/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2016 - Hans-Kristian Arntzen * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include "shader_vulkan.h" #include "glslang_util.hpp" #include #include #include #include #include #include #include "../drivers/vulkan_shaders/opaque.vert.inc" #include "../drivers/vulkan_shaders/opaque.frag.inc" #include "../video_shader_driver.h" #include "../../verbosity.h" using namespace std; static uint32_t find_memory_type( const VkPhysicalDeviceMemoryProperties &mem_props, uint32_t device_reqs, uint32_t host_reqs) { uint32_t i; for (i = 0; i < VK_MAX_MEMORY_TYPES; i++) { if ((device_reqs & (1u << i)) && (mem_props.memoryTypes[i].propertyFlags & host_reqs) == host_reqs) return i; } RARCH_ERR("[Vulkan]: Failed to find valid memory type. This should never happen."); abort(); } static uint32_t find_memory_type_fallback( const VkPhysicalDeviceMemoryProperties &mem_props, uint32_t device_reqs, uint32_t host_reqs) { uint32_t i; for (i = 0; i < VK_MAX_MEMORY_TYPES; i++) { if ((device_reqs & (1u << i)) && (mem_props.memoryTypes[i].propertyFlags & host_reqs) == host_reqs) return i; } return find_memory_type(mem_props, device_reqs, 0); } static void build_identity_matrix(float *data) { data[ 0] = 1.0f; data[ 1] = 0.0f; data[ 2] = 0.0f; data[ 3] = 0.0f; data[ 4] = 0.0f; data[ 5] = 1.0f; data[ 6] = 0.0f; data[ 7] = 0.0f; data[ 8] = 0.0f; data[ 9] = 0.0f; data[10] = 1.0f; data[11] = 0.0f; data[12] = 0.0f; data[13] = 0.0f; data[14] = 0.0f; data[15] = 1.0f; } static void build_vec4(float *data, unsigned width, unsigned height) { data[0] = float(width); data[1] = float(height); data[2] = 1.0f / float(width); data[3] = 1.0f / float(height); } struct Size2D { unsigned width, height; }; struct Texture { vulkan_filter_chain_texture texture; vulkan_filter_chain_filter filter; }; class DeferredDisposer { public: DeferredDisposer(vector> &calls) : calls(calls) {} void defer(function func) { calls.push_back(move(func)); } private: vector> &calls; }; class Buffer { public: Buffer(VkDevice device, const VkPhysicalDeviceMemoryProperties &mem_props, size_t size, VkBufferUsageFlags usage); ~Buffer(); size_t get_size() const { return size; } void *map(); void unmap(); const VkBuffer &get_buffer() const { return buffer; } private: VkDevice device; VkBuffer buffer; VkDeviceMemory memory; size_t size; }; class Framebuffer { public: Framebuffer(VkDevice device, const VkPhysicalDeviceMemoryProperties &mem_props, const Size2D &max_size, VkFormat format); ~Framebuffer(); Framebuffer(Framebuffer&&) = delete; void operator=(Framebuffer&&) = delete; void set_size(DeferredDisposer &disposer, const Size2D &size); const Size2D &get_size() const { return size; } VkImage get_image() const { return image; } VkImageView get_view() const { return view; } VkFramebuffer get_framebuffer() const { return framebuffer; } VkRenderPass get_render_pass() const { return render_pass; } private: VkDevice device = VK_NULL_HANDLE; const VkPhysicalDeviceMemoryProperties &memory_properties; VkImage image = VK_NULL_HANDLE; VkImageView view = VK_NULL_HANDLE; Size2D size; VkFormat format; VkFramebuffer framebuffer = VK_NULL_HANDLE; VkRenderPass render_pass = VK_NULL_HANDLE; struct { size_t size = 0; uint32_t type = 0; VkDeviceMemory memory = VK_NULL_HANDLE; } memory; void init(DeferredDisposer *disposer); void init_framebuffer(); void init_render_pass(); }; class Pass { public: Pass(VkDevice device, const VkPhysicalDeviceMemoryProperties &memory_properties, VkPipelineCache cache, unsigned num_sync_indices, bool final_pass) : device(device), memory_properties(memory_properties), cache(cache), num_sync_indices(num_sync_indices), final_pass(final_pass) {} ~Pass(); Pass(Pass&&) = delete; void operator=(Pass&&) = delete; const Framebuffer &get_framebuffer() const { return *framebuffer; } Size2D set_pass_info( const Size2D &max_original, const Size2D &max_source, const vulkan_filter_chain_swapchain_info &swapchain, const vulkan_filter_chain_pass_info &info); void set_shader(VkShaderStageFlags stage, const uint32_t *spirv, size_t spirv_words); bool build(); void build_commands( DeferredDisposer &disposer, VkCommandBuffer cmd, const Texture &original, const Texture &source, const VkViewport &vp, const float *mvp); void notify_sync_index(unsigned index) { sync_index = index; } vulkan_filter_chain_filter get_source_filter() const { return pass_info.source_filter; } private: struct UBO { float MVP[16]; float output_size[4]; float original_size[4]; float source_size[4]; }; VkDevice device; const VkPhysicalDeviceMemoryProperties &memory_properties; VkPipelineCache cache; unsigned num_sync_indices; unsigned sync_index; bool final_pass; Size2D get_output_size(const Size2D &original_size, const Size2D &max_source) const; VkPipeline pipeline = VK_NULL_HANDLE; VkPipelineLayout pipeline_layout = VK_NULL_HANDLE; VkDescriptorSetLayout set_layout = VK_NULL_HANDLE; VkDescriptorPool pool = VK_NULL_HANDLE; VkSampler samplers[2] = { VK_NULL_HANDLE, VK_NULL_HANDLE }; vector> ubos; unique_ptr