/* * pthread_rwlock.c * * Description: * This translation unit implements read/write lock primitives. * * -------------------------------------------------------------------------- * * Pthreads-embedded (PTE) - POSIX Threads Library for embedded systems * Copyright(C) 2008 Jason Schmidlapp * * Contact Email: jschmidlapp@users.sourceforge.net * * * Based upon Pthreads-win32 - POSIX Threads Library for Win32 * Copyright(C) 1998 John E. Bossom * Copyright(C) 1999,2005 Pthreads-win32 contributors * * Contact Email: rpj@callisto.canberra.edu.au * * The original list of contributors to the Pthreads-win32 project * is contained in the file CONTRIBUTORS.ptw32 included with the * source code distribution. The list can also be seen at the * following World Wide Web location: * http://sources.redhat.com/pthreads-win32/contributors.html * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library in the file COPYING.LIB; * if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include #include #include "pthread.h" #include "implement.h" int pthread_rwlock_destroy (pthread_rwlock_t * rwlock) { pthread_rwlock_t rwl; int result = 0, result1 = 0, result2 = 0; if (rwlock == NULL || *rwlock == NULL) return EINVAL; if (*rwlock != PTHREAD_RWLOCK_INITIALIZER) { rwl = *rwlock; if (rwl->nMagic != PTE_RWLOCK_MAGIC) return EINVAL; if ((result = pthread_mutex_lock (&(rwl->mtxExclusiveAccess))) != 0) return result; if ((result = pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } /* * Check whether any threads own/wait for the lock (wait for ex.access); * report "BUSY" if so. */ if (rwl->nExclusiveAccessCount > 0 || rwl->nSharedAccessCount > rwl->nCompletedSharedAccessCount) { result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted)); result1 = pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); result2 = EBUSY; } else { rwl->nMagic = 0; if ((result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0) { pthread_mutex_unlock (&rwl->mtxExclusiveAccess); return result; } if ((result = pthread_mutex_unlock (&(rwl->mtxExclusiveAccess))) != 0) return result; *rwlock = NULL; /* Invalidate rwlock before anything else */ result = pthread_cond_destroy (&(rwl->cndSharedAccessCompleted)); result1 = pthread_mutex_destroy (&(rwl->mtxSharedAccessCompleted)); result2 = pthread_mutex_destroy (&(rwl->mtxExclusiveAccess)); (void) free (rwl); } } else { /* * See notes in pte_rwlock_check_need_init() above also. */ pte_osMutexLock (pte_rwlock_test_init_lock); /* * Check again. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { /* * This is all we need to do to destroy a statically * initialised rwlock that has not yet been used (initialised). * If we get to here, another thread * waiting to initialise this rwlock will get an EINVAL. */ *rwlock = NULL; } /* * The rwlock has been initialised while we were waiting * so assume it's in use. */ else result = EBUSY; pte_osMutexUnlock(pte_rwlock_test_init_lock); } return ((result != 0) ? result : ((result1 != 0) ? result1 : result2)); } int pthread_rwlock_init (pthread_rwlock_t * rwlock, const pthread_rwlockattr_t * attr) { int result; pthread_rwlock_t rwl = 0; if (rwlock == NULL) return EINVAL; if (attr != NULL && *attr != NULL) { result = EINVAL; /* Not supported */ goto DONE; } rwl = (pthread_rwlock_t) calloc (1, sizeof (*rwl)); if (rwl == NULL) { result = ENOMEM; goto DONE; } rwl->nSharedAccessCount = 0; rwl->nExclusiveAccessCount = 0; rwl->nCompletedSharedAccessCount = 0; result = pthread_mutex_init (&rwl->mtxExclusiveAccess, NULL); if (result != 0) { goto FAIL0; } result = pthread_mutex_init (&rwl->mtxSharedAccessCompleted, NULL); if (result != 0) { goto FAIL1; } result = pthread_cond_init (&rwl->cndSharedAccessCompleted, NULL); if (result != 0) { goto FAIL2; } rwl->nMagic = PTE_RWLOCK_MAGIC; result = 0; goto DONE; FAIL2: (void) pthread_mutex_destroy (&(rwl->mtxSharedAccessCompleted)); FAIL1: (void) pthread_mutex_destroy (&(rwl->mtxExclusiveAccess)); FAIL0: (void) free (rwl); rwl = NULL; DONE: *rwlock = rwl; return result; } int pthread_rwlock_rdlock (pthread_rwlock_t * rwlock) { int result; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) return EINVAL; /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of pte_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = pte_rwlock_check_need_init (rwlock); if (result != 0 && result != EBUSY) return result; } rwl = *rwlock; if (rwl->nMagic != PTE_RWLOCK_MAGIC) return EINVAL; if ((result = pthread_mutex_lock (&(rwl->mtxExclusiveAccess))) != 0) return result; if (++rwl->nSharedAccessCount == INT_MAX) { if ((result = pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; if ((result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } } return (pthread_mutex_unlock (&(rwl->mtxExclusiveAccess))); } int pthread_rwlock_timedrdlock (pthread_rwlock_t * rwlock, const struct timespec *abstime) { int result; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) return EINVAL; /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of pte_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = pte_rwlock_check_need_init (rwlock); if (result != 0 && result != EBUSY) { return result; } } rwl = *rwlock; if (rwl->nMagic != PTE_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_timedlock (&(rwl->mtxExclusiveAccess), abstime)) != 0) { return result; } if (++rwl->nSharedAccessCount == INT_MAX) { if ((result = pthread_mutex_timedlock (&(rwl->mtxSharedAccessCompleted), abstime)) != 0) { if (result == ETIMEDOUT) { ++rwl->nCompletedSharedAccessCount; } (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; if ((result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } } return (pthread_mutex_unlock (&(rwl->mtxExclusiveAccess))); } int