/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2014 - Hans-Kristian Arntzen * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #define __STDC_LIMIT_MACROS #include "rewind.h" #include #include #include "msvc/msvc-stdint/stdint.h" //#define NO_UNALIGNED_MEM //Uncomment the above if alignment is enforced. //format per frame: //size nextstart; //repeat { // uint16 numchanged; // everything is counted in units of uint16 // if (numchanged) { // uint16 numunchanged; // skip these before handling numchanged // uint16[numchanged] changeddata; // } // else // { // uint32 numunchanged; // if (!numunchanged) break; // } //} //size thisstart; // //the start offsets point to 'nextstart' of any given compressed frame //multibyte values are stored native endian if alignment is not enforced; if it is, little endian //the start of the buffer contains a size pointing to the end of the buffer; the end points to its start //wrapping is handled by returning to the start of the buffer if the compressed data could potentially hit the edge //if the compressed data could potentially overwrite the tail pointer, the tail retreats until it can no longer collide //so on average, ~2*maxcompsize is unused at any given moment // //if unaligned memory access is illegal, define NO_UNALIGNED_MEM #if SIZE_MAX == 0xFFFFFFFF extern char double_check_sizeof_size_t[(sizeof(size_t)==4)?1:-1]; #elif SIZE_MAX == 0xFFFFFFFFFFFFFFFF extern char double_check_sizeof_size_t[(sizeof(size_t)==8)?1:-1]; #define USE_64BIT #else #error your compiler is insane. #endif #ifdef NO_UNALIGNED_MEM //These functions assume 16bit alignment. //They do not make any attempt at matching system native endian; values written by these can only be read by the matching partner. #ifdef USE_64BIT static inline void write_size_t(uint16_t* ptr, size_t val) { ptr[0]=val>>0; ptr[1]=val>>16; ptr[2]=val>>32; ptr[3]=val>>48; } static inline size_t read_size_t(uint16_t* ptr) { return ((size_t)ptr[0]<<0 | (size_t)ptr[1]<<16 | (size_t)ptr[2]<<32 | (size_t)ptr[3]<<48); } #else static inline void write_size_t(uint16_t* ptr, size_t val) { ptr[0]=val; ptr[1]=val>>16; } static inline size_t read_size_t(uint16_t* ptr) { return (ptr[0] | (size_t)ptr[1]<<16); } #endif #else #define read_size_t(ptr) (*(size_t*)(ptr)) #define write_size_t(ptr, val) (*(size_t*)(ptr) = (val)) #endif struct state_manager { char * data; size_t capacity; char * head;//read and write here char * tail;//delete here if head is close char * thisblock; char * nextblock; bool thisblock_valid; size_t blocksize;//rounded up from reset::blocksize size_t maxcompsize;//size_t+(blocksize+131071)/131072*(blocksize+u16+u16)+u16+u32+size_t unsigned int entries; }; state_manager_t *state_manager_new(size_t state_size, size_t buffer_size) { state_manager_t * state=malloc(sizeof(*state)); state->capacity=0; state->blocksize=0; int newblocksize=((state_size-1)|(sizeof(uint16_t)-1))+1; state->blocksize=newblocksize; const int maxcblkcover=UINT16_MAX*sizeof(uint16_t); const int maxcblks=(state->blocksize+maxcblkcover-1)/maxcblkcover; state->maxcompsize=state->blocksize + maxcblks*sizeof(uint16_t)*2 + sizeof(uint16_t)+sizeof(uint32_t) + sizeof(size_t)*2; state->data=malloc(buffer_size); state->thisblock=calloc(state->blocksize+sizeof(uint16_t)*8, 1); state->nextblock=calloc(state->blocksize+sizeof(uint16_t)*8, 1); if (!state->data || !state->thisblock || !state->nextblock) { free(state->data); free(state->thisblock); free(state->nextblock); free(state); return NULL; } //force in a different byte at the end, so we don't need to look for the buffer end in the innermost loop //there is also a large amount of data that's the same, to stop the other scan //and finally some padding so we don't read outside the buffer end if we're reading in large blocks *(uint16_t*)(state->thisblock+state->blocksize+sizeof(uint16_t)*3)=0xFFFF; *(uint16_t*)(state->nextblock+state->blocksize+sizeof(uint16_t)*3)=0x0000; state->capacity=buffer_size; state->head=state->data+sizeof(size_t); state->tail=state->data+sizeof(size_t); state->thisblock_valid=false; state->entries=0; return state; } void state_manager_free(state_manager_t *state) { free(state->data); free(state->thisblock); free(state->nextblock); free(state); } bool state_manager_pop(state_manager_t *state, void **data) { *data=NULL; if (state->thisblock_valid) { state->thisblock_valid=false; state->entries--; *data=state->thisblock; return true; } if (state->head==state->tail) return false; size_t start=read_size_t((uint16_t*)(state->head - sizeof(size_t))); state->head=state->data+start; const char * compressed=state->data+start+sizeof(size_t); char * out=state->thisblock; //begin decompression code //out is the previously returned state const uint16_t * compressed16=(const uint16_t*)compressed; uint16_t * out16=(uint16_t*)out; while (true) { uint16_t numchanged=*(compressed16++); if (numchanged) { out16+=*(compressed16++); //we could do memcpy, but it seems that function call overhead is high // enough that memcpy's higher speed for large blocks won't matter for (int i=0;ientries--; *data=state->thisblock; return true; } void *state_manager_push_where(state_manager_t *state) { return state->nextblock; } bool state_manager_push_do(state_manager_t *state) { if (state->thisblock_valid) { if (state->capacitymaxcompsize) return false; recheckcapacity:; size_t headpos=(state->head-state->data); size_t tailpos=(state->tail-state->data); size_t remaining=(tailpos+state->capacity-sizeof(size_t)-headpos-1)%state->capacity + 1; if (remaining<=state->maxcompsize) { state->tail=state->data + read_size_t((uint16_t*)state->tail); state->entries--; goto recheckcapacity; } const char* old=state->thisblock; const char* new=state->nextblock; char* compressed=state->head+sizeof(size_t); //at the end, 'compressed' must point to the end of the compressed data //do not include the next/prev pointers //begin compression code const uint16_t * old16=(const uint16_t*)old; const uint16_t * new16=(const uint16_t*)new; uint16_t * compressed16=(uint16_t*)compressed; size_t num16s=state->blocksize/sizeof(uint16_t); while (num16s) { const uint16_t * oldprev=old16; #ifdef NO_UNALIGNED_MEM while ((uintptr_t)old16 & (sizeof(size_t)-1) && *old16==*new16) { old16++; new16++; } if (*old16==*new16) #endif { const size_t* olds=(const size_t*)old16; const size_t* news=(const size_t*)new16; while (*olds==*news) { olds++; news++; } old16=(const uint16_t*)olds; new16=(const uint16_t*)news; while (*old16==*new16) { old16++; new16++; } } size_t skip=(old16-oldprev); if (skip>=num16s) break; num16s-=skip; if (skip>UINT16_MAX) { if (skip>UINT32_MAX) { old16-=skip; new16-=skip; skip=UINT32_MAX; old16+=skip; new16+=skip; } *(compressed16++)=0; *(compressed16++)=skip; *(compressed16++)=skip>>16; compressed16+=2; skip=0; continue; } size_t changed; const uint16_t * old16prev=old16; //comparing two or three words makes no real difference //with two, the smaller blocks are less likely to be chopped up elsewhere due to 64KB //with three, we get larger blocks which should be a minuscle bit faster to decompress, but probably a little slower to compress while (old16[0]!=new16[0] || old16[1]!=new16[1]) { old16++; new16++; while (*old16!=*new16) { old16++; new16++; } } changed=(old16-old16prev); if (!changed) continue; if (changed>UINT16_MAX) { old16-=changed; new16-=changed; changed=UINT16_MAX; old16+=changed; new16+=changed; } num16s-=changed; *(compressed16++)=changed; *(compressed16++)=skip; memcpy(compressed16, old16prev, changed*sizeof(uint16_t)); compressed16+=changed; } compressed16[0]=0; compressed16[1]=0; compressed16[2]=0; compressed=(char*)(compressed16+3); //end compression code if (compressed-state->data+state->maxcompsize > state->capacity) { compressed=state->data; if (state->tail==state->data+sizeof(size_t)) state->tail=state->data + *(size_t*)state->tail; } write_size_t((uint16_t*)compressed, state->head-state->data); compressed+=sizeof(size_t); write_size_t((uint16_t*)state->head, compressed-state->data); state->head=compressed; } else { state->thisblock_valid=true; } char * swap=state->thisblock; state->thisblock=state->nextblock; state->nextblock=swap; state->entries++; return true; } void state_manager_capacity(state_manager_t *state, unsigned int * entries, size_t * bytes, bool * full) { size_t headpos=(state->head-state->data); size_t tailpos=(state->tail-state->data); size_t remaining=(tailpos+state->capacity-sizeof(size_t)-headpos-1)%state->capacity + 1; if (entries) *entries=state->entries; if (bytes) *bytes=(state->capacity-remaining); if (full) *full=(remaining<=state->maxcompsize*2); }