k] = get_bits(f,8)-1; if (g->subclass_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup); } } g->floor1_multiplier = get_bits(f,2)+1; g->rangebits = get_bits(f,4); g->Xlist[0] = 0; g->Xlist[1] = 1 << g->rangebits; g->values = 2; for (j=0; j < g->partitions; ++j) { int c = g->partition_class_list[j]; for (k=0; k < g->class_dimensions[c]; ++k) { g->Xlist[g->values] = get_bits(f, g->rangebits); ++g->values; } } /* precompute the sorting */ for (j=0; j < g->values; ++j) { p[j].x = g->Xlist[j]; p[j].y = j; } qsort(p, g->values, sizeof(p[0]), point_compare); for (j=0; j < g->values; ++j) g->sorted_order[j] = (uint8_t) p[j].y; /* precompute the neighbors */ for (j=2; j < g->values; ++j) { int low = 0; int hi = 0; neighbors(g->Xlist, j, &low,&hi); g->neighbors[j][0] = low; g->neighbors[j][1] = hi; } if (g->values > longest_floorlist) longest_floorlist = g->values; } } /* Residue */ f->residue_count = get_bits(f, 6)+1; f->residue_config = (Residue *) setup_malloc(f, f->residue_count * sizeof(*f->residue_config)); for (i=0; i < f->residue_count; ++i) { uint8_t residue_cascade[64]; Residue *r = f->residue_config+i; f->residue_types[i] = get_bits(f, 16); if (f->residue_types[i] > 2) return error(f, VORBIS_invalid_setup); r->begin = get_bits(f, 24); r->end = get_bits(f, 24); r->part_size = get_bits(f,24)+1; r->classifications = get_bits(f,6)+1; r->classbook = get_bits(f,8); for (j=0; j < r->classifications; ++j) { uint8_t high_bits=0; uint8_t low_bits=get_bits(f,3); if (get_bits(f,1)) high_bits = get_bits(f,5); residue_cascade[j] = high_bits*8 + low_bits; } r->residue_books = (short (*)[8]) setup_malloc(f, sizeof(r->residue_books[0]) * r->classifications); for (j=0; j < r->classifications; ++j) { for (k=0; k < 8; ++k) { if (residue_cascade[j] & (1 << k)) { r->residue_books[j][k] = get_bits(f, 8); if (r->residue_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup); } else { r->residue_books[j][k] = -1; } } } /* precompute the classifications[] array to avoid inner-loop mod/divide * call it 'classdata' since we already have r->classifications */ r->classdata = (uint8_t **) setup_malloc(f, sizeof(*r->classdata) * f->codebooks[r->classbook].entries); if (!r->classdata) return error(f, VORBIS_outofmem); memset(r->classdata, 0, sizeof(*r->classdata) * f->codebooks[r->classbook].entries); for (j=0; j < f->codebooks[r->classbook].entries; ++j) { int classwords = f->codebooks[r->classbook].dimensions; int temp = j; r->classdata[j] = (uint8_t *) setup_malloc(f, sizeof(r->classdata[j][0]) * classwords); for (k=classwords-1; k >= 0; --k) { r->classdata[j][k] = temp % r->classifications; temp /= r->classifications; } } } f->mapping_count = get_bits(f,6)+1; f->mapping = (Mapping *) setup_malloc(f, f->mapping_count * sizeof(*f->mapping)); for (i=0; i < f->mapping_count; ++i) { Mapping *m = f->mapping + i; int mapping_type = get_bits(f,16); if (mapping_type != 0) return error(f, VORBIS_invalid_setup); m->chan = (MappingChannel *) setup_malloc(f, f->channels * sizeof(*m->chan)); if (get_bits(f,1)) m->submaps = get_bits(f,4)+1; else m->submaps = 1; if (m->submaps > max_submaps) max_submaps = m->submaps; if (get_bits(f,1)) { m->coupling_steps = get_bits(f,8)+1; for (k=0; k < m->coupling_steps; ++k) { m->chan[k].magnitude = get_bits(f, ilog(f->channels-1)); m->chan[k].angle = get_bits(f, ilog(f->channels-1)); if (m->chan[k].magnitude >= f->channels) return error(f, VORBIS_invalid_setup); if (m->chan[k].angle >= f->channels) return error(f, VORBIS_invalid_setup); if (m->chan[k].magnitude == m->chan[k].angle) return error(f, VORBIS_invalid_setup); } } else m->coupling_steps = 0; /* reserved field */ if (get_bits(f,2)) return error(f, VORBIS_invalid_setup); if (m->submaps > 1) { for (j=0; j < f->channels; ++j) { m->chan[j].mux = get_bits(f, 4); if (m->chan[j].mux >= m->submaps) return error(f, VORBIS_invalid_setup); } } else /* @SPECIFICATION: this case is missing from the spec */ for (j=0; j < f->channels; ++j) m->chan[j].mux = 0; for (j=0; j < m->submaps; ++j) { get_bits(f,8); /* discard */ m->submap_floor[j] = get_bits(f,8); m->submap_residue[j] = get_bits(f,8); if (m->submap_floor[j] >= f->floor_count) return error(f, VORBIS_invalid_setup); if (m->submap_residue[j] >= f->residue_count) return error(f, VORBIS_invalid_setup); } } /* Modes */ f->mode_count = get_bits(f, 6)+1; for (i=0; i < f->mode_count; ++i) { Mode *m = f->mode_config+i; m->blockflag = get_bits(f,1); m->windowtype = get_bits(f,16); m->transformtype = get_bits(f,16); m->mapping = get_bits(f,8); if (m->windowtype != 0) return error(f, VORBIS_invalid_setup); if (m->transformtype != 0) return error(f, VORBIS_invalid_setup); if (m->mapping >= f->mapping_count) return error(f, VORBIS_invalid_setup); } flush_packet(f); f->previous_length = 0; for (i=0; i < f->channels; ++i) { f->channel_buffers[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1); f->previous_window[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2); f->finalY[i] = (int16_t *) setup_malloc(f, sizeof(int16_t) * longest_floorlist); } if (!init_blocksize(f, 0, f->blocksize_0)) return FALSE; if (!init_blocksize(f, 1, f->blocksize_1)) return FALSE; f->blocksize[0] = f->blocksize_0; f->blocksize[1] = f->blocksize_1; /* compute how much temporary memory is needed */ /* 1. */ { uint32_t imdct_mem = (f->blocksize_1 * sizeof(float) >> 1); uint32_t classify_mem; int i,max_part_read=0; for (i=0; i < f->residue_count; ++i) { Residue *r = f->residue_config + i; int n_read = r->end - r->begin; int part_read = n_read / r->part_size; if (part_read > max_part_read) max_part_read = part_read; } classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(uint8_t *)); f->temp_memory_required = classify_mem; if (imdct_mem > f->temp_memory_required) f->temp_memory_required = imdct_mem; } f->first_decode = TRUE; if (f->alloc.alloc_buffer) { assert(f->temp_offset == f->alloc.alloc_buffer_length_in_bytes); /* check if there's enough temp memory so we don't error later */ if (f->setup_offset + sizeof(*f) + f->temp_memory_required > (unsigned) f->temp_offset) return error(f, VORBIS_outofmem); } f->first_audio_page_offset = stb_vorbis_get_file_offset(f); return TRUE; } static void vorbis_deinit(stb_vorbis *p) { int i,j; for (i=0; i < p->residue_count; ++i) { Residue *r = p->residue_config+i; if (r->classdata) { for (j=0; j < p->codebooks[r->classbook].entries; ++j) setup_free(p, r->classdata[j]); setup_free(p, r->classdata); } setup_free(p, r->residue_books); } if (p->codebooks) { for (i=0; i < p->codebook_count; ++i) { Codebook *c = p->codebooks + i; setup_free(p, c->codeword_lengths); setup_free(p, c->multiplicands); setup_free(p, c->codewords); setup_free(p, c->sorted_codewords); /* c->sorted_values[-1] is the first entry in the array */ setup_free(p, c->sorted_values ? c->sorted_values-1 : NULL); } setup_free(p, p->codebooks); } setup_free(p, p->floor_config); setup_free(p, p->residue_config); for (i=0; i < p->mapping_count; ++i) setup_free(p, p->mapping[i].chan); setup_free(p, p->mapping); for (i=0; i < p->channels; ++i) { setup_free(p, p->channel_buffers[i]); setup_free(p, p->previous_window[i]); setup_free(p, p->finalY[i]); } for (i=0; i < 2; ++i) { setup_free(p, p->A[i]); setup_free(p, p->B[i]); setup_free(p, p->C[i]); setup_free(p, p->window[i]); setup_free(p, p->bit_reverse[i]); } } void stb_vorbis_close(stb_vorbis *p) { if (p == NULL) return; vorbis_deinit(p); setup_free(p,p); } static void vorbis_init(stb_vorbis *p, stb_vorbis_alloc *z) { memset(p, 0, sizeof(*p)); /* NULL out all malloc'd pointers to start */ if (z) { p->alloc = *z; p->alloc.alloc_buffer_length_in_bytes = (p->alloc.alloc_buffer_length_in_bytes+3) & ~3; p->temp_offset = p->alloc.alloc_buffer_length_in_bytes; } p->eof = 0; p->error = VORBIS__no_error; p->stream = NULL; p->codebooks = NULL; p->page_crc_tests = -1; } int stb_vorbis_get_sample_offset(stb_vorbis *f) { if (f->current_loc_valid) return f->current_loc; return -1; } stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f) { stb_vorbis_info d; d.channels = f->channels; d.sample_rate = f->sample_rate; d.setup_memory_required = f->setup_memory_required; d.setup_temp_memory_required = f->setup_temp_memory_required; d.temp_memory_required = f->temp_memory_required; d.max_frame_size = f->blocksize_1 >> 1; return d; } int stb_vorbis_get_error(stb_vorbis *f) { int e = f->error; f->error = VORBIS__no_error; return e; } static stb_vorbis * vorbis_alloc(stb_vorbis *f) { stb_vorbis *p = (stb_vorbis *) setup_malloc(f, sizeof(*p)); return p; } unsigned int stb_vorbis_get_file_offset(stb_vorbis *f) { return (unsigned int)(f->stream - f->stream_start); } #ifndef STB_VORBIS_NO_PULLDATA_API /* DATA-PULLING API */ static uint32_t vorbis_find_page(stb_vorbis *f, uint32_t *end, uint32_t *last) { for(;;) { int n; if (f->eof) return 0; n = get8(f); if (n == 0x4f) { /* page header */ unsigned int retry_loc = stb_vorbis_get_file_offset(f); int i; /* check if we're off the end of a file_section stream */ if (retry_loc - 25 > f->stream_len) return 0; /* check the rest of the header */ for (i=1; i < 4; ++i) if (get8(f) != ogg_page_header[i]) break; if (f->eof) return 0; if (i == 4) { uint8_t header[27]; uint32_t i, crc, goal, len; for (i=0; i < 4; ++i) header[i] = ogg_page_header[i]; for (; i < 27; ++i) header[i] = get8(f); if (f->eof) return 0; if (header[4] != 0) goto invalid; goal = header[22] + (header[23] << 8) + (header[24]<<16) + (header[25]<<24); for (i=22; i < 26; ++i) header[i] = 0; crc = 0; for (i=0; i < 27; ++i) crc = crc32_update(crc, header[i]); len = 0; for (i=0; i < header[26]; ++i) { int s = get8(f); crc = crc32_update(crc, s); len += s; } if (len && f->eof) return 0; for (i=0; i < len; ++i) crc = crc32_update(crc, get8(f)); /* finished parsing probable page */ if (crc == goal) { /* we could now check that it's either got the last * page flag set, OR it's followed by the capture * pattern, but I guess TECHNICALLY you could have * a file with garbage between each ogg page and recover * from it automatically? So even though that paranoia * might decrease the chance of an invalid decode by * another 2^32, not worth it since it would hose those * invalid-but-useful files? */ if (end) *end = stb_vorbis_get_file_offset(f); if (last) { if (header[5] & 0x04) *last = 1; else *last = 0; } set_file_offset(f, retry_loc-1); return 1; } } invalid: /* not a valid page, so rewind and look for next one */ set_file_offset(f, retry_loc); } } } /* seek is implemented with 'interpolation search'--this is like * binary search, but we use the data values to estimate the likely * location of the data item (plus a bit of a bias so when the * estimation is wrong we don't waste overly much time) */ #define SAMPLE_unknown 0xffffffff /* ogg vorbis, in its insane infinite wisdom, only provides * information about the sample at the END of the page. * therefore we COULD have the data we need in the current * page, and not know it. we could just use the end location * as our only knowledge for bounds, seek back, and eventually * the binary search finds it. or we can try to be smart and * not waste time trying to locate more pages. we try to be * smart, since this data is already in memory anyway, so * doing needless I/O would be crazy! */ static int vorbis_analyze_page(stb_vorbis *f, ProbedPage *z) { uint8_t lacing[255]; uint8_t packet_type[255]; int num_packet, packet_start; int i,len; uint32_t samples; uint8_t header[27] = {0}; /* record