vbo; vector sets; Size2D current_framebuffer_size; VkViewport current_viewport; vulkan_filter_chain_pass_info pass_info; vector vertex_shader; vector fragment_shader; unique_ptr framebuffer; VkRenderPass swapchain_render_pass; void clear_vk(); bool init_pipeline(); bool init_pipeline_layout(); bool init_buffers(); bool init_samplers(); void image_layout_transition(VkDevice device, VkCommandBuffer cmd, VkImage image, VkImageLayout old_layout, VkImageLayout new_layout, VkAccessFlags srcAccess, VkAccessFlags dstAccess, VkPipelineStageFlags srcStages, VkPipelineStageFlags dstStages); void update_descriptor_set( const Texture &original, const Texture &source); void set_texture(VkDescriptorSet set, unsigned binding, const Texture &texture); void set_uniform_buffer(VkDescriptorSet set, unsigned binding, VkBuffer buffer, VkDeviceSize offset, VkDeviceSize range); }; // struct here since we're implementing the opaque typedef from C. struct vulkan_filter_chain { public: vulkan_filter_chain(const vulkan_filter_chain_create_info &info); ~vulkan_filter_chain(); inline void set_shader_preset(unique_ptr shader) { shader_preset = move(shader); } inline video_shader *get_shader_preset() { return shader_preset.get(); } void set_pass_info(unsigned pass, const vulkan_filter_chain_pass_info &info); void set_shader(unsigned pass, VkShaderStageFlags stage, const uint32_t *spirv, size_t spirv_words); bool init(); bool update_swapchain_info( const vulkan_filter_chain_swapchain_info &info); void notify_sync_index(unsigned index); void set_input_texture(const vulkan_filter_chain_texture &texture); void build_offscreen_passes(VkCommandBuffer cmd, const VkViewport &vp); void build_viewport_pass(VkCommandBuffer cmd, const VkViewport &vp, const float *mvp); private: VkDevice device; const VkPhysicalDeviceMemoryProperties &memory_properties; VkPipelineCache cache; vector> passes; vector pass_info; vector>> deferred_calls; vulkan_filter_chain_texture input_texture; Size2D max_input_size; vulkan_filter_chain_swapchain_info swapchain_info; unsigned current_sync_index; unique_ptr shader_preset; void flush(); void set_num_passes(unsigned passes); void execute_deferred(); void set_num_sync_indices(unsigned num_indices); void set_swapchain_info(const vulkan_filter_chain_swapchain_info &info); }; vulkan_filter_chain::vulkan_filter_chain( const vulkan_filter_chain_create_info &info) : device(info.device), memory_properties(*info.memory_properties), cache(info.pipeline_cache) { max_input_size = { info.max_input_size.width, info.max_input_size.height }; set_swapchain_info(info.swapchain); set_num_passes(info.num_passes); } vulkan_filter_chain::~vulkan_filter_chain() { flush(); } void vulkan_filter_chain::set_swapchain_info( const vulkan_filter_chain_swapchain_info &info) { swapchain_info = info; set_num_sync_indices(info.num_indices); } void vulkan_filter_chain::set_num_sync_indices(unsigned num_indices) { execute_deferred(); deferred_calls.resize(num_indices); } void vulkan_filter_chain::notify_sync_index(unsigned index) { auto &calls = deferred_calls[index]; for (auto &call : calls) call(); calls.clear(); current_sync_index = index; for (auto &pass : passes) pass->notify_sync_index(index); } void vulkan_filter_chain::set_num_passes(unsigned num_passes) { pass_info.resize(num_passes); passes.reserve(num_passes); for (unsigned i = 0; i < num_passes; i++) { passes.emplace_back(new Pass(device, memory_properties, cache, deferred_calls.size(), i + 1 == num_passes)); } } bool vulkan_filter_chain::update_swapchain_info( const vulkan_filter_chain_swapchain_info &info) { flush(); set_swapchain_info(info); return init(); } void vulkan_filter_chain::set_pass_info(unsigned pass, const vulkan_filter_chain_pass_info &info) { pass_info[pass] = info; } void vulkan_filter_chain::set_shader( unsigned pass, VkShaderStageFlags stage, const uint32_t *spirv, size_t spirv_words) { passes[pass]->set_shader(stage, spirv, spirv_words); } void vulkan_filter_chain::set_input_texture( const vulkan_filter_chain_texture &texture) { input_texture = texture; } void vulkan_filter_chain::execute_deferred() { for (auto &calls : deferred_calls) { for (auto &call : calls) call(); calls.clear(); } } void vulkan_filter_chain::flush() { VKFUNC(vkDeviceWaitIdle)(device); execute_deferred(); } bool vulkan_filter_chain::init() { Size2D source = max_input_size; for (unsigned i = 0; i < passes.size(); i++) { auto &pass = passes[i]; source = pass->set_pass_info(max_input_size, source, swapchain_info, pass_info[i]); if (!pass->build()) return false; } return true; } void vulkan_filter_chain::build_offscreen_passes(VkCommandBuffer cmd, const VkViewport &vp) { unsigned i; DeferredDisposer disposer(deferred_calls[current_sync_index]); const Texture original = { input_texture, passes.front()->get_source_filter() }; Texture source = { input_texture, passes.front()->get_source_filter() }; for (i = 0; i < passes.size() - 1; i++) { passes[i]->build_commands(disposer, cmd, original, source, vp, nullptr); auto &fb = passes[i]->get_framebuffer(); source.texture.view = fb.get_view(); source.texture.