pthread_rwlock_timedwrlock (pthread_rwlock_t * rwlock, const struct timespec *abstime) { int result; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) return EINVAL; /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of pte_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = pte_rwlock_check_need_init (rwlock); if (result != 0 && result != EBUSY) { return result; } } rwl = *rwlock; if (rwl->nMagic != PTE_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_timedlock (&(rwl->mtxExclusiveAccess), abstime)) != 0) { return result; } if ((result = pthread_mutex_timedlock (&(rwl->mtxSharedAccessCompleted), abstime)) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } if (rwl->nExclusiveAccessCount == 0) { if (rwl->nCompletedSharedAccessCount > 0) { rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; } if (rwl->nSharedAccessCount > 0) { rwl->nCompletedSharedAccessCount = -rwl->nSharedAccessCount; /* * This routine may be a cancelation point * according to POSIX 1003.1j section 18.1.2. */ pthread_cleanup_push (pte_rwlock_cancelwrwait, (void *) rwl); do { result = pthread_cond_timedwait (&(rwl->cndSharedAccessCompleted), &(rwl->mtxSharedAccessCompleted), abstime); } while (result == 0 && rwl->nCompletedSharedAccessCount < 0); pthread_cleanup_pop ((result != 0) ? 1 : 0); if (result == 0) { rwl->nSharedAccessCount = 0; } } } if (result == 0) rwl->nExclusiveAccessCount++; return result; } int pthread_rwlock_tryrdlock (pthread_rwlock_t * rwlock) { int result; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) return EINVAL; /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of pte_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = pte_rwlock_check_need_init (rwlock); if (result != 0 && result != EBUSY) { return result; } } rwl = *rwlock; if (rwl->nMagic != PTE_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_trylock (&(rwl->mtxExclusiveAccess))) != 0) { return result; } if (++rwl->nSharedAccessCount == INT_MAX) { if ((result = pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; if ((result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } } return (pthread_mutex_unlock (&rwl->mtxExclusiveAccess)); } int pthread_rwlock_trywrlock (pthread_rwlock_t * rwlock) { int result, result1; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) return EINVAL; /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of pte_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = pte_rwlock_check_need_init (rwlock); if (result != 0 && result != EBUSY) { return result; } } rwl = *rwlock; if (rwl->nMagic != PTE_RWLOCK_MAGIC) { return EINVAL; } if ((result = pthread_mutex_trylock (&(rwl->mtxExclusiveAccess))) != 0) { return result; } if ((result = pthread_mutex_trylock (&(rwl->mtxSharedAccessCompleted))) != 0) { result1 = pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return ((result1 != 0) ? result1 : result); } if (rwl->nExclusiveAccessCount == 0) { if (rwl->nCompletedSharedAccessCount > 0) { rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; } if (rwl->nSharedAccessCount > 0) { if ((result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } if ((result = pthread_mutex_unlock (&(rwl->mtxExclusiveAccess))) == 0) { result = EBUSY; } } else { rwl->nExclusiveAccessCount = 1; } } else { result = EBUSY; } return result; } int pthread_rwlock_unlock (pthread_rwlock_t * rwlock) { int result, result1; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) return (EINVAL); if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { /* * Assume any race condition here is harmless. */ return 0; } rwl = *rwlock; if (rwl->nMagic != PTE_RWLOCK_MAGIC) { return EINVAL; } if (rwl->nExclusiveAccessCount == 0) { if ((result = pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0) { return result; } if (++rwl->nCompletedSharedAccessCount == 0) { result = pthread_cond_signal (&(rwl->cndSharedAccessCompleted)); } result1 = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted)); } else { rwl->nExclusiveAccessCount--; result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted)); result1 = pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); } return ((result != 0) ? result : result1); } int pthread_rwlock_wrlock (pthread_rwlock_t * rwlock) { int result; pthread_rwlock_t rwl; if (rwlock == NULL || *rwlock == NULL) return EINVAL; /* * We do a quick check to see if we need to do more work * to initialise a static rwlock. We check * again inside the guarded section of pte_rwlock_check_need_init() * to avoid race conditions. */ if (*rwlock == PTHREAD_RWLOCK_INITIALIZER) { result = pte_rwlock_check_need_init (rwlock); if (result != 0 && result != EBUSY) return result; } rwl = *rwlock; if (rwl->nMagic != PTE_RWLOCK_MAGIC) return EINVAL; if ((result = pthread_mutex_lock (&(rwl->mtxExclusiveAccess))) != 0) return result; if ((result = pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0) { (void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)); return result; } if (rwl->nExclusiveAccessCount == 0) { if (rwl->nCompletedSharedAccessCount > 0) { rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount; rwl->nCompletedSharedAccessCount = 0; } if (rwl->nSharedAccessCount > 0) { rwl->nCompletedSharedAccessCount = -rwl->nSharedAccessCount; /* * This routine may be a cancelation point * according to POSIX 1003.1j section 18.1.2. */ pthread_cleanup_push (pte_rwlock_cancelwrwait, (void *) rwl); do { result = pthread_cond_wait (&(rwl->cndSharedAccessCompleted), &(rwl->mtxSharedAccessCompleted)); } while (result == 0 && rwl->nCompletedSharedAccessCount < 0); pthread_cleanup_pop ((result != 0) ? 1 : 0); if (result == 0) rwl->nSharedAccessCount = 0; } } if (result == 0) rwl->nExclusiveAccessCount++; return result; }