where the page starts */ z->page_start = stb_vorbis_get_file_offset(f); /* parse the header */ getn(f, header, 27); assert(header[0] == 'O' && header[1] == 'g' && header[2] == 'g' && header[3] == 'S'); getn(f, lacing, header[26]); /* determine the length of the payload */ len = 0; for (i=0; i < header[26]; ++i) len += lacing[i]; /* this implies where the page ends */ z->page_end = z->page_start + 27 + header[26] + len; /* read the last-decoded sample out of the data */ z->last_decoded_sample = header[6] + (header[7] << 8) + (header[8] << 16) + (header[9] << 16); if (header[5] & 4) { /* if this is the last page, it's not possible to work * backwards to figure out the first sample! whoops! fuck. */ z->first_decoded_sample = SAMPLE_unknown; set_file_offset(f, z->page_start); return 1; } /* scan through the frames to determine the sample-count of each one... * our goal is the sample # of the first fully-decoded sample on the * page, which is the first decoded sample of the 2nd packet */ num_packet=0; packet_start = ((header[5] & 1) == 0); for (i=0; i < header[26]; ++i) { if (packet_start) { uint8_t n,b; if (lacing[i] == 0) goto bail; /* trying to read from zero-length packet */ n = get8(f); /* if bottom bit is non-zero, we've got corruption */ if (n & 1) goto bail; n >>= 1; b = ilog(f->mode_count-1); n &= (1 << b)-1; if (n >= f->mode_count) goto bail; packet_type[num_packet++] = f->mode_config[n].blockflag; skip(f, lacing[i]-1); } else skip(f, lacing[i]); packet_start = (lacing[i] < 255); } /* now that we know the sizes of all the pages, we can start determining * how much sample data there is. */ samples = 0; /* for the last packet, we step by its whole length, because the definition * is that we encoded the end sample loc of the 'last packet completed', * where 'completed' refers to packets being split, and we are left to guess * what 'end sample loc' means. we assume it means ignoring the fact that * the last half of the data is useless without windowing against the next * packet... (so it's not REALLY complete in that sense) */ if (num_packet > 1) samples += f->blocksize[packet_type[num_packet-1]]; for (i=num_packet-2; i >= 1; --i) { /* now, for this packet, how many samples do we have that * do not overlap the following packet? */ if (packet_type[i] == 1) if (packet_type[i+1] == 1) samples += f->blocksize_1 >> 1; else samples += ((f->blocksize_1 - f->blocksize_0) >> 2) + (f->blocksize_0 >> 1); else samples += f->blocksize_0 >> 1; } /* now, at this point, we've rewound to the very beginning of the * _second_ packet. if we entirely discard the first packet after * a seek, this will be exactly the right sample number. HOWEVER! * we can't as easily compute this number for the LAST page. The * only way to get the sample offset of the LAST page is to use * the end loc from the previous page. But what that returns us * is _exactly_ the place where we get our first non-overlapped * sample. (I think. Stupid spec for being ambiguous.) So for * consistency it's better to do that here, too. However, that * will then require us to NOT discard all of the first frame we * decode, in some cases, which means an even weirder frame size * and extra code. what a fucking pain. * we're going to discard the first packet if we * start the seek here, so we don't care about it. (we could actually * do better; if the first packet is long, and the previous packet * is short, there's actually data in the first half of the first * packet that doesn't need discarding... but not worth paying the * effort of tracking that of that here and in the seeking logic) * except crap, if we infer it from the _previous_ packet's end * location, we DO need to use that definition... and we HAVE to * infer the start loc of the LAST packet from the previous packet's * end