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; source.texture.width = fb.get_size().width; source.texture.height = fb.get_size().height; source.filter = passes[i + 1]->get_source_filter(); } } void vulkan_filter_chain::build_viewport_pass( VkCommandBuffer cmd, const VkViewport &vp, const float *mvp) { Texture source; DeferredDisposer disposer(deferred_calls[current_sync_index]); const Texture original = { input_texture, passes.front()->get_source_filter() }; if (passes.size() == 1) source = { input_texture, passes.back()->get_source_filter() }; else { auto &fb = passes[passes.size() - 2]->get_framebuffer(); source.texture.view = fb.get_view(); source.texture.layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; source.texture.width = fb.get_size().width; source.texture.height = fb.get_size().height; source.filter = passes.back()->get_source_filter(); } passes.back()->build_commands(disposer, cmd, original, source, vp, mvp); } Buffer::Buffer(VkDevice device, const VkPhysicalDeviceMemoryProperties &mem_props, size_t size, VkBufferUsageFlags usage) : device(device), size(size) { VkMemoryRequirements mem_reqs; VkBufferCreateInfo info = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; info.size = size; info.usage = usage; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VKFUNC(vkCreateBuffer)(device, &info, nullptr, &buffer); VKFUNC(vkGetBufferMemoryRequirements)(device, buffer, &mem_reqs); VkMemoryAllocateInfo alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; alloc.allocationSize = mem_reqs.size; alloc.memoryTypeIndex = find_memory_type( mem_props, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VKFUNC(vkAllocateMemory)(device, &alloc, NULL, &memory); VKFUNC(vkBindBufferMemory)(device, buffer, memory, 0); } void *Buffer::map() { void *ptr = nullptr; if (VKFUNC(vkMapMemory)(device, memory, 0, size, 0, &ptr) == VK_SUCCESS) return ptr; return nullptr; } void Buffer::unmap() { VKFUNC(vkUnmapMemory)(device, memory); } Buffer::~Buffer() { if (memory != VK_NULL_HANDLE) VKFUNC(vkFreeMemory)(device, memory, nullptr); if (buffer != VK_NULL_HANDLE) VKFUNC(vkDestroyBuffer)(device, buffer, nullptr); } Pass::~Pass() { clear_vk(); } void Pass::set_shader(VkShaderStageFlags stage, const uint32_t *spirv, size_t spirv_words) { if (stage == VK_SHADER_STAGE_VERTEX_BIT) { vertex_shader.clear(); vertex_shader.insert(end(vertex_shader), spirv, spirv + spirv_words); } else if (stage == VK_SHADER_STAGE_FRAGMENT_BIT) { fragment_shader.clear(); fragment_shader.insert(end(fragment_shader), spirv, spirv + spirv_words); } } Size2D Pass::get_output_size(const Size2D &original, const Size2D &source) const { float width, height; switch (pass_info.scale_type_x) { case VULKAN_FILTER_CHAIN_SCALE_ORIGINAL: width = float(original.width) * pass_info.scale_x; break; case VULKAN_FILTER_CHAIN_SCALE_SOURCE: width = float(source.width) * pass_info.scale_x; break; case VULKAN_FILTER_CHAIN_SCALE_VIEWPORT: width = current_viewport.width * pass_info.scale_x; break; case VULKAN_FILTER_CHAIN_SCALE_ABSOLUTE: width = pass_info.scale_x; break; default: width = 0.0f; } switch (pass_info.scale_type_y) { case VULKAN_FILTER_CHAIN_SCALE_ORIGINAL: height = float(original.height) * pass_info.scale_y; break; case VULKAN_FILTER_CHAIN_SCALE_SOURCE: height = float(source.height) * pass_info.scale_y; break; case VULKAN_FILTER_CHAIN_SCALE_VIEWPORT: height = current_viewport.height * pass_info.scale_y; break; case VULKAN_FILTER_CHAIN_SCALE_ABSOLUTE: height = pass_info.scale_y; break; default: height = 0.0f; } return { unsigned(roundf(width)), unsigned(roundf(height)) }; } Size2D Pass::set_pass_info( const Size2D &max_original, const Size2D &max_source, const vulkan_filter_chain_swapchain_info &swapchain, const vulkan_filter_chain_pass_info &info) { clear_vk(); current_viewport = swapchain.viewport; pass_info = info; num_sync_indices = swapchain.num_indices; sync_index = 0; current_framebuffer_size = get_output_size(max_original, max_source); swapchain_render_pass = swapchain.render_pass; return current_framebuffer_size; } void Pass::clear_vk() { if (pool != VK_NULL_HANDLE) VKFUNC(vkDestroyDescriptorPool)(device, pool, nullptr); if (pipeline != VK_NULL_HANDLE) VKFUNC(vkDestroyPipeline)(device, pipeline, nullptr); if (set_layout != VK_NULL_HANDLE) VKFUNC(vkDestroyDescriptorSetLayout)(device, set_layout, nullptr); if (pipeline_layout != VK_NULL_HANDLE) VKFUNC(vkDestroyPipelineLayout)(device, pipeline_layout, nullptr); for (auto &samp : samplers) { if (samp != VK_NULL_HANDLE) VKFUNC(vkDestroySampler)(device, samp, nullptr); samp = VK_NULL_HANDLE; } pool = VK_NULL_HANDLE; pipeline = VK_NULL_HANDLE; set_layout = VK_NULL_HANDLE; ubos.clear(); vbo.reset(); } bool Pass::init_pipeline_layout() { unsigned i; vector bindings; vector desc_counts; // TODO: Expand this a lot, need to reflect shaders to figure this out. bindings.push_back({ 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, nullptr }); bindings.push_back({ 