/* SSNES - A Super Nintendo Entertainment System (SNES) Emulator frontend for libsnes. * Copyright (C) 2010-2012 - Hans-Kristian Arntzen * * Some code herein may be based on code found in BSNES. * * SSNES is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * SSNES is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with SSNES. * If not, see . */ // Bog-standard windowed SINC implementation. // Only suitable as an upsampler, as there is no low-pass filter stage. #include "resampler.h" #include #include #include #include #include #ifndef RESAMPLER_TEST #include "../general.h" #else #define SSNES_LOG(...) #endif #if __SSE__ #include #endif #if __SSE3__ #include #endif #define PHASE_BITS 8 #define SUBPHASE_BITS 16 #define PHASES (1 << PHASE_BITS) #define PHASES_SHIFT (SUBPHASE_BITS) #define SUBPHASES (1 << SUBPHASE_BITS) #define SUBPHASES_SHIFT 0 #define SUBPHASES_MASK ((1 << SUBPHASE_BITS) - 1) #define PHASES_WRAP (1 << (PHASE_BITS + SUBPHASE_BITS)) #define FRAMES_SHIFT (PHASE_BITS + SUBPHASE_BITS) #define SIDELOBES 16 #define TAPS (SIDELOBES * 2) #define PHASE_INDEX 0 #define DELTA_INDEX 1 struct ssnes_resampler { float phase_table[PHASES][2][2 * SIDELOBES]; float buffer_l[2 * SIDELOBES]; float buffer_r[2 * SIDELOBES]; uint32_t time; }; void resampler_preinit(ssnes_resampler_t *re, double omega, double *samples_offset) { *samples_offset = SIDELOBES + 1; for (int i = 0; i < 2 * SIDELOBES; i++) { re->buffer_l[i] = cos((i - (SIDELOBES - 1)) * omega); re->buffer_r[i] = re->buffer_l[i]; } re->time = 0; } static inline double sinc(double val) { if (fabs(val) < 0.00001) return 1.0; else return sin(val) / val; } static inline double blackman(double index) { index *= 0.5; index += 0.5; double alpha = 0.16; double a0 = (1.0 - alpha) / 2.0; double a1 = 0.5; double a2 = alpha / 2.0; return a0 - a1 * cos(2.0 * M_PI * index) + a2 * cos(4.0 * M_PI * index); } static void init_sinc_table(ssnes_resampler_t *resamp) { // Sinc phases: [..., p + 3, p + 2, p + 1, p + 0, p - 1, p - 2, p - 3, p - 4, ...] for (int i = 0; i < PHASES; i++) { for (int j = 0; j < 2 * SIDELOBES; j++) { double p = (double)i / PHASES; double sinc_phase = M_PI * (p + (SIDELOBES - 1 - j)); resamp->phase_table[i][PHASE_INDEX][j] = sinc(sinc_phase) * blackman(sinc_phase / SIDELOBES); } } // Optimize linear interpolation. for (int i = 0; i < PHASES - 1; i++) { for (int j = 0; j < 2 * SIDELOBES; j++) { resamp->phase_table[i][DELTA_INDEX][j] = (resamp->phase_table[i + 1][PHASE_INDEX][j] - resamp->phase_table[i][PHASE_INDEX][j]) / SUBPHASES; } } } ssnes_resampler_t *resampler_new(void) { ssnes_resampler_t *re = (ssnes_resampler_t*)memalign(16, sizeof(*re)); if (!re) return NULL; memset(re, 0, sizeof(*re)); init_sinc_table(re); #if __SSE3__ SSNES_LOG("Sinc resampler [SSE3]\n"); #elif __SSE__ SSNES_LOG("Sinc resampler [SSE]\n"); #else SSNES_LOG("Sinc resampler [C]\n"); #endif return re; } #if __SSE__ static void process_sinc(ssnes_resampler_t *resamp, float *out_buffer) { __m128 sum_l = _mm_setzero_ps(); __m128 sum_r = _mm_setzero_ps(); const float *buffer_l = resamp->buffer_l; const float *buffer_r = resamp->buffer_r; unsigned phase = resamp->time >> PHASES_SHIFT; unsigned delta = (resamp->time >> SUBPHASES_SHIFT) & SUBPHASES_MASK; __m128 delta_f = _mm_set1_ps(delta); const float *phase_table = resamp->phase_table[phase][PHASE_INDEX]; const float *delta_table = resamp->phase_table[phase][DELTA_INDEX]; for (unsigned i = 0; i < TAPS; i += 4) { __m128 buf_l = _mm_load_ps(buffer_l + i); __m128 buf_r = _mm_load_ps(buffer_r + i); __m128 phases = _mm_load_ps(phase_table + i); __m128 deltas = _mm_load_ps(delta_table + i); __m128 sinc = _mm_add_ps(phases, _mm_mul_ps(deltas, delta_f)); sum_l = _mm_add_ps(sum_l, _mm_mul_ps(buf_l, sinc)); sum_r = _mm_add_ps(sum_r, _mm_mul_ps(buf_r, sinc)); } #if __SSE3__ __m128 res = _mm_hadd_ps(_mm_hadd_ps(sum_l, sum_r), _mm_setzero_ps()); _mm_storeu_ps(out_buffer, res); // Overwriting, but this is safe. #else // Meh, compiler should optimize this to something sane. union { float f[4]; __m128 v; } u[2] = { [0] = { .v = sum_l }, [1] = { .v = sum_r }, }; out_buffer[0] = u[0].f[0] + u[0].f[1] + u[0].f[2] + u[0].f[3]; out_buffer[1] = u[1].f[0] + u[1].f[1] + u[1].f[2] + u[1].f[3]; #endif } #else // Plain ol' C99 static void process_sinc(ssnes_resampler_t *resamp, float *out_buffer) { float sum_l = 0.0f; float sum_r = 0.0f; const float *buffer_l = resamp->buffer_l; const float *buffer_r = resamp->buffer_r; unsigned phase = resamp->time >> PHASES_SHIFT; unsigned delta = (resamp->time >> SUBPHASES_SHIFT) & SUBPHASES_MASK; float delta_f = (float)delta; const float *phase_table = resamp->phase_table[phase][PHASE_INDEX]; const float *delta_table = resamp->phase_table[phase][DELTA_INDEX]; for (unsigned i = 0; i < TAPS; i++) { float sinc_val = phase_table[i] + delta_f * delta_table[i]; sum_l += buffer_l[i] * sinc_val; sum_r += buffer_r[i] * sinc_val; } out_buffer[0] = sum_l; out_buffer[1] = sum_r; } #endif void resampler_process(ssnes_resampler_t *re, struct resampler_data *data) { uint32_t ratio = PHASES_WRAP / data->ratio; const float *input = data->data_in; float *output = data->data_out; size_t frames = data->input_frames; size_t out_frames = 0; while (frames) { process_sinc(re, output); output += 2; out_frames++; re->time += ratio; while (re->time >= PHASES_WRAP) { memmove(re->buffer_l, re->buffer_l + 1, sizeof(re->buffer_l) - sizeof(float)); memmove(re->buffer_r, re->buffer_r + 1, sizeof(re->buffer_r) - sizeof(float)); re->buffer_l[2 * SIDELOBES - 1] = *input++; re->buffer_r[2 * SIDELOBES - 1] = *input++; re->time -= PHASES_WRAP; frames--; } } data->output_frames = out_frames; } void resampler_free(ssnes_resampler_t *re) { free(re); }