location. fuck you, ogg vorbis. */ z->first_decoded_sample = z->last_decoded_sample - samples; /* restore file state to where we were */ set_file_offset(f, z->page_start); return 1; /* restore file state to where we were */ bail: set_file_offset(f, z->page_start); return 0; } static int vorbis_seek_frame_from_page(stb_vorbis *f, uint32_t page_start, uint32_t first_sample, uint32_t target_sample, int fine) { int left_start, left_end, right_start, right_end, mode,i; int frame=0; uint32_t frame_start; int frames_to_skip, data_to_skip; /* first_sample is the sample # of the first sample that doesn't * overlap the previous page... note that this requires us to * _partially_ discard the first packet! bleh. */ set_file_offset(f, page_start); f->next_seg = -1; /* force page resync */ frame_start = first_sample; /* frame start is where the previous packet's last decoded sample * was, which corresponds to left_end... EXCEPT if the previous * packet was long and this packet is short? Probably a bug here. * now, we can start decoding frames... we'll only FAKE decode them, * until we find the frame that contains our sample; then we'll rewind, * and try again */ for (;;) { int start; if (!vorbis_decode_initial(f, &left_start, &left_end, &right_start, &right_end, &mode)) return error(f, VORBIS_seek_failed); if (frame == 0) start = left_end; else start = left_start; /* the window starts at left_start; the last valid sample we generate * before the next frame's window start is right_start-1 */ if (target_sample < frame_start + right_start-start) break; flush_packet(f); if (f->eof) return error(f, VORBIS_seek_failed); frame_start += right_start - start; ++frame; } /* ok, at this point, the sample we want is contained in frame #'frame' * to decode frame #'frame' normally, we have to decode the * previous frame first... but if it's the FIRST frame of the page * we can't. if it's the first frame, it means it falls in the part * of the first frame that doesn't overlap either of the other frames. * so, if we have to handle that case for the first frame, we might * as well handle it for all of them, so: */ if (target_sample > frame_start + (left_end - left_start)) { /* so what we want to do is go ahead and just immediately decode * this frame, but then make it so the next get_frame_float() uses * this already-decoded data? or do we want to go ahead and rewind, * and leave a flag saying to skip the first N data? let's do that */ frames_to_skip = frame; /* if this is frame #1, skip 1 frame (#0) */ data_to_skip = left_end - left_start; } else { /* otherwise, we want to skip frames 0, 1, 2, ... frame-2 * (which means frame-2+1 total frames) then decode frame-1, * then leave frame pending */ frames_to_skip = frame - 1; assert(frames_to_skip >= 0); data_to_skip = -1; } set_file_offset(f, page_start); f->next_seg = - 1; /* force page resync */ for (i=0; i < frames_to_skip; ++i) { maybe_start_packet(f); flush_packet(f); } if (data_to_skip >= 0) { int i,j,n = f->blocksize_0 >> 1; f->discard_samples_deferred = data_to_skip; for (i=0; i < f->channels; ++i) for (j=0; j < n; ++j) f->previous_window[i][j] = 0; f->previous_length = n; frame_start += data_to_skip; } else { f->previous_length = 0; vorbis_pump_first_frame(f); } /* at this point, the NEXT decoded frame will generate the desired sample */ if (fine) { /* so if we're doing sample accurate streaming, we want to go ahead and decode it! */ if (target_sample != frame_start) { int n; stb_vorbis_get_frame_float(f, &n, NULL); assert(target_sample > frame_start); assert(f->channel_buffer_start + (int) (target_sample-frame_start) < f->channel_buffer_end); f->channel_buffer_start += (target_sample - frame_start); } } return 0; } static int vorbis_seek_base(stb_vorbis *f, unsigned int sample_number, int fine) { ProbedPage