1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr }); bindings.push_back({ 2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr }); desc_counts.push_back({ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, num_sync_indices }); desc_counts.push_back({ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, num_sync_indices }); desc_counts.push_back({ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, num_sync_indices }); VkDescriptorSetLayoutCreateInfo set_layout_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO }; set_layout_info.bindingCount = bindings.size(); set_layout_info.pBindings = bindings.data(); if (VKFUNC(vkCreateDescriptorSetLayout)(device, &set_layout_info, NULL, &set_layout) != VK_SUCCESS) return false; VkPipelineLayoutCreateInfo layout_info = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; layout_info.setLayoutCount = 1; layout_info.pSetLayouts = &set_layout; if (VKFUNC(vkCreatePipelineLayout)(device, &layout_info, NULL, &pipeline_layout) != VK_SUCCESS) return false; VkDescriptorPoolCreateInfo pool_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO }; pool_info.maxSets = num_sync_indices; pool_info.poolSizeCount = desc_counts.size(); pool_info.pPoolSizes = desc_counts.data(); if (VKFUNC(vkCreateDescriptorPool)(device, &pool_info, nullptr, &pool) != VK_SUCCESS) return false; VkDescriptorSetAllocateInfo alloc_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO }; alloc_info.descriptorPool = pool; alloc_info.descriptorSetCount = 1; alloc_info.pSetLayouts = &set_layout; sets.resize(num_sync_indices); for (i = 0; i < num_sync_indices; i++) VKFUNC(vkAllocateDescriptorSets)(device, &alloc_info, &sets[i]); return true; } bool Pass::init_pipeline() { if (!init_pipeline_layout()) return false; // Input assembly VkPipelineInputAssemblyStateCreateInfo input_assembly = { VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO }; input_assembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; // VAO state VkVertexInputAttributeDescription attributes[2] = {{0}}; VkVertexInputBindingDescription binding = {0}; attributes[0].location = 0; attributes[0].binding = 0; attributes[0].format = VK_FORMAT_R32G32_SFLOAT; attributes[0].offset = 0; attributes[1].location = 1; attributes[1].binding = 0; attributes[1].format = VK_FORMAT_R32G32_SFLOAT; attributes[1].offset = 2 * sizeof(float); binding.binding = 0; binding.stride = 4 * sizeof(float); binding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; VkPipelineVertexInputStateCreateInfo vertex_input = { VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO }; vertex_input.vertexBindingDescriptionCount = 1; vertex_input.pVertexBindingDescriptions = &binding; vertex_input.vertexAttributeDescriptionCount = 2; vertex_input.pVertexAttributeDescriptions = attributes; // Raster state VkPipelineRasterizationStateCreateInfo raster = { VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO }; raster.polygonMode = VK_POLYGON_MODE_FILL; raster.cullMode = VK_CULL_MODE_NONE; raster.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; raster.depthClampEnable = false; raster.rasterizerDiscardEnable = false; raster.depthBiasEnable = false; raster.lineWidth = 1.0f; // Blend state VkPipelineColorBlendAttachmentState blend_attachment = {0}; VkPipelineColorBlendStateCreateInfo blend = { VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO }; blend_attachment.blendEnable = false; blend_attachment.colorWriteMask = 0xf; blend.attachmentCount = 1; blend.pAttachments = &blend_attachment; // Viewport state VkPipelineViewportStateCreateInfo viewport = { VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO }; viewport.viewportCount = 1; viewport.scissorCount = 1; // Depth-stencil state VkPipelineDepthStencilStateCreateInfo depth_stencil = { VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO }; depth_stencil.depthTestEnable = false; depth_stencil.depthWriteEnable = false; depth_stencil.depthBoundsTestEnable = false; depth_stencil.stencilTestEnable = false; depth_stencil.minDepthBounds = 0.0f; depth_stencil.maxDepthBounds = 1.0f; // Multisample state VkPipelineMultisampleStateCreateInfo multisample = { VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO }; multisample.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; // Dynamic state VkPipelineDynamicStateCreateInfo dynamic = { VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO }; static const VkDynamicState dynamics[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; dynamic.pDynamicStates = dynamics; dynamic.dynamicStateCount = sizeof(dynamics) / sizeof(dynamics[0]); // Shaders VkPipelineShaderStageCreateInfo shader_stages[2] = { { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO }, { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO }, }; VkShaderModuleCreateInfo module_info = { VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO }; module_info.codeSize = vertex_shader.size() * sizeof(uint32_t); module_info.pCode = vertex_shader.data(); shader_stages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shader_stages[0].pName = "main"; VKFUNC(vkCreateShaderModule)(device, &module_info, NULL, &shader_stages[0].module); module_info.codeSize = fragment_shader.size() * sizeof(uint32_t); module_info.pCode = fragment_shader.data(); shader_stages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shader_stages[1].pName = "main"; VKFUNC(vkCreateShaderModule)(device, &module_info, NULL, &shader_stages[1].module); VkGraphicsPipelineCreateInfo pipe = { VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO }; pipe.stageCount = 2; pipe.pStages = shader_stages; pipe.pVertexInputState = &vertex_input; pipe.pInputAssemblyState = &input_assembly; pipe.pRasterizationState = &raster; pipe.pColorBlendState = &blend; pipe.pMultisampleState = &multisample; pipe.pViewportState = &viewport; pipe.pDepthStencilState = &depth_stencil; pipe.pDynamicState = &dynamic; pipe.renderPass = final_pass ? swapchain_render_pass : framebuffer->get_render_pass(); pipe.layout = pipeline_layout; if (VKFUNC(vkCreateGraphicsPipelines)(device, cache, 1, &pipe, NULL, &pipeline) != VK_SUCCESS) { VKFUNC(vkDestroyShaderModule)(device, shader_stages[0].module, NULL); VKFUNC(vkDestroyShaderModule)(device, shader_stages[1].module, NULL); return false; } VKFUNC(vkDestroyShaderModule)(device, shader_stages[0].module, NULL); VKFUNC(vkDestroyShaderModule)(device, shader_stages[1].module, NULL); return true; } bool Pass::init_samplers() { VkSamplerCreateInfo info = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; info.magFilter = VK_FILTER_NEAREST; info.minFilter = VK_FILTER_NEAREST; info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; info.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; info.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; info.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; info.mipLodBias = 0.0f; info.maxAnisotropy = 1.0f; info.compareEnable = false; info.minLod = 0.0f; info.maxLod = 0.0f; info.unnormalizedCoordinates = false; info.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; if (VKFUNC(vkCreateSampler)(device, &info, NULL, &samplers[VULKAN_FILTER_CHAIN_NEAREST]) != VK_SUCCESS) return false; info.magFilter = VK_FILTER_LINEAR; info.minFilter = VK_FILTER_LINEAR; if (VKFUNC(vkCreateSampler)(device, &info, NULL, &samplers[VULKAN_FILTER_CHAIN_LINEAR]) != VK_SUCCESS) return false; return true; } bool Pass::init_buffers() { unsigned i; // The final pass uses an MVP designed for [0, 1] range VBO. // For in-between passes, we just go with identity matrices, so keep it simple. float pos_min = final_pass ? 0.0f : -1.0f; const float vbo_data[] = { pos_min, pos_min, 0.0f, 0.0f, pos_min, +1.0f, 0.0f, 1.0f, 1.0f, pos_min, 1.0f, 0.0f, 1.0f, +1.0f, 1.0f, 1.0f, }; ubos.clear(); for (i = 0; i < num_sync_indices; i++) ubos.emplace_back(new Buffer(device, memory_properties, sizeof(UBO), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)); vbo = unique_ptr(new Buffer(device, memory_properties, sizeof(vbo_data), VK_BUFFER_USAGE_VERTEX_BUFFER_BIT)); void *ptr = vbo->map(); memcpy(ptr, vbo_data, sizeof(vbo_data)); vbo->unmap(); return true; } bool Pass::build() { if (!final_pass) { framebuffer = unique_ptr( new Framebuffer(device, memory_properties, current_framebuffer_size, pass_info.rt_format)); } if (!init_pipeline()) return false; if (!init_buffers()) return false; if (!init_samplers()) return false; return true; } void Pass::image_layout_transition(VkDevice device, VkCommandBuffer cmd, VkImage image, VkImageLayout old_layout, VkImageLayout new_layout, VkAccessFlags srcAccess, VkAccessFlags dstAccess, VkPipelineStageFlags srcStages, VkPipelineStageFlags dstStages) { VkImageMemoryBarrier barrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER }; barrier.srcAccessMask = srcAccess; barrier.dstAccessMask = dstAccess; barrier.oldLayout = old_layout; barrier.newLayout = new_layout; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.image = image; barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; barrier.subresourceRange.levelCount = 1; barrier.subresourceRange.layerCount = 1; VKFUNC(vkCmdPipelineBarrier)(cmd, srcStages, dstStages, 0, 0, nullptr, 0, nullptr, 1, &barrier); } void Pass::set_uniform_buffer(VkDescriptorSet set, unsigned binding, VkBuffer buffer, VkDeviceSize offset, VkDeviceSize range) { VkDescriptorBufferInfo buffer_info; buffer_info.buffer = buffer; buffer_info.offset = offset; buffer_info.range = range; VkWriteDescriptorSet write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET }; write.dstSet = set; write.dstBinding = binding; write.descriptorCount = 1; write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; write.pBufferInfo = &buffer_info; VKFUNC(vkUpdateDescriptorSets)(device, 1, &write, 0, NULL); } void Pass::set_texture(VkDescriptorSet set, unsigned binding, const Texture &texture) { VkDescriptorImageInfo image_info; image_info.sampler = samplers[texture.filter]; image_info.imageView = texture.texture.view; image_info.imageLayout = texture.texture.layout; VkWriteDescriptorSet write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET }; write.dstSet = set; write.dstBinding = binding; write.descriptorCount = 1; write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; write.pImageInfo = &image_info; VKFUNC(vkUpdateDescriptorSets)(device, 1, &write, 0, nullptr); } void Pass::update_descriptor_set( const Texture &original, const Texture &source) { set_uniform_buffer(sets[sync_index], 0, ubos[sync_index]->get_buffer(), 0, sizeof(UBO)); set_texture(sets[sync_index], 1, original); set_texture(sets[sync_index], 2, source); } void Pass::build_commands( DeferredDisposer &disposer, VkCommandBuffer cmd, const Texture &original, const Texture &source, const VkViewport &vp, const float *mvp) { current_viewport = vp; auto size = get_output_size( { original.texture.width, original.texture.height }, { source.texture.width, source.texture.height }); if ( size.width != current_framebuffer_size.width || size.height != current_framebuffer_size.height) { if (framebuffer) framebuffer->set_size(disposer, size); current_framebuffer_size = size; } UBO *u = static_cast(ubos[sync_index]->map()); if (mvp) memcpy(u->MVP, mvp, sizeof(float) * 16); else build_identity_matrix(u->MVP); build_vec4(u->output_size, current_framebuffer_size.width, current_framebuffer_size.height); build_vec4(u->original_size, original.texture.width, original.texture.height); build_vec4(u->source_size, source.texture.width, source.texture.height); ubos[sync_index]->unmap(); update_descriptor_set(original, source); // The final pass is always executed inside // another render pass since the frontend will // want to overlay various things on top for // the passes that end up on-screen. if (!final_pass) { // Render. image_layout_transition(device, cmd, framebuffer->get_image(), VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, 0, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT); VkRenderPassBeginInfo rp_info = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO }; VkClearValue clear_value; clear_value.color.float32[0] = 0.0f; clear_value.color.float32[1] = 0.0f; clear_value.color.float32[2] = 0.0f; clear_value.color.float32[3] = 1.0f; rp_info.renderPass = framebuffer->get_render_pass(); rp_info.framebuffer = framebuffer->get_framebuffer(); rp_info.renderArea.extent.width = current_framebuffer_size.width; rp_info.renderArea.extent.height = current_framebuffer_size.height; rp_info.clearValueCount = 1; rp_info.pClearValues = &clear_value; VKFUNC(vkCmdBeginRenderPass)(cmd, &rp_info, VK_SUBPASS_CONTENTS_INLINE); } VKFUNC(vkCmdBindPipeline)(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); VKFUNC(vkCmdBindDescriptorSets)(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, 0, 1, &sets[sync_index], 0, nullptr); VkDeviceSize offset = 0; VKFUNC(vkCmdBindVertexBuffers)(cmd, 0, 1, &vbo->get_buffer(), &offset); if (final_pass) { const VkRect2D sci = { { int32_t(current_viewport.x), int32_t(current_viewport.y) }, { uint32_t(current_viewport.width), uint32_t(current_viewport.height) }, }; VKFUNC(vkCmdSetViewport)(cmd, 0, 1, ¤t_viewport); VKFUNC(vkCmdSetScissor)(cmd, 0, 1, &sci); } else { const VkViewport vp = { 0.0f, 0.0f, float(current_framebuffer_size.width), float(current_framebuffer_size.height), 0.0f, 1.0f }; const VkRect2D sci = { { 0, 0 }, { current_framebuffer_size.width, current_framebuffer_size.height }, }; VKFUNC(vkCmdSetViewport)(cmd, 0, 1, &vp); VKFUNC(vkCmdSetScissor)(cmd, 0, 1, &sci); } VKFUNC(vkCmdDraw)(cmd, 4, 1, 0, 0); if (!final_pass) { VKFUNC(vkCmdEndRenderPass)(cmd); // Barrier to sync with next pass. image_layout_transition( device, cmd, framebuffer->get_image(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); } } Framebuffer::Framebuffer( VkDevice device, const VkPhysicalDeviceMemoryProperties &mem_props, const Size2D &max_size, VkFormat format) : device(device), memory_properties(mem_props), size(max_size), format(format) { RARCH_LOG("[Vulkan filter chain]: Creating framebuffer %u x %u.\n", max_size.width, max_size.height); init_render_pass(); init(nullptr); } void Framebuffer::init(DeferredDisposer *disposer) { VkMemoryRequirements mem_reqs; VkImageCreateInfo info = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; info.imageType = VK_IMAGE_TYPE_2D; info.format = format; info.extent.width = size.width; info.extent.height = size.height; info.extent.depth = 1; info.mipLevels = 1; info.arrayLayers = 1; info.samples = VK_SAMPLE_COUNT_1_BIT; info.tiling = VK_IMAGE_TILING_OPTIMAL; info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VKFUNC(vkCreateImage)(device, &info, nullptr, &image); VKFUNC(vkGetImageMemoryRequirements)(device, image, &mem_reqs); VkMemoryAllocateInfo alloc = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; alloc.allocationSize = mem_reqs.size; alloc.memoryTypeIndex = find_memory_type_fallback( memory_properties, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); // Can reuse already allocated memory. if (memory.size < mem_reqs.size || memory.type != alloc.memoryTypeIndex) { // Memory might still be in use since we don't want to totally stall // the world for framebuffer recreation. if (memory.memory != VK_NULL_HANDLE && disposer) { auto d = device; auto m = memory.memory; disposer->defer([=] { VKFUNC(vkFreeMemory)(d, m, nullptr); }); } memory.type = alloc.memoryTypeIndex; memory.size = mem_reqs.size; VKFUNC(vkAllocateMemory)(device, &alloc, nullptr, &memory.memory); } VKFUNC(vkBindImageMemory)(device, image, memory.memory, 0); VkImageViewCreateInfo view_info = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO }; view_info.viewType = VK_IMAGE_VIEW_TYPE_2D; view_info.format = format; view_info.image = image; view_info.subresourceRange.baseMipLevel = 0; view_info.subresourceRange.baseArrayLayer = 0; view_info.subresourceRange.levelCount = 1; view_info.subresourceRange.layerCount = 1; view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view_info.components.r = VK_COMPONENT_SWIZZLE_R; view_info.components.g = VK_COMPONENT_SWIZZLE_G; view_info.components.b = VK_COMPONENT_SWIZZLE_B; view_info.components.a = VK_COMPONENT_SWIZZLE_A; VKFUNC(vkCreateImageView)(device, &view_info, nullptr, &view); init_framebuffer(); } void Framebuffer::init_render_pass() { VkRenderPassCreateInfo rp_info = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO }; VkAttachmentReference color_ref = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; // We will always write to the entire framebuffer, // so we don't really need to clear. VkAttachmentDescription attachment = {0}; attachment.format = format; attachment.samples = VK_SAMPLE_COUNT_1_BIT; attachment.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachment.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachment.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {0}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_ref; rp_info.attachmentCount = 1; rp_info.pAttachments = &attachment; rp_info.subpassCount = 1; rp_info.pSubpasses = &subpass; VKFUNC(vkCreateRenderPass)(device, &rp_info, nullptr, &render_pass); } void Framebuffer::init_framebuffer() { VkFramebufferCreateInfo info = { VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO }; info.renderPass = render_pass; info.attachmentCount = 1; info.pAttachments = &view; info.width = size.width; info.height = size.height; info.layers = 1; VKFUNC(vkCreateFramebuffer)(device, &info, nullptr, &framebuffer); } void Framebuffer::set_size(DeferredDisposer &disposer, const Size2D &size) { this->size = size; RARCH_LOG("[Vulkan filter chain]: Updating framebuffer size %u x %u.\n", size.width, size.height); { // The current framebuffers, etc, might still be in use // so defer deletion. // We'll most likely be able to reuse the memory, // so don't free it here. // // Fake lambda init captures for C++11. // auto d = device; auto i = image; auto v = view; auto fb = framebuffer; disposer.defer([=] { if (fb != VK_NULL_HANDLE) VKFUNC(vkDestroyFramebuffer)(d, fb, nullptr); if (v != VK_NULL_HANDLE) VKFUNC(vkDestroyImageView)(d, v, nullptr); if (i != VK_NULL_HANDLE) VKFUNC(vkDestroyImage)(d, i, nullptr); }); } init(&disposer); } Framebuffer::~Framebuffer() { if (framebuffer != VK_NULL_HANDLE) VKFUNC(vkDestroyFramebuffer)(device, framebuffer, nullptr); if (render_pass != VK_NULL_HANDLE) VKFUNC(vkDestroyRenderPass)(device, render_pass, nullptr); if (view != VK_NULL_HANDLE) VKFUNC(vkDestroyImageView)(device, view, nullptr); if (image != VK_NULL_HANDLE) VKFUNC(vkDestroyImage)(device, image, nullptr); if (memory.memory != VK_NULL_HANDLE) VKFUNC(vkFreeMemory)(device, memory.memory, nullptr); } // C glue vulkan_filter_chain_t *vulkan_filter_chain_new( const vulkan_filter_chain_create_info *info) { return new vulkan_filter_chain(*info); } vulkan_filter_chain_t *vulkan_filter_chain_create_default( const struct vulkan_filter_chain_create_info *info, vulkan_filter_chain_filter filter) { struct vulkan_filter_chain_pass_info pass_info; auto tmpinfo = *info; tmpinfo.num_passes = 1; unique_ptr chain{ new vulkan_filter_chain(tmpinfo) }; if (!chain) return nullptr; memset(&pass_info, 0, sizeof(pass_info)); pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT; pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT; pass_info.scale_x = 1.0f; pass_info.scale_y = 1.0f; pass_info.rt_format = tmpinfo.swapchain.format; pass_info.source_filter = filter; chain->set_pass_info(0, pass_info); chain->set_shader(0, VK_SHADER_STAGE_VERTEX_BIT, (const uint32_t*)opaque_vert_spv, opaque_vert_spv_len / sizeof(uint32_t)); chain->set_shader(0, VK_SHADER_STAGE_FRAGMENT_BIT, (const uint32_t*)opaque_frag_spv, opaque_frag_spv_len / sizeof(uint32_t)); if (!chain->init()) return nullptr; return chain.release(); } struct ConfigDeleter { void operator()(config_file_t *conf) { if (conf) config_file_free(conf); } }; vulkan_filter_chain_t *vulkan_filter_chain_create_from_preset( const struct vulkan_filter_chain_create_info *info, const char *path, vulkan_filter_chain_filter filter) { unique_ptr shader{ new video_shader() }; if (!shader) return nullptr; unique_ptr conf{ config_file_new(path) }; if (!path) return nullptr; if (!video_shader_read_conf_cgp(conf.get(), shader.get())) return nullptr; video_shader_resolve_relative(shader.get(), path); video_shader_resolve_parameters(conf.get(), shader.get()); bool last_pass_is_fbo = shader->pass[shader->passes - 1].fbo.valid; auto tmpinfo = *info; tmpinfo.num_passes = shader->passes + (last_pass_is_fbo ? 