p[2],q; if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); /* do we know the location of the last page? */ if (f->p_last.page_start == 0) { uint32_t z = stb_vorbis_stream_length_in_samples(f); if (z == 0) return error(f, VORBIS_cant_find_last_page); } p[0] = f->p_first; p[1] = f->p_last; if (sample_number >= f->p_last.last_decoded_sample) sample_number = f->p_last.last_decoded_sample-1; if (sample_number < f->p_first.last_decoded_sample) { vorbis_seek_frame_from_page(f, p[0].page_start, 0, sample_number, fine); return 0; } else { int attempts=0; while (p[0].page_end < p[1].page_start) { uint32_t probe; uint32_t start_offset, end_offset; uint32_t start_sample, end_sample; /* copy these into local variables so we can tweak them * if any are unknown */ start_offset = p[0].page_end; end_offset = p[1].after_previous_page_start; /* an address known to seek to page p[1] */ start_sample = p[0].last_decoded_sample; end_sample = p[1].last_decoded_sample; /* currently there is no such tweaking logic needed/possible? */ if (start_sample == SAMPLE_unknown || end_sample == SAMPLE_unknown) return error(f, VORBIS_seek_failed); /* now we want to lerp between these for the target samples... */ /* step 1: we need to bias towards the page start... */ if (start_offset + 4000 < end_offset) end_offset -= 4000; /* now compute an interpolated search loc */ probe = start_offset + (int) floor((float) (end_offset - start_offset) / (end_sample - start_sample) * (sample_number - start_sample)); /* next we need to bias towards binary search... * code is a little wonky to allow for full 32-bit unsigned values */ if (attempts >= 4) { uint32_t probe2 = start_offset + ((end_offset - start_offset) >> 1); if (attempts >= 8) probe = probe2; else if (probe < probe2) probe = probe + ((probe2 - probe) >> 1); else probe = probe2 + ((probe - probe2) >> 1); } ++attempts; set_file_offset(f, probe); if (!vorbis_find_page(f, NULL, NULL)) return error(f, VORBIS_seek_failed); if (!vorbis_analyze_page(f, &q)) return error(f, VORBIS_seek_failed); q.after_previous_page_start = probe; /* it's possible we've just found the last page again */ if (q.page_start == p[1].page_start) { p[1] = q; continue; } if (sample_number < q.last_decoded_sample) p[1] = q; else p[0] = q; } if (p[0].last_decoded_sample <= sample_number && sample_number < p[1].last_decoded_sample) { vorbis_seek_frame_from_page(f, p[1].page_start, p[0].last_decoded_sample, sample_number, fine); return 0; } return error(f, VORBIS_seek_failed); } } int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number) { return vorbis_seek_base(f, sample_number, FALSE); } int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number) { return vorbis_seek_base(f, sample_number, TRUE); } void stb_vorbis_seek_start(stb_vorbis *f) { if (IS_PUSH_MODE(f)) { error(f, VORBIS_invalid_api_mixing); return; } set_file_offset(f, f->first_audio_page_offset); f->previous_length = 0; f->first_decode = TRUE; f->next_seg = -1; vorbis_pump_first_frame(f); } unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f) { unsigned int restore_offset, previous_safe; unsigned int end, last_page_loc; if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); if (!f->total_samples) { unsigned int last; uint32_t lo,hi; char header[6]; /* first, store the current decode position so we can restore it */ restore_offset = stb_vorbis_get_file_offset(f); /* now we want to seek back 64K from the end (the last page must * be at most a little less than 64K, but let's allow a little slop) */ if (f->stream_len >= 65536 && f->stream_len-65536 >= f->first_audio_page_offset) previous_safe = f->stream_len - 65536; else previous_safe = f->first_audio_page_offset; set_file_offset(f, previous_safe); /* previous_safe is now our candidate 'earliest known place that seeking * to will