1 : 0); unique_ptr chain{ new vulkan_filter_chain(tmpinfo) }; if (!chain) return nullptr; for (unsigned i = 0; i < shader->passes; i++) { const video_shader_pass *pass = &shader->pass[i]; struct vulkan_filter_chain_pass_info pass_info; memset(&pass_info, 0, sizeof(pass_info)); glslang_output output; if (!glslang_compile_shader(pass->source.path, &output)) { RARCH_ERR("Failed to compile shader: \"%s\".\n", pass->source.path); return nullptr; } chain->set_shader(i, VK_SHADER_STAGE_VERTEX_BIT, output.vertex.data(), output.vertex.size()); chain->set_shader(i, VK_SHADER_STAGE_FRAGMENT_BIT, output.fragment.data(), output.fragment.size()); if (pass->filter == RARCH_FILTER_UNSPEC) pass_info.source_filter = filter; else { pass_info.source_filter = pass->filter == RARCH_FILTER_LINEAR ? VULKAN_FILTER_CHAIN_LINEAR : VULKAN_FILTER_CHAIN_NEAREST; } if (!pass->fbo.valid) { pass_info.scale_type_x = i + 1 == shader->passes ? VULKAN_FILTER_CHAIN_SCALE_VIEWPORT : VULKAN_FILTER_CHAIN_SCALE_SOURCE; pass_info.scale_type_y = i + 1 == shader->passes ? VULKAN_FILTER_CHAIN_SCALE_VIEWPORT : VULKAN_FILTER_CHAIN_SCALE_SOURCE; pass_info.scale_x = 1.0f; pass_info.scale_y = 1.0f; pass_info.rt_format = i + 1 == shader->passes ? tmpinfo.swapchain.format : VK_FORMAT_R8G8B8A8_UNORM; } else { // TODO: Add more general format spec. pass_info.rt_format = VK_FORMAT_R8G8B8A8_UNORM; if (pass->fbo.srgb_fbo) pass_info.rt_format = VK_FORMAT_R8G8B8A8_SRGB; else if (pass->fbo.fp_fbo) pass_info.rt_format = VK_FORMAT_R16G16B16A16_SFLOAT; switch (pass->fbo.type_x) { case RARCH_SCALE_INPUT: pass_info.scale_x = pass->fbo.scale_x; pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_SOURCE; break; case RARCH_SCALE_ABSOLUTE: pass_info.scale_x = float(pass->fbo.abs_x); pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_ABSOLUTE; break; case RARCH_SCALE_VIEWPORT: pass_info.scale_x = pass->fbo.scale_x; pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT; break; } switch (pass->fbo.type_y) { case RARCH_SCALE_INPUT: pass_info.scale_y = pass->fbo.scale_y; pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_SOURCE; break; case RARCH_SCALE_ABSOLUTE: pass_info.scale_y = float(pass->fbo.abs_y); pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_ABSOLUTE; break; case RARCH_SCALE_VIEWPORT: pass_info.scale_y = pass->fbo.scale_y; pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT; break; } } chain->set_pass_info(i, pass_info); } if (last_pass_is_fbo) { struct vulkan_filter_chain_pass_info pass_info; memset(&pass_info, 0, sizeof(pass_info)); pass_info.scale_type_x = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT; pass_info.scale_type_y = VULKAN_FILTER_CHAIN_SCALE_VIEWPORT; pass_info.scale_x = 1.0f; pass_info.scale_y = 1.0f; pass_info.rt_format = tmpinfo.swapchain.format; pass_info.source_filter = filter; chain->set_pass_info(shader->passes, pass_info); chain->set_shader(shader->passes, VK_SHADER_STAGE_VERTEX_BIT, (const uint32_t*)opaque_vert_spv, opaque_vert_spv_len / sizeof(uint32_t)); chain->set_shader(shader->passes, VK_SHADER_STAGE_FRAGMENT_BIT, (const uint32_t*)opaque_frag_spv, opaque_frag_spv_len / sizeof(uint32_t)); } chain->set_shader_preset(move(shader)); if (!chain->init()) return nullptr; return chain.release(); } struct video_shader *vulkan_filter_chain_get_preset( vulkan_filter_chain_t *chain) { return chain->get_shader_preset(); } void vulkan_filter_chain_free( vulkan_filter_chain_t *chain) { delete chain; } void vulkan_filter_chain_set_shader( vulkan_filter_chain_t *chain, unsigned pass, VkShaderStageFlags stage, const uint32_t *spirv, size_t spirv_words) { chain->set_shader(pass, stage, spirv, spirv_words); } void vulkan_filter_chain_set_pass_info( vulkan_filter_chain_t *chain, unsigned pass, const struct vulkan_filter_chain_pass_info *info) { chain->set_pass_info(pass, *info); } bool vulkan_filter_chain_update_swapchain_info( vulkan_filter_chain_t *chain, const vulkan_filter_chain_swapchain_info *info) { return chain->update_swapchain_info(*info); } void vulkan_filter_chain_notify_sync_index( vulkan_filter_chain_t *chain, unsigned index) { chain->notify_sync_index(index); } bool vulkan_filter_chain_init(vulkan_filter_chain_t *chain) { return chain->init(); } void vulkan_filter_chain_set_input_texture( vulkan_filter_chain_t *chain, const struct vulkan_filter_chain_texture *texture) { chain->set_input_texture(*texture); } void vulkan_filter_chain_build_offscreen_passes( vulkan_filter_chain_t *chain, VkCommandBuffer cmd, const VkViewport *vp) { chain->build_offscreen_passes(cmd, *vp); } void vulkan_filter_chain_build_viewport_pass( vulkan_filter_chain_t *chain, VkCommandBuffer cmd, const VkViewport *vp, const float *mvp) { chain->build_viewport_pass(cmd, *vp, mvp); }