lead to the final page' */ if (!vorbis_find_page(f, &end, &last)) { /* if we can't find a page, we're hosed! */ f->error = VORBIS_cant_find_last_page; f->total_samples = 0xffffffff; goto done; } /* check if there are more pages */ last_page_loc = stb_vorbis_get_file_offset(f); /* stop when the last_page flag is set, not when we reach eof; * this allows us to stop short of a 'file_section' end without * explicitly checking the length of the section */ while (!last) { set_file_offset(f, end); if (!vorbis_find_page(f, &end, &last)) { /* the last page we found didn't have the 'last page' flag * set. whoops! */ break; } previous_safe = last_page_loc+1; last_page_loc = stb_vorbis_get_file_offset(f); } set_file_offset(f, last_page_loc); /* parse the header */ getn(f, (unsigned char *)header, 6); /* extract the absolute granule position */ lo = get32(f); hi = get32(f); if (lo == 0xffffffff && hi == 0xffffffff) { f->error = VORBIS_cant_find_last_page; f->total_samples = SAMPLE_unknown; goto done; } if (hi) lo = 0xfffffffe; /* saturate */ f->total_samples = lo; f->p_last.page_start = last_page_loc; f->p_last.page_end = end; f->p_last.last_decoded_sample = lo; f->p_last.first_decoded_sample = SAMPLE_unknown; f->p_last.after_previous_page_start = previous_safe; done: set_file_offset(f, restore_offset); } return f->total_samples == SAMPLE_unknown ? 0 : f->total_samples; } float stb_vorbis_stream_length_in_seconds(stb_vorbis *f) { return stb_vorbis_stream_length_in_samples(f) / (float) f->sample_rate; } int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output) { int len, right,left,i; if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); if (!vorbis_decode_packet(f, &len, &left, &right)) { f->channel_buffer_start = f->channel_buffer_end = 0; return 0; } len = vorbis_finish_frame(f, len, left, right); for (i=0; i < f->channels; ++i) f->outputs[i] = f->channel_buffers[i] + left; f->channel_buffer_start = left; f->channel_buffer_end = left+len; if (channels) *channels = f->channels; if (output) *output = f->outputs; return len; } stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len, int *error, stb_vorbis_alloc *alloc) { stb_vorbis *f, p; if (data == NULL) return NULL; vorbis_init(&p, alloc); p.stream = (uint8_t *) data; p.stream_end = (uint8_t *) data + len; p.stream_start = (uint8_t *) p.stream; p.stream_len = len; p.push_mode = FALSE; if (start_decoder(&p)) { f = vorbis_alloc(&p); if (f) { *f = p; vorbis_pump_first_frame(f); return f; } } if (error) *error = p.error; vorbis_deinit(&p); return NULL; } int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats) { float **outputs; int len = num_floats / channels; int n=0; int z = f->channels; if (z > channels) z = channels; while (n < len) { int i,j; int k = f->channel_buffer_end - f->channel_buffer_start; if (n+k >= len) k = len - n; for (j=0; j < k; ++j) { for (i=0; i < z; ++i) *buffer++ = f->channel_buffers[i][f->channel_buffer_start+j]; for ( ; i < channels; ++i) *buffer++ = 0; } n += k; f->channel_buffer_start += k; if (n == len) break; if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break; } return n; } int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples) { float **outputs; int n=0; int z = f->channels; if (z > channels) z = channels; while (n < num_samples) { int i; int k = f->channel_buffer_end - f->channel_buffer_start; if (n+k >= num_samples) k = num_samples - n; if (k) { for (i=0; i < z; ++i) memcpy(buffer[i]+n, f->channel_buffers[i]+f->channel_buffer_start, sizeof(float)*k); for ( ; i < channels; ++i) memset(buffer[i]+n, 0, sizeof(float) * k); } n += k; f->channel_buffer_start += k; if (n == num_samples) break; if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break; } return n; } #endif /* STB_VORBIS_NO_PULLDATA_API */ #endif /* STB_VORBIS_HEADER_ONLY */